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Millennia of human land-use have resulted in the widespread occurrence

of what have been coined ‘domesticated ecosystems’. The anthropogenic

imprints on diversity, composition, structure and functioning of such

systems are well documented. However, evolutionary consequences of

human activities in these ecosystems are enigmatic. Calluna vulgaris (L.) is

a keystone species of coastal heathlands in northwest Europe, an ancient

semi-natural landscape of considerable conservation interest. Like many

species from naturally fire-prone ecosystems, Calluna shows smoke-adapted

germination, but it is unclear whether this trait arose prior to the develop-

ment of these semi-natural landscapes or is an evolutionary response to

the anthropogenic fire regime. We show that smoke-induced germination in

Calluna is found in populations from traditionally burnt coastal heathlands

but is lacking in naturally occurring populations from other habitats with

infrequent natural fires. Our study thus demonstrates evolutionary imprints

of human land-use in semi-natural ecosystems. Evolutionary consequences

of historic anthropogenic impacts on wildlife have been understudied, but

understanding these consequences is necessary for informed conservation

and ecosystem management.
1. Introduction
Fire is known to stimulate germination in many species of naturally fire-prone

ecosystems worldwide [1,2]. Different smoke-derived chemical substances,

notably karrikinolide and glyceronitrile [3,4], have been shown to play key eco-

physiological roles in smoke-stimulated germination. The repeated appearance

of the trait in many different families, lineages and regions [1,5–7] suggests a

strong capacity for evolutionary responses to fire in plants [2], and hence potential

for convergent evolution. Humans have used burning as a management tool for

millennia [8,9], and fire has strong impacts on the structure and functioning of the

resulting semi-natural ecosystems [8,10], suggesting that culturally fire-prone

habitats may be good candidate systems for studying evolutionary responses to

human management regimes.

The coastal heathlands of northwest Europe constitute an anthropogenic land-

scape that has been continuously managed by traditional burning and grazing

regimes for up to 6000 years [9–11]. Major expansion occurred from ca 5000 BP

(before present) in Jutland, Denmark [12], and at 3300–1000 BP in western

Norway [11,13]; and although studies are scarce in the north, there is evidence

of anthropogenic coastal heathland 4700–3300 BP in central Norway [14], and

3800–1800 BP in northern Norway [15]. Burning cycles of 10–20 years are

http://crossmark.crossref.org/dialog/?doi=10.1098/rsbl.2013.1082&domain=pdf&date_stamp=2014-02-12
mailto:vigdis.vandvik@bio.uib.no
http://dx.doi.org/10.1098/rsbl.2013.1082
http://dx.doi.org/10.1098/rsbl.2013.1082
http://rsbl.royalsocietypublishing.org
http://rsbl.royalsocietypublishing.org


ba

B

A

C

D

E

F

ch
ar

co
al

 d
us

t

C
al

lu
na

tr
ee

s

ra
di

oc
ar

bo
n

ye
ar

s 
B

P

c d e

120 0 500

km

20° E10° E

>200

>200

>500

>500

unknown

5000

4000

3000

2000

1000

0
10 30 50 10 30 50 10 30 50

unknown

60
°

N

fire-free

115

200

150

200

300

Figure 1. Fire frequencies, study sites and distribution of anthropogenic coastal heathlands ( purple shade) in Norway. Purple arrows indicate sites with frequent fires
documented back to the Late Bronze or Iron Age (selected from 70 palaeoecological records [9,11,13 – 15]). White arrows indicate boreal heaths or forests with low-
frequency natural fire regimes, with years since last fire given next to each arrow (from [22 – 25]). Black circles and white squares indicate seed-sampling sites along
the latitudinal and elevational gradient, respectively. Inset shows a microfossil record from site B over the past 6000 years (reprinted with permission from [17]). See
the electronic supplementary material, table S1 for site information. (Online version in colour.)
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traditional throughout the coastal heathland region [10,16].

Smoke-stimulated germination responses in heathland species,

e.g. Calluna vulgaris [17,18], have ecological consequences: for

example, germination rate and final percentages increase

in smoke-exposed seedbanks [17,19,20]. As 6000 years of

human influence affords scope for evolutionary change, we

ask: is this a trait that Calluna brought into the heathlands or

has it evolved there?
Calluna also has a wide distribution in natural habitats—

pine forests, boreal heaths and alpine areas [21]—that have

not been exposed to high-frequency anthropogenic fire

regimes. Natural fire frequencies in these boreal habitats vary

considerably in space and time but are much lower than

those of the managed coastal heathlands [22–25]. To evaluate

evolutionary impacts of the anthropogenic fire regimes, we

assessed germination responses to smoke of Calluna seeds



Table 1. GLMM fixed effects for C. vulgaris seed germination over time in response to smoke treatment along two geographical gradients.

latitudinal gradient elevational gradient

estimate s.d. estimate s.d.

intercept 4.999 3.832 23.786 0.316

time 0.205 0.026 0.118 0.004

geographya 21.454 0.606 21.399 0.552

geography � time 20.012 0.004 20.006 0.007

smoke 0.771 0.207 0.335 0.364

smoke � time 0.031 0.003 0.027 0.005

smoke � geography 0.362 0.655

smoke � geography � time 20.034 0.010
aGeographical effects are given per 1000 m.a.s.l. in the elevational gradient model, and per 108 N in the latitudinal gradient model. s.d., standard deviation.

Table 2. Germination rate of C. vulgaris seeds at 208C expressed as mean
time to 50% germination according to the models of smoke-treatment
effects along the two geographical gradients (table 1). Elevation is given in
m.a.s.l.

smoke treatment

no yes
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sampled along two geographical gradients with different fire

histories: (I) a latitudinal gradient within anthropogenic heath-

lands along the coast of Norway and (II) an elevational

gradient away from the anthropogenic coastal heathlands

into boreal forests and heaths (figure 1). The gradients cover

comparable climatic conditions, but whereas burning has

been a common practice along the coast it has not in the

boreal forests and heaths (figure 1; electronic supplementary

material, table S1).
latitude

698 N 42 28

648 N 34 23

598 N 27 17

elevation

1000 m 46 43

500 m 39 32

0 m 32 24
2. Material and methods
Eleven Calluna populations were studied (figure 1; electronic

supplementary material, table S1). Data on fire frequencies were

obtained from more than 70 fossil charcoal records from anthro-

pogenic coastal Calluna heathlands (reviewed in [9,11,13–15])

and 12 records from boreal-zone Calluna habitats [22–25]. From

each study population, infructescences from 15 Calluna plants

were harvested, dried at 208C for 2 days and stored for five

months at 15% relative humidity and 158C. These seeds were ger-

minated with and without the addition of smoke water (standard

Themeda solution; diluted 1 : 500 000 based on a dose-response

screening experiment reported in the electronic supplementary

material, table S2) [5]. For each maternal plant and treatment,

three replicate Petri dishes of 22 seeds sown on agar were incu-

bated at 208C with a diurnal cycle of 16 L : 8 D; these conditions

are known to yield maximum germination rates and percentages

in Calluna [18,21,26]. Germination (radicle more than or equal to

0.5 mm) was scored for 60 days. We used a generalized linear

mixed model (GLMM) solved by an integrated nested Laplace

approximation [27] assuming a binomial distribution. Effects

of explanatory variables—time, treatment and geography—on

germination probabilities were assessed through posterior distri-

butions using a three-way interaction model with random

contributions by populations, maternal plants, replications and a

term for residual overdispersion and autocorrelation. All analyses

were done in R v. 2.15.2 [28].
3. Results
Fire frequencies differ sharply, by up to three orders of

magnitude, between the anthropogenic coastal heathlands

and other Calluna habitats. Outside the coastal heathland
region, several sites are fire-free with median time since fire

more than 200 years (figure 1). Smoke treatment increases

both germination rates and final percentages in all Calluna
populations from the latitudinal gradient (anthropogenic

heath), and there are no significant interactions between

smoke treatment and geography, indicating that the effect is

constant along the entire gradient (table 1 and figure 2).

The effect translates into an advancement of germination

by 10–14 days (table 2) or a reduction in mean time to germi-

nation by 32–37%. The positive smoke-treatment effect

is also detected along the elevational gradient, but here the

smoke-treatment effect diminishes away from the coastal

heathlands, as indicated by a negative three-way interaction

with geography (table 1). At the coast, the model predicts an

8-day or 25% reduction in mean time to germination, which

matches the prediction from the latitudinal gradient model,

but at the boreal (natural) heath end of the gradient the differ-

ence is only 3 days and no longer statistically significant as

indicated by the overlapping confidence intervals of smoke-

treated seeds and controls (table 2 and figure 2). Climate effects
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Figure 2. Calluna vulgaris germination probabilities over time in response to smoke treatment along the latitudinal and elevational gradients. Lines give model
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are consistent and comparable across the two gradients:

germination rates decrease towards the colder northern and

mountain regions, with similar parameter estimates and

predictions (tables 1 and 2).
4. Discussion
Smoke-induced germination is known from Calluna popu-

lations in anthropogenic coastal heathlands [17,18], where it

increases recruitment from seedbanks in newly burnt heath
[19,20]. We document that the trait is not universally present

in Calluna; instead, it is lacking in the species’ range outside

the culturally fire-prone coastal heathlands. This can be

linked to fire frequencies, which are markedly higher in

anthropogenic than in natural Calluna habitats. This suggests

that the smoke response has evolved in response to the

anthropogenic high-frequency fire regime: Calluna occurs

widely in heaths, bogs, forests and alpine areas throughout

Europe [21] that lack the recurrent burning characteristic of

the anthropogenic heathlands. The difference in fire history

inside and outside the coastal heathlands is ancient; these
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landscapes were cleared in the Neolithic, with a period

of expansion in the Bronze Age [9–11], providing time for

evolutionary differentiation. Research on smoke-responses

in naturally fire-prone ecosystems documents that the

trait is phylogenetically and geographically widespread and

is found in both broad-ranged and endemic plant species

[5–7]. This suggests that smoke-induced germination is an

evolutionary convergence [2]. The hypothesis of convergent

evolution has gained support from studies demonstrating that

smoke-responses in different phylogenetic lineages can be

triggered by the same few chemical substances, universally

present in plant-derived smoke [3,4].

The use of the two contrasting geographical gradients

enables us to isolate the land-use difference and avoid con-

founding climate effects (figure 1; electronic supplementary

material, appendix S1). The similar germination responses

along the climatic gradients show that the study design was

successful in isolating the heathland-burning effect. Indeed, a

model testing only climate found no significant differences in

germination responses to temperature along the two gradients

(not shown).
In many of the classic studies of evolutionary consequences

of human activities [29], the management actions interfere

directly with age-specific survival rates. By contrast, evolu-

tionary effects on non-target species are more enigmatic. In

our study system, Calluna populations are not harvested

but subjected to a management regime that affects their life

cycle. Rather than affecting fecundity or growth, this manage-

ment regime has effects on germination regulation, which in

turn affects recruitment success [17,20]. Our findings have

implications for the biodiversity and conservation value of

coastal heathlands and domesticated ecosystems in general. If

these harbour distinct ecotypes adapted to anthropogenic

impacts [30], biodiversity will be at risk if semi-natural habitats

and associated land-use regimes disappear.
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