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Numerical investigation 
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This paper is focused on the application and performance of artificial intelligence in the numerical 
modeling of nanofluid flows. Suspension of metallic nanoparticles in the fluids has shown potential 
in heat transfer enhancement of the based fluids. There are many numerical studies for the 
investigation of thermal and hydrodynamic characteristics of nanofluids. However, the optimization 
of the computational fluid dynamics (CFD) modeling by an artificial intelligence (AI) algorithm is not 
considered in any study. The CFD is a powerful technique from an accuracy point of view. However, it 
could be time and cost-consuming, especially in large-scale and complicated problems. It is expected 
that the machine learning technique of the AI algorithms could improve such CFD drawbacks by 
patterning the CFD data. Once the AI finds the CFD pattern intelligently, there is no need for CFD 
calculations. The particle swarm optimization-based fuzzy inference system (PSOFIS) is considered 
in this study to predict the velocity profile of Al2O3/water turbulent flow in a heated pipe. One of the 
challenging problems in CFD modeling is the lost data for a specific boundary condition. For example, 
the CFD data are available for wall heat fluxes of 75, 85, 105, and 125 w/m2, but there is no data for 
the wall heat flux of 95 w/m2. So, the PSOFIS learns the available CFD data, and it predicts the velocity 
profile for where the data is not available (i.e., wall heat flux of 95 w/m2). The intelligence of PSOFIS 
is checked by the coefficient of determination (R2 pattern) for different values of accept ratio (AR) 
and inertia weight damping ratio (IWDR). The best intelligence is obtained for the AR and IWDR of 
0.7 and 0.99, respectively. At this condition, the velocity profile predicted by both CFD and PSOFIS is 
compatible. As the performance of the PSOFIS, for learning time of 268 s, the prediction of the CFD 
data lost was negligible (~ 1 s). In contrast, the CFD calculation takes around 600 s for each simulation.

Based on the studies on thermal features, it is indicated that a weak thermal conductivity is exhibited by all today’s 
liquid coolants utilized as heat transfer fluids compared to solid metals. Limited enhancement can be obtained 
by supplementary attempts to increment the heat transfer coefficient by incrementing area, agitation, or solid 
dispersion by the fluid’s low thermal conductivity. Hence, it is rational that attempts are based on increasing the 
cooling fluid’s thermal conduction performance. There have been former attempts on incrementing the base flu-
ids’ thermal conductivity by suspending solid particles in macro sizes in fluids due to the solid’s thermal conduc-
tivity typically 2–3 times higher than the liquids. Nevertheless, the addition of micrometer size particles results 
in various problems causing sedimentation, clogging, erosion, and pressure drop in channels, conduits, or pipes. 
As the new multi-element fluids, nanofluids comprise solid particles with their distinctive sizes (< 100 nm). Their 
dispersion in pure fluids alters the viscosity and thermal conductivity of the solid nanoparticles. The benefits of 
utilizing the nanoparticles dispersed within a base fluid in different thermal systems were provided1–11. In one 
study, the flow characteristics and convective heat transfer for a Cu–water nanofluid flowing within a constant 
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heat flux straight tube at turbulent and laminar flow circumstances were experimentally assessed12. The findings 
indicated that the suspended nanoparticles considerably improved the conventional base fluid’s heat transfer 
behavior, and there was good consistency between their friction factor and the water. Moreover, they proposed 
novel convective heat transfer correlations to predict the nanofluid’s heat transfer coefficients for both turbulent 
and laminar flow circumstances. The effects of SiO2 nanoparticles on heat transfer in a cavity were numerically 
analyzed13. In this work, an experimental setup was used for determining the nanofluid’s thermal conductiv-
ity. Another study tested the convective heat transfer coefficients of CuO–water and Al2O3–water nanofluids 
in laminar flow11. Results showed that increasing the concentration of the solution increased the heat transfer 
coefficient. Quantitative research found that the Ethylene Glycol–Water mixes provide different effects on heat 
transfer for turbulent flows of Al2O3, SiO2, and CuO nanoparticles in the presence of varying volume concentra-
tions running in a tube under constant heat flux settings14. The increase in nanoparticle volume concentration 
induces an increase in heat transfer coefficient.

The numerical approaches are usually used to estimate the empirical variables and avoid the experiments’ 
implementation cost. Numerous research papers have already studied the computational fluid dynamics (CFD) 
modeling of nanofluids15–21. Almost all investigations focused on the CFD model accuracy for the prediction of 
heat and fluid flow variables. The CFD must discretize and solve many partial differential equations describing 
the governing equations for finite volume cells of the fluid flow domain. Although the CFD is known as a robust 
method for predicting heat transfer and fluid dynamics parameters, this method requires a lot of computational 
time and expenses for complex CFD problems (i.e., large geometries, turbulent flows, etc.). The use of CFD 
techniques in artificial intelligence has gained attention in the last few years. An adaptive network-based fuzzy 
inference system (ANFIS) was also credited with the contribution of artificial intelligence to CFD in a few types 
of research22–28. The results released the efficiency of the ANFIS for the accurate predictions of the CFD results. 
However, a deep gap is seen for investigating any other algorithms and their tuning parameters for the best 
intelligence. In addition, the accuracy of the AI algorithm for the prediction of the lost CFD data is examined. 
AI algorithms can train the CFD results.

The performance of the CFD models can be predicted when the boundary conditions of the CFD examples 
are adjusted. This work is designed to address the aforementioned research gap, in part, using a particle swarm 
optimization (PSO) algorithm paired with a CFD simulation. The prediction of the velocity profile of Al2O3/
water turbulent flow in a heated pipe is the main objective of this study.

Methodology
CFD approach.  The flow research used a nanofluid solution in a straight tube. The tube length is one meter, 
and its diameter is 0.01 m. The tube is under a constant wall heat flux. The fluid is introduced into the tube with 
consistent axial temperature and velocity. This is a highly nonlinear fluid dynamic problem by considering tur-
bulence effect and temperature-dependent nanofluid thermophysical properties. This problem was solved using 
the computational fluid dynamics code of the commercial ANSYS-Fluent 14.5 software. The continuity of mass, 
momentum, and energy are considered for many finite volume cells. These governing equations are also cou-
pled with the turbulence model equations. As a result, many nonlinear partial differential equations were made. 
The leading equation systems (1)–(3) must be discretized and solved using the control volume method. By the 
control-volume method, the governing equations are converted to algebraic equations that can be numerically 
solved. The heading equations for the fluid flow include29,30:

Continuity equation:

Momentum equation:

Energy equation:

The k–ε turbulence model is based on previously published research and is used to determine the turbulent 
eddy viscosity, energy dissipation rate (ε ), and kinetic energy (k)16,18,31.

For modeling such a case, the ANSYS-Fluent 14.5 CFD software is used. This CFD package software works 
based on the finite volume method (FVM). For discretization, the second-order-upwind scheme is used for the 
continuity and k–ε turbulence equations. The SIMPLE algorithm is adopted as the pressure and velocity coupling 
scheme. The scaled residuals for velocity components and energy are equal to 10–9.

PSO algorithm.  PSO is a method based on a stochastic optimization population. PSO optimization pro-
cedure is initiated by a population of particles or solutions selected randomly in the search space, consequently 
looking for optima by iterative updating of generations. Each particle is updated based on two higher and out-
standing compared to the gbest fitness; updating the gbest fitness factors is essential. In the second state, where 
the particle fitness is higher and superior to the pbest fitness, it is essential to update the related parameters of 
pbest fitness. Ultimately, based on the second phase again the further particles should be assessed.

Fuzzy Inference System (FIS).  Fuzzy inference is widely used in computers, particularly in fuzzy reason-
ing, fuzzy set theory, and if–then logic. While it was widely adopted in many different areas, the technique was 
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hard to apply in domains that required interaction design or application software. FIS can carry out three sepa-
rate kinds of fuzzy reasoning, using the if–then rules used by Takagi and Sugeno32. To get velocity as output, the 
three input variables of x coordinate, y coordinate, and wall heat flux (Qwall) are used. Incoming signals from the 
last stage are multiplied according to the AND rule. For case, the i-th rule function is

The wi variable represents the signal output from the node while µAi , µBi and µCi indicate the input signals, 
containing X, Y, and, the Qwall value.

For the next stage, each rule’s firing strength is estimated relative to the total weight of all rules:

Node function can be written as:

Consequent parameters of the if–then rules, often called pi, qi, ri, and si, respectively. To compute the estimate 
result, the signals of the last stage are used. In this instance, the MFs and consequent parameters are both updated 
using a hybrid learning method that combines gradient descent and LSE techniques33,34.

Results
The suspension of metallic nanoparticles can enhance the heat transfer of water. Although many studies have 
investigated the nanofluid fluid flow numerically, there are no investigations to optimize the CFD modeling by 
the artificial intelligence algorithm. This study aims to include the finite volume method (FVM) results from 
computational fluid dynamics (CFD) into the learning process of a machine learning system. Models of compu-
tational fluid dynamics use partial differential equations to describe mass, momentum, and energy governing 
equations. When the equations are discretized and arranged within specific boundary conditions, the FVM can 
solve all of the equations. Solving the governing equations, the independent variables such as velocity, pressure, 
and temperature are achieved for each node in the domain. The FVM solutions are learned by one of the artificial 
intelligence (AI) algorithms. Once the best intelligence of the algorithm is obtained, it is no longer necessary to 
solve the governing equations. The machine learning approach of AI algorithms could save much computational 
time and cost, especially in large-scale problems. An artificial algorithm could also substitute the CFD modeling 
for doing further simulations. For example, for CFD data loss, where the CFD data are unavailable for specific 
boundary conditions, the AI algorithm could predict the lost data based on the pattern of the existing data. 
When it refers to artificial intelligence algorithms, the particle swarm optimization-based fuzzy inference system 
(PSOFIS) is one of the most widely utilized. The turbulent flow of Al2O3/water nanofluid inside a pipe is consid-
ered as a case for simulation. The pipe is conducted under different constant wall heat fluxes (Qwall). The velocity 
profile, corresponding to each wall heat flux, is adopted as an independent variable for prediction by the PSOFIS.

Figure 1 shows different steps for the PSOFIS algorithm setup to predict velocity in the present study. The 
type of data clustering is subtractive clustering. After adopting the CFD data as inputs (i.e., x, y, and Qwall) and 
output (i.e., nanofluid velocity), the subtractive clustering parameters, including accept ratio, reject ratio, squash 
factor, and cluster influence range (CIR), are determined. The constant values of 0.15 and 1.25 are considered 
for reject ratio and squash factor, respectively. The constant values of 0.8, 0.15, and 1.25 are considered for CIR, 
reject ratio, and squash factor. However, a sensitivity test is done for the effect of accept ratio (AR) on the intel-
ligence of the PSOFIS.

For particle swarm optimization (PSO) parameters, the swarm size is supposed to be constant (i.e., 100), while 
different values of inertia weight damping ratio (IWDR) are tested for the best intelligence. The fuzzy inference 
system (FIS) is generalized based on the subtractive clustering parameters. The intelligence of PSOFIS is checked 
by the coefficient of determination (R2 pattern). The highest coefficient of determination means that the best 
intelligence has been achieved. The PSOFIS does the CFD data learning for the wall heat fluxes of 75, 85, 105, 
and 115 w/m2. The sensitivity tests are done for different AR values (i.e. 0.3, 0.4, 0.5, 0.6, and 0.7) and IWDR 
values (i.e. 0.6, 0.7, 0.8, 0.9, and 0.99). The CFD results validate the results of the PSOFIS. After achieving the 
intelligence, the PSOFIS can predict any CFD data which did not attend in the machine learning (e.g., velocity 
profile extraction for Qwall = 95 w/m2).

According to Figs. 2 and 3, the highest coefficient of determination and, as a result, the best intelligence is 
obtained for the AR and IWDR of 0.7 and 0.99, respectively. This is confirmed by the regression number of 0.98 
for both training and testing processes of the PSOFIS, as shown in Fig. 4. The highest compatibility between the 
CFD results and the PSOFIS predictions is shown in Fig. 5. The velocity profile extracted by the PSOFIS is the 
same as that predicted by the CFD.

The CFD data in this study are divided into two types. The first type is the data used in the learning process 
of the PSOFIS. But the second ones are those just used for prediction. Figure 6 illustrates both types of data. The 
CFD data for Qwall of 75, 85, 105, and 125 w/m2 are used for learning. After achieving the intelligence, the velocity 
profile is predicted by the PSOFIS for Qwall of 95 w/m2, as shown in Fig. 7. The comparison of results between 
the CFD and the PSOFIS is also illustrated in Fig. 7. The velocity predictions of the CFD and the PSOFIS are 
in good agreement. Table 1 illustrates the performance of the PSOFIS as the learning (i.e., training and testing) 
time and the prediction time compared to the CFD time calculation. It shows that after learning the CFD data 
for a specific time (268 s), the prediction of the data lost could be made in little time (1 s). In contrast, the CFD 
calculation takes around 600 s for each simulation. So, after mapping the CFD data and achieving the intelligence, 
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Figure 1.   Schematic of PSO + FIS method.

Figure 2.   PSO + FIS learning processes with changes in accept ratio as subtractive clustering parameter when 
number of inputs is 3.
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the PSOFIS saves computational time. In another comparison, the computer hardware requirements are consid-
ered. The PSOFIS calculations could be carried out by typical computer specifications (Intel Core i5 CPU 650 @ 
3.20 GHz, 3333 MHz, 2 Cores). In contrast, a workstation computer (Intel Xeon CPU E5-2685 v3 @ 2.60 GHz, 
12 Cores) is required for CFD modeling.

Figure 3.   PSO + FIS learning processes with changes in Inertia Weight Damping Ratio as PSO parameter when 
number of inputs is 3 and accept ratio is 0.7.

Figure 4.   Correlation coefficient in the best PSO + FIS intelligence when number of inputs is 3, accept ratio is 
0.7 and inertia weight damping ratio is 0.99.
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Conclusions
This study is aimed to investigate the application and performance of artificial intelligence (AI) algorithms 
on facilitating CFD calculations of modeling nanofluid flows. The flow simulation was conducted for varying 
constant wall heat fluxes to see how they influence the turbulent flow of Al2O3/water within a pipe. The finite 
volume method (FVM) solved the partial differential equations of mass, momentum, and energy. Fuzzy, artifi-
cial intelligence-based particle swarm optimization (PSOFIS) method was also used to apply FVM solutions to 
the system. The learning process was performed for the CFD data where the wall heat fluxes were 75, 85, 105, 
and 115 w/m2. The sensitivity tests were done for different accept ratio (AR) values (i.e. 0.3, 0.4, 0.5, 0.6, and 

Figure 5.   validation of PSO + FIS learning process with comparison between test targets (nanofluid in heated 
which is CFD output) and PSO + FIS prediction.

Figure 6.   Data which considered in learning processes and prediction data (which not considered in learning 
processes).
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Figure 7.   (a) Prediction of velocity with absent data when q wall is 95 in right side and learning prediction in 
left side. (Based on inputs 1 and 2). (b) Prediction of velocity with absent data when q wall is 95 in right side and 
learning prediction in left side. (Based on inputs 1 and 3). (c) Prediction of velocity with absent data when q wall 
is 95 in right side and learning prediction in left side. (Based on inputs 2 and 3).
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0.7) and inertia weight damping ratio (IWDR) values (i.e. 0.6, 0.7, 0.8, 0.9, and 0.99). After the best intelligence 
achievement, the accuracy of the PSOFIS for the prediction of the lost data was tested. One of the challenges of 
the CFD modeling is the lost data for a specific boundary condition. In this study, the CFD data were supposed 
to be available for wall heat fluxes of 75, 85, 105, and 125 w/m2, while there is no data for the wall heat flux of 
95 w/m2. So, the PSOFIS learns the available CFD data and predicts the velocity profile for where the data is not 
available (i.e., wall heat flux of 95 w/m2). The CFD calculation was repeated for the wall heat flux of 95 w/m2 and 
the PSOFIS predictions compared with the CFD results.

The results of this study can be summarized as follows.

•	 The highest coefficient of determination and, as a result, the best intelligence is obtained for the AR and 
IWDR of 0.7 and 0.99, respectively.

•	 For the best intelligence, the regression number is about 0.98.
•	 The velocity profile of the PSOFIS corresponding to the learned data is the same as that of the CFD predic-

tion.
•	 The PSOFIS can predict the velocity profile of the data, which is absent in learning, with the highest compat-

ibility to the CFD prediction.
•	 For the performance assessment of the PSOFIS and for such a model, the learning (i.e., training and testing) 

time was 268 s, while the prediction of the CFD data lost was negligible (~ 1 s). In contrast, the CFD calcula-
tion takes around 600 s for each simulation.
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