

ISSN 2056-9890

Received 29 March 2021 Accepted 6 May 2021

Edited by D. Gray, University of Illinois Urbana-Champaign, USA

Keywords: crystal structure; hydrogen bonding; potassium salt; thiophene; Hirshfeld analysis.

CCDC reference: 2082049

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of potassium hydrogen bis((*E*)-2-{4-[3-(thiophen-3-yl)acryloyl]phenoxy}acetate)

Trung Vu Quoc,^a* Linh Phan Thuy,^b Dai Do Ba,^c Duong Tran Thi Thuy,^d Linh Nguyen Ngoc,^e Chinh Nguyen Thuy,^{f,g} Linh Duong Khanh,^a Hung Ha Manh,^h Hoang Thai,^{f,g} Khoe Le Vanⁱ and Luc Van Meervelt^j*

^aFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi 10000, Vietnam, ^bHigh School for Gifted Students, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi 10000, Vietnam, ^cNguyen Trai High School, 50 Nam Cao Street, Ba Dinh, Hanoi 10000, Vietnam, ^dBien Hoa Gifted High School, 86 Chu Van An Street, Phu Ly City, Ha Nam Province, Vietnam, ^cFaculty of Training Bachelor of Practice, Than Do University, Kim Chung, Hoai Duc, Hanoi 10000, Vietnam, ^fInstitute of Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam, ^gGraduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam, ^hFaculty of General Education, Hanoi University of Mining and Geology, Duc Thang Ward, Bac Tu Liem District, Hanoi 10000, Vietnam, ⁱFaculty of Natural Sciences, Hong Duc University, 565 Quang Trung, Dong Ve Ward, Thanh Hoa City, Vietnam, and ^jDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium. *Correspondence e-mail: trungvq@hnue.edu.vn, luc.vanmeervelt@kuleuven.be

The synthesis and spectroscopic data of (E)-2-{4-[3-(thiophen-3-yl)acryloyl]phenoxy}acetic acid are described. Crystallization from an ethanol-water mixture resulted in the title compound, $C_{30}H_{23}KO_8S_2$ or $[K(C_{15}H_{11}O_4S)(C_{15}H_{12}O_4S)]_n$, containing one molecule of the acid and one molecule of the potassium salt in the asymmetric unit. Both molecules share the H atom between their carboxyl groups and a potassium ion. The C=C bonds display an *E* configuration. The thiophene and phenyl rings in the two molecules are inclined by 43.3 (2) and 22.7 (2)°. The potassium ion is octahedrally coordinated by six O atoms. This distorted octahedron shares on opposite sides two oxygen atoms with inversion-related octahedra, resulting in chains of octahedra running in the [010] direction, which form ladder-like chains by C– $H \cdots \pi$ interactions. A Hirshfeld surface analysis indicates that the highest contributions to the surface contacts arise from interactions in which H atoms are involved, with the most important contribution being from $H \cdots H$ (31.6 and 31.9% for the two molecules) interactions.

1. Chemical context

Over the last two decades, water-soluble polythiophenes and their derivatives have been of particular importance among conjugated polyelectrolytes owing to a unique combination of high conductivity, environmental stability and structural versatility, allowing derivatization of the π -conjugated backbone in view of numerous technological applications (Wang et al., 2015; Chayer et al., 1997; Wang et al., 2013). Many regioregular polythiophenes with pendant carboxylic acid functionality have been studied (Ewbank et al., 2004; McCullough et al., 1997; Wu et al., 2015; Janáky et al., 2010). The increased alkyl side-chain length allows for increased coplanarity of the main-chain thiophene rings to advance regioregular polythiophene backbones (Vu Quoc et al., 2019a). A lot of synthetic research has been conducted with a view to increasing the side-chain length of thiophene rings (Vu Quoc et al., 2020). Crystal studies of thiophene monomers have also been reported (Vu Quoc et al., 2017, 2018, 2019b).

(E)-2-{4-[3-(thiophen-3-yl)acryloyl]phenoxy}acetic acid are reported. This compound is considered to be a good monomer for the synthesis of water-soluble polythiophene-based conjugated polyelectrolytes. A single-crystal structure determination indicates that after crystallization, crystals were obtained containing one molecule of the acid and one molecule of the potassium salt in the asymmetric unit.

2. Structural commentary

The title compound crystallizes in the triclinic space group $P\overline{1}$ as a complex formed between the acid and the potassium salt of the acid, as illustrated in Fig. 1. In the following discussion, molecule A includes atoms S1–O20 and molecule B atoms S21–O40. Both molecules share hydrogen atom H19 between their carboxyl groups and a potassium ion, K41. Atom H19 is involved in hydrogen-bonding interactions with atoms O39

Figure 1

The molecular structure of the title compound, showing the atomlabelling scheme and displacement ellipsoids at the 30% probability level.

Figure 2

Overlay diagram of the two molecules A (green) and B (blue), comprising the asymmetric unit. H atoms are hidden for clarity (*Mercury*; Macrae *et al.*, 2020).

Table 1	
Hydrogen-bond geometry (Å, °).	

Cg3 and Cg4 are the centroids of rings C10-C15 and C30-C35, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O19-H19···O39	1.19 (4)	1.27 (4)	2.463 (3)	174 (4)
O19−H19···O40	1.19 (4)	2.47 (4)	3.259 (3)	122 (2)
C6-H6···O9	0.93	2.52	2.834 (6)	100
C26-H26···O29	0.93	2.49	2.814 (6)	100
$C17 - H17A \cdots Cg4^{i}$	0.97	2.76	3.509 (4)	134
$C37 - H37B \cdots Cg3^{ii}$	0.97	2.82	3.535 (4)	131

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

and O40 (Table 1). The dihedral angle between the thiophene and phenyl rings is 43.3 (2)° for molecule A and 22.7 (2)° for molecule B. The C=C bonds display an E configuration, resulting in short intramolecular C6-H6···O9 and C26-H26···O29 interactions (Table 1). The terminal thiophene groups are involved in intense thermal motion.

Fig. 2 shows an overlay diagram of the two molecules A and B [r.m.s. deviation 0.5622 Å as calculated using *Mercury* (Macrae *et al.*, 2020)]. The largest differences are caused by the different orientation of the phenyl groups.

Potassium ion K41 is octahedrally coordinated by six O atoms with K–O distances between 2.672 (2) and 2.906 (3) Å (Fig. 3) and an octahedral volume of 21.871 Å³. The coordination sphere can be extended with atoms O16 and O36, but K···O distances are much longer [K41···O16^{iv} = 3.245 (3), K41···O36ⁱⁱ = 3.347 (3) Å, symmetry codes: (ii) -x + 2, -y + 2, -z + 1, (iv) -x + 1, -y + 1, -z + 1].

3. Supramolecular features

In the crystal packing, the potassium ion K41 interacts with six molecules of which two occur in the carboxylic acid form

Figure 3

Octahedral coordination around K in the title compound [symmetry codes: (i) x + 1, y, z, (ii) -x + 2, -y + 2, -z + 1, (iv) -x + 1, -y + 1, -z + 1].

Figure 4

Potassium atom K41 is surrounded by six different molecules. The six $K \cdots O$ interactions participating in the distorted octahedral coordination are shown in turquoise, the two longer ones in yellow.

(Fig. 4). The distorted octahedron around K41 shares on opposite sides two oxygen atoms [at one side O40 and O40ⁱⁱ, at the other side O20ⁱ and O20^{iv}; symmetry codes: (i) x + 1, y, z, (ii) -x + 2, -y + 2, -z + 1, (iv) -x + 1, -y + 1, -z + 1] with inversion-related octahedra (Figs. 3 and 5). This results in parallel chains of octahedra running in the [010] direction and situated in the (002) plane. The K···K distances in the chains are 4.8084 (15) (for K41···K41ⁱⁱ) and 4.8353 (14) Å [for K41···K41^v; symmetry code: (v) -x + 2, -y + 1, -z + 1].

Figure 5

Parallel chains of K-O octahedra running in the [010] direction. Inversion centers are shown as yellow spheres.

Table 2

Percentage contributions of interatomic contacts to the Hirshfeld surfaces of the two molecules.

Molecule A includes atoms S1-O20, molecule B atoms S21-O40.

Contact	Molecule A	Molecule B
$H \cdots H$	31.6	31.9
$C \cdot \cdot \cdot H/H \cdot \cdot \cdot C$	21.1	20.0
$O \cdots H/H \cdots O$	17.4	17.3
$S\!\cdot\cdot\cdot H\!/\!H\!\cdot\cdot\cdot S$	8.8	9.9
$O \cdots C/C \cdots O$	5.8	5.5
$K{\cdots}O/O{\cdots}K$	4.8	4.7
$C \cdots C$	4.9	4.8
$S \cdots C/C \cdots S$	2.0	2.3
$S \cdots S$	0.9	1.0
$K \cdot \cdot \cdot H / H \cdot \cdot \cdot K$	0.7	0.6

Despite the presence of many aromatic rings, the crystal packing of the title compound does not show π any $-\pi$ interactions. The shortest centroid–centroid distance is 4.735 (3) Å between thiophene rings S1/C2–C5 and S21/C22–C25 with an

A view down the *a* axis of the intermolecular $C-H\cdots\pi$ interactions of the title compound. Colour codes used: magenta for ring C10–C15, green for ring C30–C35. *Cg*3 and *Cg*4 are the centroids of the C10–C15 and C30–C35 rings, respectively. K atoms have been omitted.

research communications

Figure 7

The Hirshfeld surfaces of molecules (a) A and (b) B mapped over d_{norm} in the colour ranges -1.0475 to 1.0150 and -1.1101 to 1.0300 a.u., respectively, together with the full two-dimensional fingerprint plots for molecules (c) A and (d) B.

angle between the rings of 52.3 (3)°. However, C-H··· π interactions are present and give rise to a ladder-like chain also running in the [010] direction (Table 1, Fig. 6). In addition, neigbouring chains interact by short C28=O29···Cg1^v contacts [O29···Cg1^v = 3.652 (4) Å; Cg1 is the centroid of thiophene ring S1/C2-C5; symmetry code: (v) -x, -y + 1, -z + 1].

The packing does not show any residual solvent-accessible voids.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed using CrystalExplorer (Turner et al., 2017). The Hirshfeld surfaces of molecules A and B mapped over d_{norm} are given in Fig. 7a and b, respectively. The relative distributions from the different interatomic contacts to the Hirshfeld surfaces are presented in Table 2. The bright-red spots at atoms O19, H19 and O39 are indicative of the O19-H19...O39 hydrogen bond between the molecules. The additional faint-red spots near atoms O16, O19, O20, O36, O39 and O40 concern the $K \cdot \cdot \cdot O$ interactions in the crystal structure. It should be noted that the Hirshfeld surfaces are almost identical for the two molecules. The same is true for the fingerprint plots (Fig. 7c and d). The sharp tips at $d_{\rm e}$ + $d_{\rm i}$ \simeq 1.4 Å arise from the O19−H19···O39 hydrogen bond. The principal contribution to the Hirshfeld surfaces involves H...H contacts at 31.6 and 31.9% for molecules A and B, respectively. These are followed by C···H/H···C (21.1 and 20.0%) $O \cdots H/H \cdots O$ (17.4 and 17.3%) and $S \cdots H/H \cdots S$ (8.8 and 9.9%) contacts.

(a) Polar histogram of torsion angle R_1 -C=C-C. (b) Histogram of the dihedral angle between the planes of the double bond and the phenyl ring.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom *et al.*, 2016) for the fragment R_1 -CH=CH-C(=O)-p-C₆H₄- R_2 gave 619 hits (with C atoms double-bond acyclic). For only 33 cases (5.3%), the double bond has the Z configuration (Fig. 8*a*). The histogram of the dihedral angle between the planes of the double bond and the phenyl ring shows values between 0.0 and 86.2° (Fig. 8*b*). A search with thiophene as R_1 resulted in only four hits (CSD refcodes XOLJUG, XOLKAN, XOLKER and XOLKIV; Vu Quoc *et al.*, 2019*c*) displaying the *E* configuration and dihedral angles in the range 6.7 to 15.8° (smaller than in the title compound). Only one structure was found for which R_2 is the same as in the title compound (OCH₂COOH; CSD refcode TAMJID; Abdul Ajees *et al.*, 2017). In this monohydrate, a water molecule makes hydrogen

Figure 9 Reaction scheme for (*E*)-2-{4-[3-(thiophen-3-yl)acryloyl]phenoxy}acetic acid.

614.70

2

Triclinic, $P\overline{1}$ 293

1396.42 (14)

 $0.4 \times 0.2 \times 0.05$

Μο Κα

0.39

[K(C15H11O4S)(C15H12O4S)]

6.0036 (3), 9.6432 (5), 25.0966 (16)

92.412 (4), 90.548 (4), 105.808 (4)

bonds to the carboxyl groups of two neighbouring molecules and in addition to a carbonyl of a third neighbouring enone moiety.

6. Synthesis and crystallization

A mixture of ethyl 2-(4-acetylphenoxy)acetate (5 mmol), 3thiophenecarbaldehyde (5 mmol) and 50 mL of ethanol was stirred in ice-cold water for 20 minutes. Then, 5 mL of 50% KOH solution was added dropwise to the reaction mixture. which was then stirred continuously for 5 h. At the end of the reaction, water was added to the reaction mixture and stirring was continued until all solids in the mixture were dissolved. Concentrated HCl was slowly added to the obtained solution until the solution changed from brown to yellow. The solution was then heated until crystals appeared. The solid then began to crystallize when the solution temperature started to decrease. The crystallized solid was filtered off, washed thoroughly with water and recrystallized from an ethanol-water mixture to give 2-{4-[3-(thiophen-3-yl)acryloyl]phenoxy}acetic acid (yield 62%) in the form of pale-yellow crystals (m.p. 455 K).

IR (Shimadzu FTIR-8400S, KBr, cm⁻¹): 1017, 980 (=C-H bend), 1597 (C=C), 1659 (C=O), 3457 (broad, OH).

¹H NMR [Bruker XL-500, 500 MHz, d_6 -DMSO, (ppm), J (Hz)]: 7.60 (d, 1H, H²), 7.42 (m, 1H, ${}^{5}J = 5.0, H^{4}$), 7.38 (t, 1H, ${}^{4}J$ $= 5.0, H^{5}$, 7.81 (d, 1H, ⁷J = 15.5, H⁶), 7.34 (d, 1H, ⁶J = 15.5, H⁷), 8.03 (t, 2H, J = 9.0, H¹⁰ and H¹⁴), 7.02 (m, 2H, H¹¹ and H¹³), 4.77 (s, 2H, H¹⁵).

¹³C NMR [Bruker XL-500, 125 MHz, d_6 -DMSO, (ppm)]: 121.81 (C2), 128.75 (C3), 127.01 (C4), 125.41 (C5), 132.67 (C6), 130.87 (C7), 171.85 (C8), 169.73 (C9), 138.39 (C10 and C14), 137.96 (C11 and C13), 114.65 (C12), 64.68 (C15), 189.09 (C16). Calculation for $C_{15}H_{11}O_4S$: M = 287 au.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atom H19 was located from a difference electron-density map and refined freely with an $U_{\rm iso}({\rm H})$ value of $1.5U_{\rm eq}$ of the parent atom O19. The other H atoms were placed in idealized positions and included as riding contributions with an $U_{iso}(H)$ values of $1.2U_{eq}$ of the parent atom, with C-H distances of 0.93 (aromatic) and 0.97 Å (CH₂). In the final cycles of refinement, 12 outliers with |error/e.s.d.| > 5.0 were omitted.

Acknowledgements

Author contributions are as follows. Conceptualization, LNN and TVQ; synthesis, LPT, DDB and DTTT; IR, NMR spectra measurements and analysis, LDK, HHM and KLV; writing Table 3

 M_{r}

Ζ

Crystal data Chemical formula

 α, β, γ (°) V (Å³)

 μ (mm⁻¹)

Radiation type

Crystal size (mm)

Experimental details.

Crystal system, space group

The synthetic pathway to synthesize the target compound,	
(E) -2-{4-[3-(thiophen-3-yl)acryloyl]phenoxy}acetic acid, is	
given in Fig. 9 (numbering on chemical formulas is only used	
or NMR spectroscopic analysis).	

Rigaku Oxford Diffraction Super- Nova, Single source at offset/far, Eos
Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2018)
0.863, 1.000
15169, 4742, 2836
0.037
0.588
0.068, 0.211, 1.02
4742
373
H atoms treated by a mixture of independent and constrained refinement
0.59, -0.47

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a), SHELXL2016/4 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

(review and editing of the manuscript), CNT, HT and LVM; crystal-structure determination and validation, LVM.

Funding information

LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/ 0035. This study is funded by Vietnam Ministry of Education and Training under grant No. B.2019-SPH-562-05.

References

- Abdul Ajees, A., Shubhalaxmi, Manjunatha, B. S., Kumar, S. M., Byrappa, K. & Subrahmanya Bhat, K. (2017). Chem. Data Collect. 9-10, 61-67.
- Chayer, M., Faïd, K. & Leclerc, M. (1997). Chem. Mater. 9, 2902-2905.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Ewbank, P. C., Loewe, R. S., Zhai, L., Reddinger, J., Sauvé, G. & McCullough, R. D. (2004). Tetrahedron, 60, 11269-11275.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Janáky, C., Endrődi, B., Kovács, K., Timko, M., Sápi, A. & Visy, C. (2010). Synth. Met. 160, 65-71.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.

- McCullough, R. D., Ewbank, P. C. & Loewe, R. S. (1997). J. Am. Chem. Soc. 119, 633–634.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19– 32.
- Trung, V. Q., Linh, N. N., Duong, T. T. T., Chinh, N. T., Linh, D. K., Hung, H. M. & Oanh, D. T. Y. (2019a). Vietnam. J. Chem. 57, 770– 776.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. University of Western Australia. http://hirshfeldsurface.net

- Vu Quoc, T., Tran, T. D., Nguyen, T. C., Nguyen, T. V., Nguyen, H., Vinh, P. V., Nguyen-Trong, D., Dinh Duc, N. & Nguyen-Tri, P. (2020). *Polymers*, **12**, 1207.
- Vu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901–904.
- Vu Quoc, T., Nguyen Ngoc, L., Tran Thi Thuy, D., Vu Quoc, M., Vuong Nguyen, T., Oanh Doan Thi, Y. & Van Meervelt, L. (2019b). Acta Cryst. E75, 1090–1095.
- Vu Quoc, T., Nguyen Ngoc, L., Do Ba, D., Pham Chien, T., Nguyen Huy, H. & Van Meervelt, L. (2018). *Acta Cryst.* E74, 812–815.
- Vu Quoc, T., Tran Thi Thuy, D., Dang Thanh, T., Phung Ngoc, T., Nguyen Thien, V., Nguyen Thuy, C. & Van Meervelt, L. (2019c). Acta Cryst. E75, 957–963.
- Wang, F., Li, M., Wang, B., Zhang, J., Cheng, Y., Liu, L., Ly, F. & Wang, S. (2015). Sci. Rep. 5, 1–8.
- Wang, L., Zhang, G., Pei, M., Hu, L., Li, E. & Li, H. (2013). J. Appl. Polym. Sci. 130, 939–943.
- Wu, T., Wang, L., Zhang, Y., Du, S., Guo, W. & Pei, M. (2015). RSC Adv. 5, 16684–16690.

Acta Cryst. (2021). E77, 609-614 [https://doi.org/10.1107/S2056989021004801]

Crystal structure of potassium hydrogen bis((*E*)-2-{4-[3-(thiophen-3-yl)acryloyl]phenoxy}acetate)

Trung Vu Quoc, Linh Phan Thuy, Dai Do Ba, Duong Tran Thi Thuy, Linh Nguyen Ngoc, Chinh Nguyen Thuy, Linh Duong Khanh, Hung Ha Manh, Hoang Thai, Khoe Le Van and Luc Van Meervelt

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2018); cell refinement: *CrysAlis PRO* (Rigaku OD, 2018); data reduction: *CrysAlis PRO* (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2016/4* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Potassium hydrogen bis((*E*)-2-{4-[3-(thiophen-3-yl)acryloyl]phenoxy}acetate)

Crystal data	
$\begin{bmatrix} K(C_{15}H_{11}O_{4}S)(C_{15}H_{12}O_{4}S) \end{bmatrix}$ $M_{r} = 614.70$ Triclinic, $P1$ a = 6.0036 (3) Å b = 9.6432 (5) Å c = 25.0966 (16) Å a = 92.412 (4)° $\beta = 90.548$ (4)° $\gamma = 105.808$ (4)° V = 1396.42 (14) Å ³	Z = 2 F(000) = 636 $D_x = 1.462 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3156 reflections $\theta = 3.2-24.6^{\circ}$ $\mu = 0.39 \text{ mm}^{-1}$ T = 293 K Plate, colourless $0.4 \times 0.2 \times 0.05 \text{ mm}$
Data collection	
Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos diffractometer Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 15.9631 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018)	$T_{\min} = 0.863, T_{\max} = 1.000$ 15169 measured reflections 4742 independent reflections 2836 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.037$ $\theta_{\text{max}} = 24.7^{\circ}, \theta_{\text{min}} = 2.4^{\circ}$ $h = -7 \rightarrow 7$ $k = -11 \rightarrow 11$ $l = -29 \rightarrow 29$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.068$	$wR(F^2) = 0.211$ S = 1.02 4742 reflections

	$1/[2/[2]] + (0.111)^{2} + 0.2(00)^{3}$
3/3 parameters	$W = 1/[\sigma^2(F_0^2) + (0.111P)^2 + 0.2689P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: dual	$(\Delta/\sigma)_{\rm max} < 0.001$
Hydrogen site location: mixed	$\Delta ho_{ m max} = 0.59 \ { m e} \ { m \AA}^{-3}$
H atoms treated by a mixture of independent	$\Delta ho_{ m min}$ = -0.47 e Å ⁻³
and constrained refinement	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	-0.2860 (3)	-0.46353 (17)	0.04899 (7)	0.0970 (6)
C2	-0.0473 (9)	-0.4037 (5)	0.08824 (19)	0.0737 (15)
H2	0.067798	-0.451127	0.090654	0.088*
C3	-0.0407 (8)	-0.2770 (5)	0.11636 (17)	0.0590 (13)
C4	-0.2427 (9)	-0.2331 (6)	0.1050 (2)	0.0793 (16)
H4	-0.271387	-0.150647	0.120601	0.095*
C5	-0.3963 (9)	-0.3270 (6)	0.06777 (19)	0.0773 (16)
Н5	-0.536358	-0.315058	0.055580	0.093*
C6	0.1494 (8)	-0.2019 (5)	0.15232 (17)	0.0590 (13)
H6	0.278677	-0.237405	0.152768	0.071*
C7	0.1570 (8)	-0.0887 (5)	0.18434 (16)	0.0564 (12)
H7	0.028240	-0.052797	0.186141	0.068*
C8	0.3652 (8)	-0.0173 (4)	0.21754 (16)	0.0492 (11)
O9	0.5535 (6)	-0.0384 (3)	0.20858 (12)	0.0645 (9)
C10	0.3407 (7)	0.0826 (4)	0.26258 (15)	0.0415 (10)
C11	0.1313 (7)	0.0763 (4)	0.28700 (16)	0.0481 (11)
H11	-0.003355	0.010363	0.273775	0.058*
C12	0.1206 (7)	0.1658 (4)	0.33031 (16)	0.0453 (10)
H12	-0.019503	0.157608	0.347103	0.054*
C13	0.3197 (6)	0.2689 (4)	0.34915 (14)	0.0345 (9)
C14	0.5284 (6)	0.2788 (4)	0.32503 (15)	0.0399 (9)
H14	0.661673	0.347244	0.337605	0.048*
C15	0.5386 (7)	0.1867 (4)	0.28211 (15)	0.0424 (10)
H15	0.679617	0.193833	0.265864	0.051*
O16	0.2876 (4)	0.3529 (2)	0.39231 (10)	0.0382 (6)
C17	0.4768 (6)	0.4721 (4)	0.40807 (14)	0.0319 (8)
H17A	0.535908	0.527277	0.377332	0.038*
H17B	0.600512	0.438362	0.423326	0.038*
C18	0.3947 (6)	0.5661 (4)	0.44896 (14)	0.0306 (8)
O19	0.5596 (4)	0.6761 (2)	0.46588 (10)	0.0377 (6)
H19	0.510 (5)	0.754 (3)	0.4992 (13)	0.057*
O20	0.1957 (4)	0.5391 (3)	0.46318 (11)	0.0438 (7)
K41	0.99969 (12)	0.75075 (8)	0.50093 (4)	0.0469 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

S21	1.2169 (3)	1.89226 (19)	0.97523 (6)	0.1039 (7)	
C22	0.9574 (9)	1.8038 (5)	0.9458 (2)	0.0810 (16)	
H22	0.815783	1.786740	0.962611	0.097*	
C23	0.9853 (9)	1.7605 (5)	0.89334 (18)	0.0594 (13)	
C24	1.2196 (10)	1.8010 (6)	0.8802 (2)	0.0792 (16)	
H24	1.273298	1.780776	0.846982	0.095*	
C25	1.3664 (9)	1.8759 (5)	0.9226 (2)	0.0764 (16)	
H25	1.526468	1.910936	0.920654	0.092*	
C26	0.7955 (8)	1.6804 (5)	0.85850 (17)	0.0609 (13)	
H26	0.647616	1.682595	0.868474	0.073*	
C27	0.8094 (8)	1.6051 (4)	0.81437 (16)	0.0544 (12)	
H27	0.955220	1.604702	0.802281	0.065*	
C28	0.6044 (8)	1.5216 (4)	0.78335 (16)	0.0507 (11)	
O29	0.4111 (6)	1.5305 (4)	0.79430 (13)	0.0712 (10)	
C30	0.6352 (7)	1.4222 (4)	0.73870 (15)	0.0417 (10)	
C31	0.8468 (7)	1.4318 (4)	0.71402 (16)	0.0511 (11)	
H31	0.978632	1.501336	0.726665	0.061*	
C32	0.8639(7)	1.3410 (4)	0.67160 (16)	0.0471 (11)	
H32	1.005424	1.351138	0.655226	0.057*	
C33	0.6704 (6)	1.2342 (4)	0.65314 (15)	0.0362 (9)	
C34	0.4595 (7)	1.2207 (4)	0.67660 (15)	0.0415 (10)	
H34	0.329159	1.149650	0.664132	0.050*	
C35	0.4435 (7)	1.3150 (4)	0.71934 (15)	0.0437 (10)	
H35	0.301130	1.305726	0.735190	0.052*	
O36	0.7068 (4)	1.1507 (2)	0.61025 (10)	0.0382 (6)	
C37	0.5203 (6)	1.0305 (4)	0.59364 (14)	0.0337 (9)	
H37A	0.396265	1.063516	0.578152	0.040*	
H37B	0.460285	0.974311	0.624094	0.040*	
C38	0.6055 (6)	0.9381 (4)	0.55283 (13)	0.0294 (8)	
O39	0.4427 (4)	0.8279 (2)	0.53558 (10)	0.0377 (6)	
O40	0.8052 (4)	0.9662 (3)	0.53874 (11)	0.0437 (7)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.1100 (13)	0.0799 (10)	0.0923 (11)	0.0172 (9)	-0.0278 (10)	-0.0307 (9)
C2	0.096 (4)	0.058 (3)	0.065 (3)	0.021 (3)	-0.022 (3)	-0.016 (3)
C3	0.075 (3)	0.054 (3)	0.048 (3)	0.019 (3)	-0.006(2)	-0.009(2)
C4	0.085 (4)	0.082 (4)	0.074 (3)	0.033 (3)	-0.012 (3)	-0.030 (3)
C5	0.071 (3)	0.104 (4)	0.062 (3)	0.035 (3)	-0.012 (3)	-0.020 (3)
C6	0.071 (3)	0.056 (3)	0.051 (3)	0.022 (2)	-0.009(2)	-0.018 (2)
C7	0.064 (3)	0.059 (3)	0.047 (2)	0.021 (2)	-0.005 (2)	-0.011 (2)
C8	0.066 (3)	0.043 (2)	0.040(2)	0.017 (2)	0.000 (2)	-0.007(2)
09	0.067 (2)	0.070 (2)	0.0599 (19)	0.0291 (18)	0.0033 (17)	-0.0232 (17)
C10	0.051 (3)	0.033 (2)	0.040(2)	0.0112 (19)	-0.0026 (19)	-0.0040 (18)
C11	0.043 (2)	0.046 (2)	0.048 (2)	0.0037 (19)	-0.005 (2)	-0.017 (2)
C12	0.038 (2)	0.045 (2)	0.049 (2)	0.0065 (19)	0.0049 (19)	-0.007(2)
C13	0.041 (2)	0.0283 (19)	0.035 (2)	0.0125 (17)	-0.0021 (18)	-0.0055 (17)

C14	0.040 (2)	0.033 (2)	0.044 (2)	0.0079 (18)	-0.0013 (19)	-0.0081 (18)
C15	0.042 (2)	0.045 (2)	0.043 (2)	0.0168 (19)	0.0027 (19)	-0.0065 (19)
016	0.0329 (14)	0.0307 (13)	0.0467 (15)	0.0037 (11)	0.0042 (12)	-0.0143 (12)
C17	0.0271 (18)	0.0277 (18)	0.041 (2)	0.0080 (15)	0.0047 (16)	-0.0023 (17)
C18	0.034 (2)	0.0231 (18)	0.036 (2)	0.0108 (16)	0.0022 (17)	0.0031 (16)
019	0.0281 (13)	0.0313 (13)	0.0503 (16)	0.0046 (11)	-0.0025 (12)	-0.0134 (12)
O20	0.0313 (15)	0.0346 (15)	0.0600 (17)	0.0013 (12)	0.0132 (13)	-0.0118 (13)
K41	0.0229 (5)	0.0337 (5)	0.0827 (7)	0.0078 (4)	-0.0027 (4)	-0.0122 (5)
S21	0.1230 (14)	0.1059 (13)	0.0789 (11)	0.0321 (11)	-0.0247 (10)	-0.0399 (10)
C22	0.087 (4)	0.082 (4)	0.067 (3)	0.017 (3)	-0.003 (3)	-0.030 (3)
C23	0.076 (3)	0.053 (3)	0.050 (3)	0.021 (3)	-0.006 (3)	-0.014 (2)
C24	0.086 (4)	0.081 (4)	0.061 (3)	0.011 (3)	0.000 (3)	-0.021 (3)
C25	0.062 (3)	0.068 (3)	0.089 (4)	0.006 (3)	-0.003 (3)	-0.024 (3)
C26	0.073 (3)	0.057 (3)	0.056 (3)	0.024 (3)	-0.002 (3)	-0.010 (2)
C27	0.067 (3)	0.053 (3)	0.043 (2)	0.018 (2)	-0.002 (2)	-0.011 (2)
C28	0.066 (3)	0.043 (2)	0.043 (2)	0.017 (2)	0.001 (2)	-0.002 (2)
O29	0.068 (2)	0.078 (2)	0.071 (2)	0.0307 (19)	0.0031 (18)	-0.0287 (18)
C30	0.053 (3)	0.038 (2)	0.036 (2)	0.018 (2)	0.0015 (19)	-0.0054 (18)
C31	0.045 (2)	0.048 (2)	0.055 (3)	0.007 (2)	-0.009 (2)	-0.020 (2)
C32	0.039 (2)	0.044 (2)	0.054 (3)	0.0077 (19)	0.000 (2)	-0.016 (2)
C33	0.040 (2)	0.0291 (19)	0.041 (2)	0.0136 (17)	0.0015 (18)	-0.0043 (17)
C34	0.042 (2)	0.031 (2)	0.048 (2)	0.0050 (17)	0.0015 (19)	-0.0088 (19)
C35	0.042 (2)	0.046 (2)	0.043 (2)	0.0130 (19)	0.0056 (19)	0.000 (2)
O36	0.0343 (14)	0.0296 (13)	0.0467 (15)	0.0042 (11)	0.0040 (12)	-0.0128 (12)
C37	0.0314 (19)	0.0255 (18)	0.043 (2)	0.0070 (16)	0.0019 (17)	-0.0045 (17)
C38	0.030 (2)	0.0262 (18)	0.034 (2)	0.0111 (16)	-0.0027 (17)	-0.0014 (16)
O39	0.0256 (13)	0.0333 (13)	0.0511 (16)	0.0053 (11)	-0.0033 (12)	-0.0141 (12)
O40	0.0317 (15)	0.0330 (14)	0.0632 (18)	0.0042 (12)	0.0130 (13)	-0.0073 (13)

Geometric parameters (Å, °)

S1—C2	1.682 (5)	K41—K41 ^{iv}	4.8084 (15)
S1—C5	1.680 (5)	K41—K41 ^v	4.8353 (14)
С2—Н2	0.9300	K41—O36 ^{iv}	3.347 (3)
С2—С3	1.375 (6)	K41—O39 ⁱⁱⁱ	2.685 (2)
C3—C4	1.419 (6)	K41—O40 ^{iv}	2.885 (3)
С3—С6	1.455 (6)	K41—O40	2.785 (2)
C4—H4	0.9300	S21—C22	1.703 (5)
C4—C5	1.415 (6)	S21—C25	1.631 (5)
С5—Н5	0.9300	C22—H22	0.9300
С6—Н6	0.9300	C22—C23	1.390 (6)
С6—С7	1.318 (5)	C23—C24	1.400 (7)
С7—Н7	0.9300	C23—C26	1.451 (6)
С7—С8	1.481 (6)	C24—H24	0.9300
С8—О9	1.223 (5)	C24—C25	1.413 (6)
C8—C10	1.489 (5)	C25—H25	0.9300
C10-C11	1.391 (5)	C26—H26	0.9300
C10—C15	1.399 (5)	C26—C27	1.314 (5)

C11—H11	0.9300	C27—H27	0.9300
C11—C12	1.372 (5)	C27—C28	1.469 (6)
C12—H12	0.9300	C28—O29	1.220 (5)
C12—C13	1.394 (5)	C28—C30	1.490 (5)
C13—C14	1.378 (5)	C30—C31	1.400 (6)
C13—O16	1.372 (4)	C30—C35	1.388 (5)
C14—H14	0.9300	C31—H31	0.9300
C14—C15	1.380 (5)	C31—C32	1.372 (5)
C15—H15	0.9300	C32—H32	0.9300
016-017	1.417 (4)	C32—C33	1.387 (5)
$016 - K41^{i}$	3,245(3)	C_{33} C_{34}	1.307(5)
C17—H17A	0.9700	$C_{33} - O_{36}$	1.377(3) 1 372(4)
C17_H17B	0.9700	C34—H34	0.9300
C17 - C18	1.514(5)	C_{34} C_{35}	1 398 (5)
C18 O19	1.314(5) 1 202(4)	C35 H35	0.0300
$C_{18} = O_{19}$	1.292(4) 1.212(4)	$O_{36} K_{41iv}$	0.9300
010 H10	1.212(4) 1.10(2)	030-K+1	3.347(3)
019—119	1.19(3)	C_{27} L_{27}	1.420 (4)
019—K41	2.0/2(2)	$C_3/-H_3/A$	0.9700
020—K41 ⁱⁱ	2.760(2)	$C_3/-H_3/B$	0.9700
020	2.906 (3)	$C_{3}/=C_{38}$	1.512 (5)
$K41 = 0.16^{4}$	3.245 (3)	039	1.288 (4)
K41—019	2.672 (2)	C38—O40	1.215 (4)
K41—H19	2.95 (3)	O39—H19	1.27 (3)
$K41 - O20^{1}$	2.906 (3)	O39—K41 ⁿ	2.685 (2)
K41—O20 ^m	2.760 (2)	O40—K41 ¹	2.885 (3)
C5—S1—C2	94.1 (2)	K41 ^{iv} —K41—H19	73.6 (6)
S1—C2—H2	123.6	K41 ^{iv} —K41—K41 ^v	178.88 (4)
$C_{3}-C_{2}-S_{1}$	112.8 (4)	$O36^{iv}$ —K41—H19	116.2 (6)
C3-C2-H2	123.6	$O36^{iv}$ —K41—K41 ^v	99.62 (4)
$C^2 - C^3 - C^4$	110 3 (4)	$O36^{iv}$ K41 K41 ^{iv}	79.38 (5)
$C^2 - C^3 - C^6$	1235(4)	039^{iii} K41 -016^{i}	$103\ 47\ (7)$
$C_{4} - C_{3} - C_{6}$	125.3(1) 126.2(4)	0.39^{iii} K41 H19	105.17(7)
$C_3 - C_4 - H_4$	123.2 (4)	039^{iii} K41 020 ⁱ	105.57(8)
C_{5}	123.2 113 5 (4)	O_{39}^{iii} K41 O_{20}^{iii}	73 16 (7)
C_{5} C_{4} H_{4}	113.5 (+)	$\begin{array}{c} 0.30^{\text{iii}} K.41 K.41^{\text{v}} \\ \end{array}$	73.10 (7) 89.77 (5)
S1 C5 H5	125.2	$\begin{array}{c} 0.55 \\ \hline 0.30^{\text{iii}} \\ \hline K 41 \\ \hline K 41^{\text{iv}} \end{array}$	90.48(5)
51 - 65 - 61	123.3 100.3 (4)	O_{30}^{iii} K41 O_{36}^{iv}	76.94(3)
C4 = C5 = S1	109.3 (4)	$O_{30}^{(0)} = K_{41}^{(0)} = O_{30}^{(0)}$	106 40 (8)
$C_4 = C_5 = H_5$	123.5	039 K41 040	100.49(0)
C_{3}	110.7	039 - K41 - 040	74.93 (7)
$C_{1} = C_{0} = C_{3}$	120.0 (4)	040 $K41$ 016	(0.10(7))
	110./	040^{10} K41 U10	131.38 (7)
C = C - H / C	119.1	$U40^{11}$ K41 H19	97.8(6)
$C_{0} = C_{1} = C_{0}$	121.7 (4)	U40 - K41 - H19	51.1(6)
C8 - C/ - H/	119.1	$O40^{10}$ K41 O20 ¹	177.80 (7)
C/C8C10	118.2 (4)	$040 - K41 - 020^{1}$	117.64 (8)
09-08-07	121.6 (4)	040^{10} K41 K41	147.81 (6)
O9—C8—C10	120.2 (4)	O40—K41—K41 ^v	148.16 (6)

C11—C10—C8	123.3 (4)	O40—K41—K41 ^{iv}	32.63 (6)
C11—C10—C15	118.1 (3)	O40 ^{iv} —K41—K41 ^{iv}	31.38 (5)
C15—C10—C8	118.5 (4)	O40 ^{iv} —K41—O36 ^{iv}	49.80 (6)
C10—C11—H11	119.5	O40—K41—O36 ^{iv}	110.51 (7)
C12—C11—C10	121.0 (4)	O40—K41—O40 ^{iv}	64.01 (9)
C12—C11—H11	119.5	C25—S21—C22	94.4 (2)
C11—C12—H12	120.0	S21—C22—H22	124.5
C11—C12—C13	120.0 (4)	C23—C22—S21	111.1 (4)
C13—C12—H12	120.0	С23—С22—Н22	124.5
C14—C13—C12	120.0 (3)	C22—C23—C24	110.5 (4)
O16—C13—C12	114.8 (3)	C22—C23—C26	123.7 (5)
O16—C13—C14	125.2 (3)	C24—C23—C26	125.8 (4)
C13—C14—H14	120.2	C23—C24—H24	123.3
C13—C14—C15	119.6 (3)	C23—C24—C25	113.4 (5)
C15—C14—H14	120.2	C25—C24—H24	123.3
C10—C15—H15	119.4	S21—C25—H25	124.6
C14—C15—C10	121.2 (3)	C24—C25—S21	110.7 (4)
C14—C15—H15	119.4	C24—C25—H25	124.6
C13—O16—C17	116.7 (3)	С23—С26—Н26	116.4
C13—O16—K41 ⁱ	127.8 (2)	C27—C26—C23	127.1 (5)
C17—O16—K41 ⁱ	106.87 (18)	C27—C26—H26	116.4
016—C17—H17A	110.0	C26—C27—H27	118.6
016—C17—H17B	110.0	$C_{26} - C_{27} - C_{28}$	122.8 (4)
016-017-018	108.7 (3)	C28—C27—H27	118.6
H17A—C17—H17B	108.3	C_{27} C_{28} C_{30}	118 8 (4)
C18—C17—H17A	110.0	029 - C28 - C27	121.1 (4)
C18—C17—H17B	110.0	029 - C28 - C30	1201(4)
019 - 018 - 017	112.2 (3)	C_{31} $-C_{30}$ $-C_{28}$	123.8(4)
020-018-017	122.6 (3)	$C_{35} - C_{30} - C_{28}$	123.0(1) 118 7 (4)
020 - C18 - O19	122.0(3) 125.2(3)	$C_{35} = C_{30} = C_{31}$	117.5(3)
$C_{18} = 0.19 = H_{19}$	1163(15)	C_{30} $-C_{31}$ $-H_{31}$	119.3
C18 - 019 - K41	1421(2)	C_{32} C_{31} C_{30}	121.5 (4)
K41-019-H19	91 2 (14)	C_{32} C_{31} H_{31}	1193
$C18 - O20 - K41^{ii}$	1223(2)	C_{31} C_{32} H_{32} H_{32}	120.0
$C18 - O20 - K41^{i}$	122.3(2) 115.7(2)	$C_{31} - C_{32} - C_{33}$	120.0 120.0(4)
$K41^{ii}$ 020 K41 ⁱ	117.15.(9)	C_{33} C_{32} H_{32}	120.0 (4)
016^{i} K41 H19	63.9 (6)	C_{34} C_{32} C_{32} C_{32} C_{32} C_{32} C_{33} C_{32} C_{33} C_{32} C_{33} C	120.0 120.2(3)
$O16^{i}$ K41 K41	79.07 (5)	$O_{36} = C_{33} = C_{32}$	120.2(3)
$O16^{i}$ KA1 KA1 ^{iv}	101 03 (5)	036 C33 C34	113.1(3) 124.7(3)
010 - K + 1 - K + 1 $016^{i} - K + 1 - 026^{iv}$	101.95(5) 178.61(5)	$C_{33}^{33} C_{34}^{34} H_{34}^{34}$	124.7(3)
010 - K41 - 050	76.04(7)	$C_{33} = C_{34} = C_{35}$	120.4
019 - K41 - 010	70.94(7)	$C_{35} = C_{34} = C_{35}$	119.3 (3)
019 - K41 - H19	23.9(0)	$C_{33} = C_{34} = C_{34}$	120.4
$019 - K41 - 020^{\circ}$	14.77 (7) 107 07 (8)	$C_{30} = C_{35} = C_{34}$	121.0 (4) 110.2
$019 - K41 - 020^{}$	10/.0/(0)	$C_{30} - C_{33} - \Pi_{33}$	119.2
V19 - K41 - K41'	90.07 (5)	$C_{22} = C_{22} = C_{24} = K_{41}$	119.2
$V_{19} - K_{41} - K_{41}^{v}$	09.U/ (3)	$C_{22} = O_{24} = C_{27}$	129.0 (2)
019 - K41 - 036''	102.00 (7)	$C_{33} = O_{30} = C_{37}$	11/.0(3)
019—K41—039 ^m	1/9.45 (8)	$C_{3}/-C_{30}-K_{41}$	104.73 (18)

O19—K41—O40	73.28 (7)	O36—C37—H37A	109.9
O19—K41—O40 ^{iv}	104.52 (8)	O36—C37—H37B	109.9
O20 ⁱ —K41—O16 ⁱ	50.51 (6)	O36—C37—C38	109.1 (3)
O20 ⁱⁱⁱ —K41—O16 ⁱ	109.72 (7)	Н37А—С37—Н37В	108.3
O20 ⁱ —K41—H19	82.6 (6)	С38—С37—Н37А	109.9
O20 ⁱⁱⁱ —K41—H19	129.3 (6)	С38—С37—Н37В	109.9
O20 ⁱⁱⁱ —K41—O20 ⁱ	62.85 (9)	O39—C38—C37	112.1 (3)
O20 ⁱ —K41—K41 ^{iv}	150.25 (6)	O40—C38—C37	122.9 (3)
O20 ⁱ —K41—K41 ^v	30.52 (5)	O40—C38—O39	125.0 (3)
$O20^{iii}$ —K41—K41 ^v	32.32 (6)	K41 ⁱⁱ —O39—H19	94.4 (13)
$O20^{iii}$ —K41—K41 ^{iv}	146.88 (7)	С38—О39—Н19	112.4 (14)
$O20^{iii}$ —K41—O36 ^{iv}	69.08 (7)	C38—O39—K41 ⁱⁱ	142.1 (2)
$O20^{i}$ —K41—O36 ^{iv}	128.11 (6)	K41—O40—K41 ^{iv}	115.99 (9)
$O20^{iii}$ K41 $O40^{iv}$	115.51 (8)	$C_{38} - O_{40} - K_{41}^{iv}$	116.9 (2)
$O20^{iii}$ —K41—O40	179.49 (8)	C38—O40—K41	121.3(2)
K41 ^v —K41—H19	106.5 (6)		12110 (2)
S1—C2—C3—C4	1.2 (6)	K41 ^{iv} —O36—C37—C38	39.0 (3)
S1—C2—C3—C6	-178.9(4)	S21—C22—C23—C24	0.6 (6)
C2—S1—C5—C4	0.4 (5)	S21—C22—C23—C26	178.8 (4)
C2-C3-C4-C5	-0.9(7)	C22—S21—C25—C24	0.0 (4)
C2—C3—C6—C7	-172.8(5)	C22—C23—C24—C25	-0.6(7)
C3—C4—C5—S1	0.3 (6)	C22—C23—C26—C27	-161.5(5)
C3—C6—C7—C8	-177.2 (4)	C23—C24—C25—S21	0.3 (6)
C4—C3—C6—C7	7.1 (9)	C23—C26—C27—C28	176.8 (4)
C5—S1—C2—C3	-0.9 (4)	C24—C23—C26—C27	16.4 (8)
C6—C3—C4—C5	179.2 (5)	C25—S21—C22—C23	-0.4(4)
C6—C7—C8—O9	16.3 (7)	C26—C23—C24—C25	-178.8 (4)
C6—C7—C8—C10	-163.9 (4)	C26—C27—C28—O29	7.8 (7)
C7—C8—C10—C11	23.2 (6)	C26—C27—C28—C30	-170.8 (4)
C7—C8—C10—C15	-158.0 (4)	C27—C28—C30—C31	-19.3 (6)
C8-C10-C11-C12	176.3 (4)	C27—C28—C30—C35	162.1 (4)
C8-C10-C15-C14	-177.6 (4)	C28—C30—C31—C32	-177.4 (4)
O9—C8—C10—C11	-157.1 (4)	C28—C30—C35—C34	178.3 (4)
O9—C8—C10—C15	21.7 (6)	O29—C28—C30—C31	162.1 (4)
C10—C11—C12—C13	2.6 (6)	O29—C28—C30—C35	-16.5 (6)
C11—C10—C15—C14	1.2 (6)	C30—C31—C32—C33	-1.7 (7)
C11—C12—C13—C14	-1.5 (6)	C31—C30—C35—C34	-0.5 (6)
C11—C12—C13—O16	179.5 (3)	C31—C32—C33—C34	1.3 (6)
C12—C13—C14—C15	0.3 (6)	C31—C32—C33—O36	179.4 (4)
C12—C13—O16—C17	-171.3 (3)	C32—C33—C34—C35	-0.5 (6)
C12-C13-O16-K41 ⁱ	45.4 (4)	C32—C33—O36—K41 ^{iv}	-44.3 (4)
C13—C14—C15—C10	-0.2 (6)	C32—C33—O36—C37	173.4 (3)
C13—O16—C17—C18	169.6 (3)	C33—C34—C35—C30	0.1 (6)
C14—C13—O16—C17	9.7 (5)	C33—O36—C37—C38	-170.2 (3)
C14-C13-O16-K41 ⁱ	-133.6 (3)	C34—C33—O36—K41 ^{iv}	133.7 (3)
C15—C10—C11—C12	-2.4 (6)	C34—C33—O36—C37	-8.6 (5)
O16—C13—C14—C15	179.2 (3)	C35—C30—C31—C32	1.3 (6)

O16—C17—C18—O19	178.9 (3)	O36—C33—C34—C35	-178.4 (3)
O16—C17—C18—O20	-1.5 (5)	O36—C37—C38—O39	-179.0 (3)
C17—C18—O19—K41	-46.1 (5)	O36—C37—C38—O40	1.2 (5)
C17-C18-O20-K41 ⁱ	52.3 (4)	C37—C38—O39—K41 ⁱⁱ	44.9 (5)
C17—C18—O20—K41 ⁱⁱ	-153.2 (2)	C37—C38—O40—K41	153.2 (3)
O19—C18—O20—K41 ⁱⁱ	26.3 (5)	C37—C38—O40—K41 ^{iv}	-54.7 (4)
O19-C18-O20-K41 ⁱ	-128.2 (3)	O39—C38—O40—K41	-26.5 (5)
O20-C18-O19-K41	134.3 (3)	O39—C38—O40—K41 ^{iv}	125.6 (3)
K41 ⁱ —O16—C17—C18	-40.0 (3)	O40—C38—O39—K41 ⁱⁱ	-135.4 (3)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*-1, *y*, *z*; (iii) *x*+1, *y*, *z*; (iv) -*x*+2, -*y*+2, -*z*+1; (v) -*x*+2, -*y*+1, -*z*+1.

Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of rings C10–C15 and C30–C35, respectively.

D—H···A	D—H	H…A	$D \cdots A$	D—H···A
O19—H19…O39	1.19 (4)	1.27 (4)	2.463 (3)	174 (4)
O19—H19…O40	1.19 (4)	2.47 (4)	3.259 (3)	122 (2)
С6—Н6…О9	0.93	2.52	2.834 (6)	100
C26—H26···O29	0.93	2.49	2.814 (6)	100
C17—H17 A ···Cg4 ^{vi}	0.97	2.76	3.509 (4)	134
C37—H37 <i>B</i> ··· <i>Cg</i> 3 ⁱ	0.97	2.82	3.535 (4)	131

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (vi) -*x*+1, -*y*+2, -*z*+1.