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Next‑generation sequencing 
in advanced Chinese melanoma 
reveals therapeutic targets 
and prognostic biomarkers 
for immunotherapy
Fuxue Huang1,2,4, Jingjing Li1,4, Xizhi Wen1,4, Baoyan Zhu1,3, Wei Liu1, Jiuhong Wang1, 
Hang Jiang1, Ya Ding1*, Dandan Li1* & Xiaoshi Zhang1*

Limited studies have interrogated the genomic landscape of Chinese melanoma in which acral 
and mucosal melanoma are the mainstay. In this study, we carried out a retrospective analysis 
on 81 Chinese melanoma patients (15 acral, 25 mucosal and 41 cutaneous melanoma). With the 
identification of 1114 mutations spanning 248 genes, we summarized that the mutation spectrum 
varied significantly by subtypes. Acral melanoma and mucosal melanoma had significantly more 
CNVs. MYC amplification was one of the most commonly detected CNVs, other frequent CNVs in 
mucosal melanoma included NBN and KDR, which were associated with the poor survival of melanoma 
patients. A generally low TMB, with a median of only 5.1 mut/Mb, was observed in three groups 
including cutaneous melanoma. Additionally, over 50% variants in DNA damage repair pathway were 
detected in all three subtypes, most of which were HRD related genes. Patients with alterations of 
HRD related genes had a longer survival time after immunotherapy. This study revealed a molecular 
profiling of Chinese patients with advanced melanoma, and proposed the high variant rate in DDR 
pathway as a biomarker of immunotherapy, which might provide therapeutic targets and guidance in 
making clinical decision for different Chinese melanoma.

The Cancer Genome Atlas (TCGA) research defined molecular subtypes of cutaneous melanoma on the basis 
of the presence of specific “driver” gene (BRAF, RAS, and NF1) mutations1. In ultraviolet-shielded melanoma, 
mutations of BRAF, NRAS or NF1 are less frequent compared to cutaneous melanoma, but the existence of other 
cancer driver gene mutations are detected. Accurate profiling of the spectra of mutational changes in melanoma 
facilitates personalized management of the disease. Due to the subtype bias, the overall mutation frequencies 
of BRAF and KIT in Asian patients is approximately 16–25% and 6–10%2–4, respectively. However, the overall 
frequencies of BRAF and KIT mutations in Caucasians are about 10–60% and 0–28%, respectively5,6. More than 
50% of Asian patients fail to gain benefits from BRAF and c-KIT targeted therapy because of the low frequency 
rates of BRAF and KIT mutations.

Several inhibitors targeting at poly (ADP-ribose) polymerase (PARP) have already been approved by FDA or 
undergoing clinical trials in various diseases and treatment settings. It has been reported that tumors displaying 
DNA repair dysfunction might exhibit a BRCA-like behavior, according to the concept of “BRCAness”7,8. It is 
noteworthy that the efficacy of PARP inhibitors has also been reported in non-BRCA​ related tumors. Tumors 
with “BRCAness” might therefore benefit from PARPi treatment9–12. DDR (DNA damage repair) gene altera-
tions ubiquitously exist in many cancer types, and significant enrichment of somatic mutations in DDR genes is 
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approximately detected in 1/3 of TCGA PanCanAtlas cancer types13. However, the frequency of DDR gene muta-
tions has been reported to be rare in melanoma, of which most were genes related to UV-induced DNA Damage.

Elucidating gene alteration signatures in all subtypes is crucial for strategic decision in melanoma manage-
ment. However, the majority of melanoma genomic sequencing data regarding cutaneous melanoma and limited 
small-cohort studies focused on acral and mucosal melanoma were mainly reported in western countries. In 
addition, the whole exome sequencing (WES) and whole genome sequencing (WGS) reported in the previous 
studies are hardly feasible in wide clinical application in China. Therefore, in this study, we conducted a genetic 
comparison among three subtypes of melanoma with a selected genes panel of next-generation sequencing (NGS) 
and evaluated its feasibility in practical application.

Results
Clinicopathological features.  In cutaneous melanoma, 36.6% of patients had congenital nevus and 29.3% 
of patients had exposure history to sun, which were both significantly higher than patients with acral (p = 0.001) 
and mucosal melanoma(p = 0.001). While in acral melanoma, 66.7% and 40% of patients had ulceration and 
trauma respectively, which were higher than that in mucosal and CSD/NCSD (chronic sun-induced damage /
non-chronic sun-induced damage) group (p = 0.020 and p = 0.010). Data were shown in Table 1.

Alterations of driver genes of cutaneous, mucosal and acral melanoma.  A total of 1114 muta-
tions spanning 248 genes were found in 81 Chinese melanoma patients, in which 95 genes were detected with 
frequency over 5% (Fig. 1a). Mutations of 28 genes were observed in at least 5% patients (Fig. 1b). In cutaneous 
(CSD/NCSD) melanoma, the most frequently mutated gene was BRAF (56.1%, 23/41), which was similar to 
that in western population. Among patients with BRAF mutations, BRAF-V600E/K mutation was found in 22 
patients, p.P402L mutation was detected in one patient, and BRAF amplification was observed in 4 patients. The 
7 cases of NRAS mutations were targeted to hotspots on codon 61 and codon 12, which were hot spot muta-
tions of cutaneous melanoma. KIT mutations on p.Y936 and p.A89T were found in 2 cases. NF1 mutations were 
observed in 3 patients (7.3%), in which 1 was missense mutation and 2 were splicing variants. Driver gene muta-
tions were not found in 17 (41.5%,17/41) patients. LRP1B (17.1%, 7/45) was the most frequently mutated gene 
after BRAF in cutaneous melanoma, which was equal to TP53 (17.1%,7/45).

Table 1.   Clinicopathological characteristics. *P values < 0.05 in bold are statistically significant.

CSD/NCSD
n = 41 (%)

Mucosal
n = 25 (%)

Acral
n = 15 (%) p value

Median age (range) 44 (36–59) 53 (48–64) 55 (50–60) 0.085

Gender (%) 0.315

Male 23 (56.1) 12 (48.0) 5 (33.3)

Female 18 (43.9) 13 (52.0) 10 (66.7)

Stage (%) 0.047

IA 1 (2.9) 0 (0) 0 (0)

IIA 1 (2.9) 2 (10) 2 (13.3)

IIB 5 (14.7) 3 (15.0) 0 (0)

IIC 3 (8.8) 1(5.0) 5 (33.3)

IIIA 0 (0) 3(15.0) 0 (0)

IIIB 2 (5.9) 2(10.0) 0 (0)

IIIC 15 (44.1) 3(15.0) 5 (33.3)

IV 7 (20.6) 6 (30.0) 3 (20.0)

Sample type (%) 0.584

Primary 35(85.4) 21 (84.0) 11 (73.3)

Metastatic 6(14.6) 4 (16.0) 4 (26.7)

Ulceration (%) 0.020

0 30 (73.2) 17 (68.0) 5 (33.3)

1 11 (26.8) 8 (32.0) 10 (66.7)

Congenital nevus (%) 0.001

0 26 (63.4) 25 (100.0) 14 (93.3)

1 15 (36.6) 0 (0) 1 (6.7)

Trauma (%) 0.014

0 34 (82.9) 24 (96.0) 9 (60.0)

1 7 (17.1) 1 (4.0) 6 (40.0)

Sun exposure (%) 0.001

0 29 (70.7) 25 (100.0) 15 (100.0)

1 12 (29.3) 0 (0) 0 (0)
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Figure 1.   Genomic profiles and mutation characteristics of cutaneous, mucosal and acral melanoma. Each 
column represents an individual tumor underwent NGS. (a) Genomic profiles of 3 subtypes of melanoma 
(cutaneous melanoma means CSD and NCSD), including 95 genes with variant frequency over 5%. Alterations 
colored by different types. Main driver genes (BRAF, NRAS, NF1, KIT) were shown on the top of heatmap. (b) 
Oncoplot of mutations in mutated genes with mutation rate over 5%.
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In mucosal melanoma, the mutation frequency of BRAF was 12.0% (3/25), which was significantly lower than 
that in cutaneous melanoma (p = 0.001). In addition, a case of BRAF amplification and a case of KCTD15-BRAF 
fusion were observed. Two cases (8.0%) had mutations in NRAS of p.Q61R and p.G12D, which were consistent 
with hot spots in cutaneous melanoma. All 4 cases of KIT amplifications were found in mucosal melanoma, 
among which 1 case was co-occurred with p.W557G mutation. NF1 mutations were observed in 4 patients 
(16.0%), including missense mutations in 2 patients and splicing variants in 2 patients. TP53 (20.0%, 5/25) was 
the gene with the highest mutation frequency in mucosal melanoma.

In acral melanoma, BRAF mutation was observed in 2 (13.3%, 2/15) patients, which was significantly lower 
than that in cutaneous melanoma (p = 0.006). Both of them were BRAF-V600 mutations. BRAF amplification was 
observed in 1 patient. NRAS (26.7%, 4/15) was the gene with the highest mutation frequency in acral melanoma, 
including 2 p.Q61K and 2 p.Q61R mutation. One patient (6.7%) was observed with KIT mutation at p.K642E, and 
2 patients (13.3%) had NF1 splicing variants. Driver gene mutations were not found in 7 (46.7%, 7/15) patients. 
FAT3 mutation was observed in 20% (3/15) patients with acral melanoma, ranking only second to NRAS.

Somatic copy number alterations were more common in acral and mucosal melanoma and 
predicted worse survival.  Genes were then identified with copy number variations (CNVs). Mucosal and 
acral melanoma had significantly more CNVs (48.3% and 63.2%) than cutaneous melanoma (19.7%). Genes 
with CNVs in three groups were shown in Fig. 2a,b. MYC amplification was verified to most commonly occur 
in mucosal and acral melanoma, with frequencies of 44.0% (11/25) and 40.0% (6/15) respectively, which were 
significantly higher than that in cutaneous melanoma (3/41, 7.3%, p = 0.001 and p = 0.008). NBN followed MYC 
had the highest amplification rate in mucosal group (8/25, 32.0%) and acral group (5/15, 33.3%), compared to 
that in cutaneous melanoma (4/41, 9.8%, p = 0.045 and p = 0.048) (Fig. 3a). We then analyzed the survival data 
of melanoma patients from cBioPortal database and found that patients with MYC and NBN amplification had 
a significantly shorter survival time (MSKCC, Clin Cancer Res 2021, n = 696, Fig. 3b,c)14. CCND1 amplification 
was found in 40.0% (6/15) patients in acral group, which was higher than that in mucosal group (8%, 2/25, 
p = 0.036) and cutaneous group (2.4%, 1/41, p = 0.001) (Fig. 3a). CCND1 amplification also predicted a poor 
survival of melanoma patients (MSKCC, Clin Cancer Res 2021, n = 696, Fig. 3d)14. 77.8% CCND1 amplification 
co-occurred with FGF3/4/19 amplification (11q13.3). KDR and KIT amplifications both occurred in mucosal 
group. While deletions were less found in our cohort, and none of their frequencies was over 5%. The most com-
monly deleted genes were CIC, FGFR1, and RET, with equal frequency of 3.7% (Fig. 2b).

Comparison of variants in pathways.  According to the classification of KEGG Pathway database, we 
compared the gene alterations in different pathways among three groups. Since BRAF was found to possess the 
highest mutation frequency, MAPK pathway was consequentially considered as the most activated pathway, 
thus BRAF was removed from the comparison of each pathway. All of the three groups had more than 75.0% 
PI3K-AKT pathway mutations. Acral group showed 93.3% (14/15) mutations in Ras pathway, which was higher 
than that in cutaneous melanoma (61.0%, 25/41, p = 0.023). Acral melanoma also had more mutations in WNT 
pathway and TGF-beta pathway (80.0%, 12/15 and 66.7%, 10/15), compared with that in cutaneous melanoma 
patients (39.0%, 16/41, p = 0.014 and 26.8%, 11/41, p = 0.01) (Fig. 3e).

Meantime, all of the three subtypes had more than 50% variants in DNA damage repair pathway. Mutations 
in DDR related genes were mainly BRCA1 (1/81), BRCA2 (4/81), ATM (4/81), PALB2 (2/81), CHEK2 (2/81), 
BAP1 (4/81) and IDH1 (1/81), which were reported to possibly response to PARP inhibitors.

Association of TMB and gene alterations with prognosis of immunotherapy.  Among 81 patients 
enrolled, 25 of them received palliative immunotherapy including anti-PD-1 antibody (pembrolizumab or 
nivolumab), anti-CTLA4 antibody (ipilimumab) monotherapy or combinations. The clinicopathological infor-
mation of patients receiving first-line immunotherapy was shown in Table S2.

The median of TMB in three groups was 5.1mut/Mb (Fig. 4a). We derived a cutoff of 15mut/Mb, which can 
effectively distinguish clinical response. Patients with TMB > 15 mut/Mb had a significantly longer PFS than 
patients with TMB ≤ 15 mut/Mb (p = 0.049) (Fig. 4b). High TMB was associated with improved PFS.

Then mucosal and acral melanoma which are dominant in Chinese population were combined into one 
group for further comparison, namely Acral/Mucosal group and CSD/NCSD group. We found that PFS in 
CSD/NCSD group was similar to that in acral/mucosal group (p = 0.711), as shown in Fig. 4c. Because of the 
high alteration rate of DDR pathway in our cohort, especially in HRD related genes (CHEK1, CHEK2, BRCA1, 
BRCA2, ATM, PALB2, BAP1, IDH1), patients were divided into two groups, and we found that patients with 
alterations of HRD related genes showed a longer PFS (9.7 vs. 25.3 months, p = 0.040) and a prolonged survival 
time after immunotherapy (p = 0.117) (Fig. 4d,e). Then we validated our findings by other researches. This finding 
was then validated by gene mutation data of patients in other melanoma groups (UCLA, Cell 2016 + MSKCC, 
NEJM 2014 + DFCI, Science 2015, n = 202)15–17 and patients with NSCLC (MSK, Cancer Cell 2018, n = 75)18 and 
glioblastoma (Columbia, Nat Med. 2019, n = 42)19 who accepted immunotherapy, taken from a publicly avail-
able database (CBioPortal) (Fig. 4f–h). DDR pathway alterations may serve as a biomarker of immunotherapy.

Discussion
In the current study, we performed NGS sequencing with a multiple-gene panel to investigate the comprehensive 
molecular characterization of 81 Chinese melanoma patients and evaluated the clinical correlations of gene sta-
tus, we also evaluated the correlations between the response of immunotherapy and gene alterations. This study 
aimed to exploit tumor targeted NGS to compare different melanoma types in Chinese population. The mutation 
landscape of Chinese melanomas differed from that of western population, which was distinguished by melanoma 
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Figure 2.   Somatic copy number alterations (CNVs) of cutaneous, mucosal and acral melanoma. The changes in 
copy number of 3 subtypes. (a,b) The Gain (CN > 2.25 was regarded as hotspot genes, and CN > 2.5 was counted 
as others) was represented in red, while the Loss (CN < 1.75 was regarded as hotspot genes, CN < 1.5 was 
counted as others) was displayed in blue.
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Figure 3.   Comparison of variant genes and variant pathways in cutaneous, mucosal and acral melanoma. 
(a) Comparison of variant genes in 3 subtypes (variants that observed over 8 people were showed). (b–d) 
Association of MYC, KDR, and CCND1 amplification with melanoma patient survival in cBioPortal dataset 
(MSKCC, Clin Cancer Res 2021, n = 696)14. (e) Comparison of pathway variants, out of which BRAF was 
excluded due to its highest mutation frequency. Pathway comparison was based on the KEGG Pathway database. 
Fisher’s exact test was performed, and the statistical significance was defined as *p < 0.05, **p < 0.01, ***p < 0.001.
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types. It may provide signposts for the identification of drugable targets and predictive biomarkers, as well as 
potentially useful guidance for proper therapeutic decisions regarding different types of Chinese melanoma.

Cutaneous melanoma in western population is classified into 4 molecular subtypes based on the pattern of 
the most significantly mutated genes, namely mutant BRAF (52%, 166/318), mutant RAS (28%, 88/318), mutant 
NF1 (14%, 46/318), and Triple-WT (wild-type) (14%, 46/318)1. In our study, mutant BRAF (51.1%,23/45) of 
cutaneous melanoma in Chinese was similar to that in Caucasians, and BRAF V600E/K was the commonest 
mutation. Similar to other studies in Asian patients, we had a lower mutant RAS (15.6%, 7/45) and mutant NF1 
(7.3%, 3/45)20, while Triple-WT was higher (37.8%, 17/45). Mucosal and acral melanoma are the main subtypes 
of Chinese melanoma. Compared with cutaneous melanoma, BRAF mutations were less observed in acral mela-
noma, while mutant NRAS (26.7%) and Triple-WT (7/15, 46.7%) were more common. In mucosal melanoma, 
mutations in BRAF (12.0%) and NRAS (8.0%) were both lower than that in western population, and lower than 
Chinese cutaneous melanoma. NF1 mutation (16.0%) of mucosal melanoma was similar to that in western popu-
lation, but higher than that of Chinese cutaneous melanoma. Consistent with previous studies, our study further 
confirmed that gene mutations were more common in cutaneous melanoma, while more CNVs were observed 
in mucosal and acral melanoma1,21,22. In our study, the most common CNVs in mucosal and acral melanoma 
was MYC amplification, consistent with previous study in Asian patients20. In vitro experiments have confirmed 
that high expression of c-MYC is positively correlated with the aggressiveness of cutaneous melanoma, and the 
inhibitor can effectively inhibit tumor growth23. Although the role of MYC in the development and progression 
of mucosal and acral melanoma remains to be further studied, MYC may act as a new therapeutic target for the 
treatment of mucosal and acral melanoma with the application of effective inhibitors. NBN followed MYC also 
had a high CNVs rate in mucosal and acral melanoma. NBN is an important gene which is related to DNA dam-
age repair, and plays an important role in protecting chromosome integrity. Currently, the variation and role of 
NBN in melanoma has not been reported. The variation frequency of KDR (VEGFR-2) in mucosal melanoma 
was only second to that of MYC and NBN. KDR is a main functional receptor of VEGF which plays a role in 
angiogenesis growth of tumor cells24. The cBioPortal database showed that MYC, NBN and KDR predicted poor 
survival of melanoma patients. Guo Jun et al. reported that Axitinib combined with PD-1 antibody achieved 
ORR at 48.3% in mucosal melanoma25, suggesting that Axitinib and other multi-target small molecule inhibitors 

Figure 4.   Comparison of TMB in three subtypes and genes related to immunotherapy effect. (a), TMB in 
cutaneous, mucosal and acral melanoma (p = 0.692, Mann–Whitney test). (b–g), Kaplan Meier assessments 
of progression-free survival (PFS) in patients treated with immunotherapy in our cohort (n = 25) according 
to the following classes: b, high TMB (> 15 mut/Mb) and low TMB (≤ 15 mut/Mb); (c) cutaneous group with 
acral/mucosal group; (d) PFS of HRD wt and HRD mut; (e) OS of HRD wt and HRD mut (HRD related genes: 
CHEK1, CHEK2, BRCA1, BRCA2, ATM, PALB2, BAP1, IDH1); f–h, Association of HRD mut with patient 
survival of melanoma (UCLA, Cell 2016 + MSKCC, NEJM 2014 + DFCI, Science 2015, n = 202)15–17, NSCLC 
(MSK, Cancer Cell 2018, n = 75)18 and glioblastoma (Columbia, Nat Med. 2019, n = 42)19 after immunotherapy 
in cBioPortal dataset.
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targeting at angiogenesis may be used in mucosal melanoma and as a combination to improve the efficacy of 
immunotherapy. Guo Jun et al. reported that genetic aberrations in the cyclin-dependent kinase (CDK)4 pathway 
occur in 82% of patients with acral melanoma, showed CDK4 gain (39.5%) and CCND1 gain (26.7%). CCND1 
amplification was found in 40.0% (6/15) patients in our acral group, similar to their report. Previous studies 
have reported that, TERT promoter mutations are more common in acral and mucosal melanoma patients21, 
and SF3B1 mutation are more common in mucosal melanoma, mainly in Caucasians21. However, because of the 
limitation of our panel, these genes are not detected in our study.

Previous studies have shown that patients with higher TMB were more likely to gain a better efficacy of 
immunotherapy16,26–28. Pembrolizumab has been approved by the FDA for the treatment of solid tumors with 
TMB over 10 mut/Mb29. TMB plays an increasingly important role in immunotherapy. However, in our study, 
a generally low TMB was observed in Chinese melanoma patients, and the median of TMB was only about 5.1 
mut/Mb, with no difference found in cutaneous, mucosal and acral melanoma. In KEYNOTE-151, the overall 
response rate of second-line Pembrolizumab for Chinese patients was 16.7%, and first line anti-PD-1 antibody 
for Chinese patients was 15.6%, both of which were lower than that of western population30–32. The generally low 
TMB in Chinese population and poor immunogenicity might be the reason why the efficacy of immunotherapy 
in Chinese population, including cutaneous melanoma, is worse than that in western population.

PARP inhibitors are considered to be effective drugs for the treatment of BRCA​ germline mutations. It has 
been reported that PARP inhibitors also play a role in tumors with no BRCA​ germline mutations but BRCA​ 
somatic mutations or other HRD mutations9,10,13. In our study, we observed a high mutation frequency at 14.8% 
in HRD pathway, except for BRCA1 (1/81), BRCA2 (4/81), other genes like ATM (4/81), PALB2 (2/81), CHEK2 
(2/81), BAP1 (4/81) and IDH1 (1/81) were included. It is reported that patients with homologous recombina-
tion deficiency (HRD) pathway mutations usually had an increased burden of neoantigens33. PARP inhibitors 
may be applied to patients with these variants to further improve the efficacy of immune checkpoint inhibitors.

To conclude, we compared the mutation profiling of three main subtypes of Chinese melanoma. We observed 
a generally low TMB of Chinese melanoma patients, but a high variants rate in DDR pathway, especially in 
HRD related genes, which may contribute to the exploration of new drugable targets. Additionally, this study 
highlighted the importance of implementing next-generation sequencing testing.

Methods
Ethics statement.  This study was conducted in accordance with the 1964 Helsinki Declaration. All human 
studies were approved by the Ethics Committee of Sun Yat-sen University Cancer Center (GZR2017-207). Writ-
ten informed consent was obtained from eligible patients.

Patient selection and sample collection.  Formalin-fixed paraffin-embedded tissues were obtained 
from 84 Chinese patients diagnosed with melanoma between September 2017 and September 2021 in the 
authors’ clinic in Sun Yat-sen University Cancer Center. Standard histopathology was performed to confirm 
the diagnosis of malignancy and histologic subtype. Among 84 analyzed cases, 3 samples were excluded due 
to insufficient DNA quantity. A total of 81 melanoma cases were enrolled, including 25 (30.9%) mucosal mela-
noma, 15 (18.5%) acral melanoma and 41 (50.6%) cutaneous melanoma (namely CSD and NCSD melanoma). 
The median age of patients of each subtype at diagnosis was 44, 53 and 55 years old respectively.

Tissue DNA extraction, NGS detection and sequencing data analysis.  DNA was extracted with 
the QIAamp DNA FFPE tissue Kit (Qiagen) according to the manufacturer’s instructions. DNA concentration 
was measured by Qubit dsDNA assay.

Genetic profiles of all tissue samples were assessed by performing capture-based targeted deep sequencing 
with the OncoScreen panel (Burning Rock Biotech Ltd.) which covered 2.02 MB of human genomic regions, 
including all exons and critical introns of 295 genes, and genes included in the panel were listed in Table S1. 
Details of sequencing data analysis were described as previously reported34. The calculation of tumor mutation 
burden (TMB) was based on the ratio of the total number of mutations to the size of panel.

Validation data collection and analysis.  The data of targeted gene mutations and survival data were 
obtained from cBioPortal database, and analyzed on cBioPortal, samples were divided into ‘mut’ or ‘wt’. Gene 
mutation data and survival data of MYC, NBN and CCND1 were from the study of Melanoma (MSKCC, Clin 
Cancer Res 2021, n = 696)14. DDR related gene (CHEK1, CHEK2, BRCA1, BRCA2, ATM, PALB2, BAP1, IDH1) 
mutation data and survival data of patients treated by immunotherapy were also obtained from cBioPortal, 
melanoma (UCLA, Cell 2016 + MSKCC, NEJM 2014 + DFCI, Science 2015, n = 202)15–17, NSCLC (MSK, Cancer 
Cell 2018, n = 75)18 and glioblastoma (Columbia, Nat Med. 2019, n = 42)19. P < 0.05 was considered to indicate a 
statistically significant difference.

Statistical analysis.  Patient follow-up data were acquired from medical records. The χ2 test and Fisher’s 
exact tests were applied to analyze the association. The significance of the association of the mutations between 
the three groups was analyzed using Fisher’s exact test. The Mann–Whitney test was used to compare tumor 
mutation burden. The Kaplan–Meier method was utilized to conduct survival analysis. All statistical analyses 
were accomplished by SPSS V.20.0 software. P value < 0.05 was considered to be statistically significant.

Data availability
The datasets generated and/or analyzed during the current study are available in the Figshare repository, https://​
doi.​org/​10.​6084/​m9.​figsh​are.​19115​486.

https://doi.org/10.6084/m9.figshare.19115486
https://doi.org/10.6084/m9.figshare.19115486
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