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Abstract
The benthos in estuarine environments often experiences periods of regularly occurring hypoxic and anoxic conditions,
dramatically impacting biogeochemical cycles. How oxygen depletion affects the growth of specific uncultivated microbial
populations within these diverse benthic communities, however, remains poorly understood. Here, we applied H2

18O
quantitative stable isotope probing (qSIP) in order to quantify the growth of diverse, uncultured bacterial populations in
response to low oxygen concentrations in estuarine sediments. Over the course of 7- and 28-day incubations with redox
conditions spanning from hypoxia to euxinia (sulfidic), 18O labeling of bacterial populations exhibited different patterns
consistent with micro-aerophilic, anaerobic, facultative anaerobic, and aerotolerant anaerobic growth. 18O-labeled
populations displaying anaerobic growth had a significantly non-random phylogenetic distribution, exhibited by numerous
clades currently lacking cultured representatives within the Planctomycetes, Actinobacteria, Latescibacteria, Verrucomi-
crobia, and Acidobacteria. Genes encoding the beta-subunit of the dissimilatory sulfate reductase (dsrB) became 18O labeled
only during euxinic conditions. Sequencing of these 18O-labeled dsrB genes showed that Acidobacteria were the dominant
group of growing sulfate-reducing bacteria, highlighting their importance for sulfur cycling in estuarine sediments. Our
findings provide the first experimental constraints on the redox conditions underlying increased growth in several groups of
“microbial dark matter”, validating hypotheses put forth by earlier metagenomic studies.

Introduction

Benthic microbial communities living in estuarine ecosys-
tems play an important role in global biogeochemical
cycles, because they drive organic matter decomposition,
nutrient regeneration, and influence water column dissolved
O2 concentrations [1, 2]. Benthic oxygen depletion is

typical in estuarine habitats, where degradation of organic
matter is 100–1000 times higher than corresponding values
in the water column [3]. The resulting hypoxia impacts both
fisheries by increasing fish mortality [4], as well as climate
by facilitating increased fluxes of the greenhouse gas nitrous
oxide [5].

Estuarine sediments have complex microbial commu-
nities composed primarily of uncultured lineages catalyzing
aerobic, micro-aerophilic, and anaerobic metabolic path-
ways that impact carbon, nitrogen, and sulfur cycling [6].
Quantifying growth of specific bacterial populations is
challenging, yet critical for understanding of ecosystem
resilience and response to change [7]. The structure of
microbial communities in estuarine habitats can exhibit
resistance to environmental perturbation [8], but the levels
of activity within populations can change dramatically in
response to changing nutrients and oxygen levels, with clear
impacts on biogeochemical cycles [9].

The activity of growing microbial populations in envir-
onmental samples can be quantified using quantitative
DNA-stable isotope probing (qSIP) with H2

18O as a passive
tracer [10]. Oxygen atoms from H2

18O are incorporated into
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DNA during genome replication, which when combined
with quantitative PCR (qPCR) and high-throughput
sequencing of 16S rRNA genes can be used to quantify
activity of growing populations within complex microbial
communities from environmental samples [11, 12]. Relative
to energy-rich 13C-labeled carbon substrates, labeled water
is a passive tracer of cell growth, whereby DNA replication
generates a new DNA strand that will contain 18O atoms in
the presence of labeled water [12]. The amount of 18O
incorporated into the total DNA pool is correlated with
growth rates [11–13], showing that 18O labeling occurs
primarily during growth via DNA replication [12]. The
degree of atomic incorporation can then be used as a
quantitative proxy for growth [13]. qSIP with H2

18O has
been applied to terrestrial habitats [14–16], including
freshwater sediments [17]. But, to our knowledge, H2

18O
qSIP has not yet been applied to quantify growth in
estuarine sediments or under anoxic conditions.

We used H2
18O qSIP [12] to quantify for the first time

population-specific growth dynamics in benthic bacterial
communities in response to changing redox conditions.
This allowed us to test hypotheses regarding the potential
physiology of several groups of uncultivated microbial
groups put forth by earlier metagenomics studies, which
suggested an adaptation to low oxygen and anoxic aquatic
environments [6, 18]. Our results showed that hypoxia
and euxinia selected for specific phylogenetic groups of
uncultivated bacteria whose metabolic activity was
increased, providing evidence of their optimal redox con-
ditions for growth. Notably, establishment of benthic
anoxia coincided with increased growth from numerous
uncultivated groups of sulfate-reducing bacteria (SRB) that
were dominated by the Acidobacteria, which should thus
be more closely considered as an important SRB group
impacting sulfur cycling in estuarine sediments. Our
experimental findings validate prior hypotheses put forth
by metagenomics studies indicating micro-aerophilic and
anaerobic lifestyles for many groups of “microbial dark
matter (MDM)”.

Materials and methods

Sampling

Surface sediment samples were collected in July 2016 from
1m water depth in Sage Lot pond, a coastal lagoon con-
nected as a sub-estuary to Waquoit Bay (Cape Cod, Mas-
sachusetts). Sage Lot pond is a small (surface area 0.17 km2)
shallow (ca. 2 m maximum depth) lagoon surrounded by
dense vegetation including salt marshes and seagrasses [19,
20]. Sage Lot pond exhibits phytoplankton chlorophyll
concentration up to 90mg L-1 when nitrogen inputs increase

[19]. These eutrophic conditions lead to frequent benthic
anoxic events [19].

Experimental setup

We added sea salts (30 mM MgCl2 ٠6H2O, 16 mM MgSO4

٠7H2O, 2 mM NaCO3, 10 mM KCl, 9 mM CaCl2, 450 mM
NaCl) to 99% H2

18O (Sigma-Aldrich, St. Louis, MO, USA)
in order to create 18O-labeled artificial seawater (ASW). As
a control, ASW was also created using diethyl pyr-
ocarbonate (DEPC)-treated (sterile, nuclease free) water.
Both waters were filter sterilized (0.2 μm). One milliliter of
either 18O-labeled or -unlabeled (control) ASW was added
to 2 g of wet surface sediment from Sage Lot Pond in 20 mL
sterile glass vials containing sterile oxygen sensor spots
(PreSens Precision Sensing). The oxygen sensor spot was
positioned at the sediment-seawater interface to measure
benthic O2 concentrations, and additional sensor spots were
placed in the headspace of two flasks to measure gaseous O2

levels throughout the incubation. Incubations were set up in
biological triplicate for each timepoint (7 day and 28 day).
The water content of the sediments was 15% (±1%), and
thus the final concentration of H2

18O in the H2
18O incuba-

tions was roughly 66%. After addition of labeled and
unlabeled ASW, flasks were crimp sealed with gas tight
gray butyl rubber stoppers. All flasks contained ca. 15 cm of
oxygenated headspace and were incubated in the dark for 7
and 28 days at 8 °C. Dissolved oxygen was measured
noninvasively using a fiber optic oxygen sensor (PreSens,
Regensburg Germany) ca. 0.5 cm above the sediment-water
interface as described previously [21]. Oxygen measure-
ments were also performed on autoclaved sediments as a
killed control. DNA from the samples was extracted and
quantified from the replicate incubations at the beginning
(T0), 7 days, and 28-day timepoints as described previously
[22].

Density gradient centrifugation and gradient
fraction

DNA samples were prepared for density gradient cen-
trifugation according to previously defined protocol for
qSIP [23]. In brief, density gradient centrifugations were
carried out in a TLN-100 Optima MAX-TL ultracentrifuge
(Beckman Coulter, Brea, CA, USA) near-vertical rotor at
18 °C for 72 h at 165,000 × g. In all, 50 µl of DNA spanning
from 0.5 to 1.5 µg [24] was added to a solution of cesium
chloride (CsCl) and gradient buffer (0.1 M Tris, 0.1 M KCl
and 1 mM EDTA) in order to achieve a starting density of
1.70 g mL-1 in a 3.3-mL polyallomer OptiSeal tubes
(Beckman Coulter, Brea, CA, USA). After ultracentrifuga-
tion, the density gradients were fractionated into 15 equal
fractions of 200 µl from the bottom of polyallomer OptiSeal
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tubes by using a syringe pump and fraction recovery system
(Beckman Coulter, Brea, CA, USA). The density of these
fractions was measured with an AR200 digital refractometer
(Reichert Analytical Instruments, Depew, NY, USA). DNA
was precipitated from the fractions using two volumes of
polyethylene glycol with 2 µl (10 mg mL-1) glycogen and
precipitated overnight at room temperature. DNA was pel-
leted by centrifugation (13,000 × g; 40 min), washed with
70% ethanol, and resuspended with 30 µl molecular-grade
(DEPC-treated) water. DNA was quantified fluorometrically
using a Qubit 4 fluorometer (Thermo Scientific).

qPCR, 16S rRNA gene, and dsrB gene sequencing

Universal primers targeting the V4 hypervariable region of
16S ribosomal RNA (rRNA) genes were used in qPCR to
determine density shifts of key genes (16S and dsrB) for each
incubation. We used a version of the 16S rRNA gene 515F
primer with a single-base change (in bold) to increase the
coverage of archaea (515F-Y, 5′-GTGYCAGCMGCC
GCGGTAA-3′; [25]). All qPCR reactions were carried out as
described previously using the Eppendorf EpMotion 5070
pipetting robot that has <5% technical variation [23]. Each
density fraction was also screened using qPCR for SRB with
primer pairs targeting the dissimilatory sulfite reductase β-
subunit genes (dsrB) according to a previously published
assay [26–28]. We chose to focus on the dsrB gene because a
large database exists for dsrB sequences recovered from
environmental samples that we could compare our data
against [29] (www.microbial-ecology.net/download). qPCR
standards consisted of 10-fold dilution series of the genes of
interest that were PCR amplified from the sample at 40
cycles using the same primers. Prior to creating the dilution
series, the correct size of amplified standard was confirmed
via gel electrophoresis, gel extracted, and quantified with a
Qubit. Reaction efficiencies in all qPCR assays were between
90 and 110% with r2> 0.98 for the standards. dsrB amplicons
were cloned and sequenced via sanger sequencing from
density fractions at the 28-day incubation timepoint that
exhibited 18O labeling, in the density range 1.70–1.71 g mL-1.

Two 16S PCR amplicons from each density fraction
(technical replicates to reduce PCR bias) were pooled and
sequenced on the Illumina MiniSeq as described previously
[30]. To account for the influence of contamination, we
included barcoded aerosol (laboratory dust) and kit reagents
(DNA extraction blanks) samples.

dsrB amplicons were gel extracted and cloned using the
TOPO TA cloning kit (Invitrogen, Life Sciences) according
to the manufacturer instructions. A total of 132 clones were
picked, the insert size confirmed via PCR, and those clones
having the correct dsrB size (89 clones) were Sanger
sequenced bidirectionally. The forward and reverse Sanger
reads were used to create dsrB contig sequences in

CodonCode Aligner version 8.0.2 (CodonCode Corpora-
tion, MA, USA).

Bioinformatic analysis

The Illumina reads were quality trimmed and assembled
using USEARCH version 10.0.240 with the default para-
meters [31] resulting in 6.8 million quality checked V4
reads. Reads were then de novo clustered at 97% identity
using UPARSE; OTUs represented by a single sequence
were discarded [32]. Taxonomic assignments were gener-
ated by QIIME 1.9.1 [33] using the implemented BLAST
method against the SILVA rRNA gene database release 132
[34]. After that, only operational taxonomic units (OTUs)
>12 sequences in total in each replicate for the control and
SIP-labeled fractions were selected for further study [23,
35]. OTUs detected in the contaminant datasets were
removed from all downstream analysis if the total number
of sequences in the contaminant sample was greater than the
experimental sample. Working with this “cleaned” dataset,
598 OTUs and 523 OTUs from 7 days and 28 days incu-
bations were used for downstream analyses.

Observed excess atom 18O fractions (EAFs) were cal-
culated for each taxon as described previously [13] using a
qSIP workflow embedded in the HTS-SIP R package [36].
To calculate the bootstrap confidence intervals (CI) for
significant isotopic incorporation, bootstrap replicates (n=
1000) were run with the HTS-SIP R package [36]; an OTU
was considered as having isotopic incorporation (true
positive) if the lower CI was >0 [13].

Phylogenetic analyses were performed in SeaView [37]
following alignment with MUSCLE [38]. Maximum like-
lihood (ML) with selected substitution model as general time
reversable (GTR) was performed with PhyML version 3.0
[39]. dsrB gene translation was performed using EMBOSS
Transeq [40]. W-IQ-TREE (http://iqtree.cibiv.univie.ac.at)
was used to find the best model using Model Finder [41, 42],
which resulted in LG+G4 model. Trees were visualized
and edited using iTOL [43]. Statistical analyses and plots
were performed using R.Studio Version 3.3.0 [44]. Blom-
berg’s K [45] and Pagel’s λ [46] tests for significantly non-
random phylogenetic distributions of growing patterns from
qSIP were calculated on all OTUs (labeled and unlabeled)
using the phylosignal R package [47]. Both indices test
species’ traits under a Brownian motion model (BM) of trait
evolution; that is whether or not the distribution of traits
across different phylogenetic groups is random or non-
random. The BM assigns a 0 value to indicate phylogenetic
independence (random phylogenetic distribution of traits)
and values close to 1 for a strong phylogenetic signal (non-
random phylogenetic distribution of traits) [48–50].

The sizes of the growing and dying fractions of each
population, and their rates of change, was calculated using a
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model developed to determine population growth and
mortality rates from 18O-qSIP data [51]. For all calculations,
bootstrap resampling of replicates within each treatment
was used to reproduce the uncertainty and 90% CIs were
estimated. These calculations were performed in R using the
code at https://bitbucket.org/QuantitativeSIP/qsip_repo
[51]. Sequence data were entered in the NCBI Short Read
Archive under BioProject ID PRJNA498588.

Results

Dissolved oxygen measurements

The sediment-water interface was well-oxygenated at the
beginning of the incubation (70% atm. saturation), which
declined exponentially during the first week until reaching
0% atm. saturation after day 5 (Fig. 1a). This was not
observed in the killed control, showing that the rapid
drawdown of benthic O2 was due to respiration. Small
fluctuations in the oxygen measurements in the killed con-
trol were likely due to temperature fluctuations of the
incubator itself (±1 °C), since the non-invasive fiber optic
oxygen sensor spots are temperature sensitive [21]. By the
end of the experiment (28 days), the sediments had turned
from a gray-brown color to black, indicating the presence of
iron–sulfur minerals (e.g., FeS and FeS2), and upon opening
the vials sulfide could be smelled. Thus, while the head-
space contained oxygen at the beginning of the experiment,
the sediments had become anoxic and sulfidic (euxinic) by
the end of the incubation period.

qSIP of 16S rRNA genes

18O labeling of 16S rRNA genes was observed at 7 and
28 days, with 16S rRNA genes at 28 days exhibiting a higher
degree of labeling compared with 7 days (Figs. 1b, c). The
decrease in oxygen (Fig. 1a) was mirrored by a decrease in
16S rRNA gene copies: the total number of 16S rRNA gene
copies per gram wet sediment decreased during the first week,
from 2.5 ( ± 0.12) × 108 at T0 to 1.4 ( ± 0.09) × 108 at 7 days,
and then decreased further after 28 days to 1.1 ( ± 0.04) × 108.
This indicated net microbial death with a fraction of the
community maintaining growth during the incubation.

The composition of microbial populations at 7 and
28 days were markedly different (analysis of variance; F=
3991, p < 0.001), but dominated by the same phyla in nearly
equal proportion (Figure S1). In total, 443 OTUs were
detected at both timepoints, whereas 235 OTUs were
detected at only a single timepoint (Figure S1). In all, 128
OTUs were 18O labeled after 7 days, which increased to 395
OTUs after 28 days (Figure S1). Of the 18O-labeled OTUs
at day 7, Bacteroidetes were the most abundant taxa with 67

OTUs (49.4% of the 18O-labeled OTUs), followed by 39
OTUs affiliated with Proteobacteria (42.1% of the 18O-
labeled OTUs) (Fig. 2 and S1). On the other hand, the 395
18O-labeled OTUs at day 28 were comprised mostly of
Proteobacteria (157 OTUs, 61.4% of 18O-labeled OTUs),
followed by Bacteroidetes (94 OTUs; 18.1% of 18O-labeled
OTUs) and Planctomycetes (53 OTUs; 8.71% of 18O-
labeled OTUs) (Fig. 2 and S1).

Although the scope of this study is to determine the
growing microorganisms, non-growing cells due to dor-
mancy and or slow growing cells are represented in our
results as those OTUs that did not become labeled.
Accordingly, a total of 248 OTUs constituted non-growing
microbes (unlabeled) in both incubations (Fig. 3). The non-
growing or slow growing bacterial groups were dominated
by OTUs affiliated with sulfate-reducing lineages in the
Deltaproteobacteria (42 OTUs), Planctomycetes (38
OTUs), Epsilonbacteraeota (7 OTUs), and Spirochaetes (9
OTUs) (Fig. 3).

Growing bacterial OTUs affiliated with MDM [18]
candidate phyla Aegiribacteria (1 OTU, 0.08 EAF) and
Patescibacteria (1 OTU, 0.04 EAF) were detected only in
the 7-day incubations (Fig. 2 and Table 1). Labeled OTUs
affiliated with MDM groups after 28 days included Lates-
cibacteria (10 OTUs, 0.24 ± 0.04 EAF) and Calditrichaeota
(1 OTU, 0.24 EAF). The only MDM group that was 18O
labeled at both 7- and 28-day timepoints was the candidate
phylum WPS-2 (Fig. 2 and Table 1).

The change in oxygen concentrations over the course of
the experiment allowed us to group OTU growth into five
categories based on the pattern of 18O labeling at 7 days
(micro-oxic conditions) and 28 days (anoxic conditions)
(Fig. 3) [1]. Micro-aerophilic growth was defined as 18O-
labeled OTUs detected only at day 7, and not at 28 days [2].
Anaerobic growth was defined as 18O-labeled OTUs
detected only after establishment of euxinic conditions at
day 28, and not at 7 days [3]. Facultative anaerobic growth
was defined as 18O-labeled OTUs overlapping between both
timepoints [4]. Aerotolerant anaerobic growth was defined
as OTUs detected at both timepoints, but only 18O labeled
during anoxic and sulfidic conditions [5]. Dormant or slow
growing microorganisms were defined as OTUs that were
not 18O labeled at either timepoint.

18O labeling of dsrB genes

Bacterial dsrB genes exhibited 18O labeling only after
development of euxinic conditions sampled at 28 days of
incubation, with peak DNA buoyant density (BD) of 1.71
(±0.008) g mL-1, which was greater than the control where
the peak was 1.686 (±0.003) (Fig. 4a). This corresponds to
an increase in the atomic enrichment percentage of >20%,
which is typically regarded as the threshold for significant
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isotopic labeling [52]. In total, 89 dsrB sequences were
obtained by molecular cloning from the density fractions
that exhibited peak 18O labeling (Fig. 4a). Most of the
18O-labeled dsrB sequences were affiliated with novel
groups of uncultivated Acidobacteria SRB (61 sequences,
82% of total), whereas the remainder of 18O-labeled dsrB
sequences (13 sequences, 18% of total) were related to
Deltaproteobacteria SRB (Fig. 4b). The 18O-labeled Acid-
obacteria dsrB genes include a clade of four dsrB
sequences with close relation to a novel clade of SRB
originally described as “novel dsrB Group IV” from the
Guaymas hydrothermal vent [53], raising the possibility
that this group of Acidobacteria contains both thermophilic
and mesophilic SRB.

Growth and death dynamics of 18O-labeled
populations

After 7 days, most genera exhibited gross reproduction and
three OTUs exhibited significant net production (defined as
90% CI in the growth/death model not overlapping 0),
affiliated with Sva0081 sediment group (Desulfobacter-
aceae), Desulfobacterium catecholicum, and SB-5 family of
Bacteroidetes (Fig. 5). The rate of mortality per genus was
higher at day 28 than day 7, indicating that establishment of
euxinic conditions caused the majority of cells per genus to
die faster than they grew (Fig. 5). However, despite the
higher net mortality rates, many exhibited relatively low
positive gross reproduction rates (Fig. 5) indicating that a
smaller proportion of individuals per population were
actively growing. This is consistent with the result that most
of the OTUs were 18O labeled at this timepoint. We also
calculated the whole-assemblage turnover estimated via
qSIP using the developed model of Koch et al. [51]. The
seven-day incubation had an average community turnover
value of 0.28 d-1 (90% CI: 0.219–0.36 d-1), whereas 28 days
of incubation had an average community turnover value of
0.371 d-1 (90% CI: 0.315–0.476 d-1).

Discussion

Dissolved oxygen has declined in ocean water in the past
five decades due to the increase in global temperature [54],
resulting in the expansion of oxygen minimum zones
(OMZs) in the oceans [55]. In coastal settings, increased
human activity such as high fertilizer use has caused
widespread eutrophication and recurrent bottom water
anoxia that influences the benthos [19, 56, 57]. The effects
of such benthic anoxia on the growth of diverse bacterial
populations driving elemental cycles is poorly understood.
We used 18O-qSIP to quantify for the first time to quan-
tify the growing bacterial populations in response to benthic
oxygen depletion, including many groups for which there
currently exists no cultured representatives.

Assessing effects of incubation conditions

Although the sediment surface became oxygen depleted
after 5 days of incubation, there was an oxygenated
headspace, and O2 measurements of the headspace con-
firmed oxygen throughout the 28-day incubations at
concentrations of 90–80% atmospheric saturation (data
not shown). The gradual depletion of oxygen at the
benthic interface during the first week thus indicates a
shoaling of the oxic–anoxic transition zone within the
sediments into the overlying ASW. Benthic anoxia is a
common feature of the sampled environment in Waquoit
Bay (Cape Cod, USA), where increased nitrogen input to
the watershed through atmospheric deposition, fertilizer,
and wastewater has led to an increase in primary pro-
ductivity and recurrent bottom water anoxia [19, 56]. This
phenomenon is also known to occur in the marine envir-
onment, for example, in the Benguela upwelling system
where summer time water column stratification results in a
shoaling of the sediment oxic–anoxic transition zone
several meters upwards into the bottom waters and where
sulfide accumulates to high levels on the continental shelf

Fig. 1 a Benthic O2 concentrations during the incubation and killed
(autoclaved) control. b, c Quantification of 16S rRNA gene copies
across CsCl density gradient fractions after 7 (b) and 28 days (c). 18O
water replicates are represented by blue solid lines with triangles and

unlabeled replicates (control) are represented by red dashed lines with
circles. The y axis represents the relative abundance of 16S rRNA
genes quantified with qPCR, normalized to maximal abundance across
all density fractions
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[58]. Thus, our experimental conditions are relevant to
naturally occurring benthic habitats in estuaries and con-
tinental shelf settings that are especially prone to the
development of anoxia. Dormancy by anaerobic bacteria
during periods of oxygenation at the sediment surface
may explain how they survive until favorable anoxic
conditions are re-established, for example, after burial
deep below the subseafloor in anoxic sediments [59].

Given the detection limit of the fiber optic oxygen mea-
surements (ca. 0.5 % atmospheric saturation), we cannot rule
out the presence of trace amounts of dissolved oxygen
within the overlying seawater or sediment. Nevertheless, the

appearance of black color throughout the sediments and the
strong smell of sulfide at the end of the 28-day incubation
strongly indicated anoxic conditions in the sediments by the
end of the experiment. The strong smell of sulfide suggests
that the black color reflected formation of amorphous iron–
sulfur compounds, caused by a reaction between oxidized Fe
(III) with HS- [60]. As we sampled the entire sediment slurry
for our qSIP analysis, we likely sampled a mixture of both
anoxic and micro-aerophilic habitats that were present as a
steep redox gradient within the flasks. Therefore, the active
microbes detected at 7 days probably represent micro-
aerophilic bacteria, whereas active microbes sampled at

Fig. 2 OTU-specific shifts in the median atom fraction excess (18O) of OTUs with 90% confidence interval (CI). OTUs were colored by phylum.
OTUs that do not have a 90% CI overlapping with 0 are considered to be 18O labeled
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28 days were living under predominantly anoxic and sulfidic
conditions.

It is likely that anoxic microsites likely developed within
the sediment in the first 7 days, potentially complicating the
categorization of aerobic, facultatively anaerobic, and
aerotolerant growth in OTUs detected at this timepoint.
Anaerobic SRB can remain active in oxidized marine

sediments within anoxic microniches [61], but some SRB
are aerotolerant since they can grow (albeit slightly) in the
presence of oxygen [reviewed in [62]]. The total area
occupied by anoxic microsites should be much smaller
compared with the rest of the bulk sediment sampled that
experienced oxygen during the first 7 days. Thus, the
dominant OTUs detected at day 7 are unlikely to be those

Fig. 3 Phylogeny of bacterial taxa detected and their extent of 18O
labeling at 7 and 28 days. The inner circles correspond to excess atom
fraction (EAF) 18O values of labeled taxa after 7 and 28 days of
incubation. The outer ring of the heatmap represents the EAF change
between the timepoints. The numbered and colored circles represent

the growth mode of the OTUs and the legend defines the growth mode
of categories explained in result section. Bottom panel shows phylo-
genetic signal tests (Blomberg’s K and Pagel’s λ) and corresponding
p-values for labeled taxa and growth mode categories
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living in anoxic microsites. But, it is possible that some
strictly anaerobic populations survived at low abundance
under oxygen exposure during the first 7 days within anoxic
microsites.

It is also likely that after the 28 days of incubation the
label turned over, and a second generation of microbial
cells became labeled not only from 18O water but also from
18O-labeled organic compounds that formed earlier. In this
case, some of the labeling detected at the 28-day timepoint
could have been due to assimilation of 18O-labeled organic
compounds. However, the concentration of any 18O trans-
ferred to organic matter would be diluted within the much
larger (unlabeled) dissolved organic matter pool. This
would then be further diluted several orders of magnitude
by the 18O label in the water that was present at a molar
concentration. Thus, the potential assimilation of 18O-
labeled organic compounds is unlikely to affect the con-
clusion that the degree of 18O labeling is a measure of
assimilation of 18O from water, and thus activity, in
growing populations.

Phylogenetic grouping of redox-specific activities

The oxygenated concentrations during the first week and
development of anoxic and sulfidic conditions at 28 days
allowed us classify 18O-labeled OTUs detected between
these two timepoints into four categories of growth (Fig. 3)
[1]; micro-aerophilic growth [2], facultative anaerobic
growth [3], anaerobic growth, and [4] aerotolerant anae-
robic growth (see Results for category definitions). The
non-growing microorganisms were also considered as an

additional category [5]: dormant or slow-growers. We
recognize that because oxygen was present in the headspace
throughout the incubation, strict anaerobic growth cannot
be unequivocally assigned to the OTUs. But, given the
increase in their growth later in the incubation after the
onset of euxinic conditions at the sediment-water
interface were established, we interpret this as an indicator
of anaerobic growth. We also recognize that our designation
of facultative versus aerotolerant anaerobic growth is arbi-
trary, but is used here to differentiate between those OTUs
labeled at day 28 present also at day 7 that were, or were
not, 18O labeled at day 7.

OTUs exhibiting micro-aerophilic growth had a rela-
tively weak phylogenetic distribution across the phylogeny
(λ= 0.38) (Fig. 3). In contrast, 18O-labeled OTUs exhibit-
ing anaerobic growth corresponded to non-random phylo-
genetic groupings (λ= 0.9 and 0.87, respectively), implying
that traits conferring anaerobic growth were conserved in
the sampled communities. 18O-labeled organisms detected
at both timepoints (facultative anaerobes) did not display a
significant phylogenetic pattern (λ= 0.16), suggesting that
facultative anaerobic growth was not a conserved trait in our
sampled communities.

Populations exhibiting micro-aerophilic growth

A total of 47 OTUs affiliated with orders Flavobacteriales
and Chitinophagales within the phylum Bacteroidetes were
the most active growing bacteria after 7 days, maintaining
metabolic activity under suboxic conditions. Similarly,
seven OTUs affiliated with order Anaerolineae

Table 1 A summary of growth by uncultivated taxa, previously designated as “microbial dark matter”, under various redox conditions

Group Growth mode EAF values (number
of OTUs)

r-Value (net
population growth
rate)

b-Value (rates of
reproduction)

d-Valuea (mortality
rate)

Aegiribacteria Micro-aerophilic 0.08 (n= 1) -0.202 0.081 -0.288

Latescibacteria Aerotolerant
anaerobic

0.013 ± 0.008 (n= 10) -0.227 -0.038 -0.191

Gracilibacteria Micro-aerophilic 0.04 (n= 1)b -0.172 -0.041 -0.136

Calditrichaceae Aerotolerant
anaerobic

-0.007 (n= 1) -0.214 -0.018 -0.197

WPS-2 Facultative anaerobic 0.1 (n= 1)b -0.339 0.079 -0.421

28 days of incubation

Gracilibacteria Aerotolerant
anaerobic

0.17 ± 0.073 (n= 2)b -0.136 0.023 -0.171

Latescibacteria Aerotolerant
anaerobic

0.19 ± 0.023 (n= 14)c -0.373 0.019 -0.392

WPS-2 Facultative anaerobic 0.2 (n= 1)b -0.422 0.014 -0.436

ar, b, and d values correspond to the rates per day (d-1)
bSignificantly growing microorganisms based on qSIP (i.e., lower boundary of bootstrap is >0)
cMost of the Latescibacteria grew (10 OTUs out of 14)
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(Chloroflexi) were 18O labeled at day 7 (0.08 ± 0.008 EAF).
Furthermore, 26 OTUs affiliated with Gammaproteo-
bacteria (mainly orders Cellvibrionales and Thiotrichales)

were labeled at day 7, and demonstrated relatively high
EAF values (0.102 ± 0.031) indicating micro-aerophilic
growth (Fig. 3).
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18O-labeled OTUs affiliated with candidate class Graci-
libacteria were observed solely at day 7, consistent with a
micro-aerophilic growth (Table 1). Gracilibacteria have a
cytochrome/quinol oxidase [18], most specifically cyto-
chrome bd, which is implicated in ameliorating oxidative
stress effects [reviewed in [63]]. Cytochrome bd could thus
help to explain the higher growth of Gracilibacteria under
low oxygen conditions.

Populations exhibiting anaerobic growth

There were 256 OTUs that exhibited a pattern of 18O
labeling consistent with aerotolerant anaerobic growth
(Fig. 3). They are apparently capable of surviving in the
presence of oxygen during the beginning of the incubation,
but their growth was maximized under anoxic conditions.
The majority of these OTUs were affiliated with the Gam-
maproteobacteria (69 OTUs; 0.18 ± 0.06 EAF) and Delta-
proteobacteria (19 OTUs; 0.29 ± 0.02 EAF). The highest
18O-labeled OTU was affiliated with genus Zhongshania
that contains the facultative anaerobic heterotrophic species
Zhongshania aliphaticivorans SM-2T [64]. In addition, one
of the 18O-labeled Gammaproteobacteria OTUs was affili-
ated with the JTB255/Woesiaceae clade, which have been
identified as the most dominant dark carbon-fixing microbes
with a capacity to oxidize reduced sulfur compounds in
anoxic and suboxic coastal sediments [65]. The genus
Sandaracinus in Deltaproteobacteria known to degrade
complex polysaccharides [66], also exhibited aerotolerant
anaerobic growth. At day 28 after the onset of euxinic
conditions, 10 OTUs affiliated with the Latescibacteria
were detected that grew anaerobically (Table 1). This is
consistent with their proposed fermentative mode of meta-
bolism in anoxic sediment and water columns [18, 67].

OTUs affiliated with the known SRB genera [68]
Desulforhopalus, Desulfosarcina, Desulfobulbus, Desulfo-
pila, Desulfobacter, Desulfotignum, and Desulfatitalea
were well-represented comprising 9% (42 OTUs) and 8%
(26 OTUs) of the total sequences at days 7 and 28,
respectively. However, only one SRB OTU was 18O
labeled, which occurred at day 7 and was affiliated with the

SRB genus Desulfobulbus (0.10 EAF). The relatively small
number of growing Deltaproteobacteria SRB is low com-
pared with the more numerous populations of sulfate-
reducing Acidobacteria that have higher 18O EAF
values (Figs. 3, 4). This indicates that these anaerobic
Acidobacteria SRB were growing faster compared with the
Deltaproteobacteria SRB.

Acidobacteria belong to several newly discovered groups
of SRB, showing that dissimilatory sulfur metabolism is
more widespread than previously thought [29, 69]. For
example, Acidobacteria with a dissimilatory sulfur meta-
bolism have been recently identified in acidic peatland [69,
70] and a DNA-SIP study [71] showed activity of dsrAB-
containing organisms derived from Acidobacteria [70]. Our
study shows that in addition to acidic peatland, dsrB car-
rying Acidobacteria grow in anoxic estuarine sediments
with a relatively fast rate. Their increased growth rate and
activity compared to Deltaproteobacteria SRB shown here
implies that they should have a large impact on dissim-
ilatory sulfur cycling under anoxic conditions.

Our finding that the majority of deltaproteobacterial
sulfate reducers had minimal growth is in line with the
previous reports that their mean in situ doubling times are
on the order of months to years [72]. Metabolic activity
(e.g., rRNA synthesis) in natural microbial communities is
typically followed by cell division [16], but metabolic
activity of non-growing organisms can also influence bio-
geochemical cycles [72]. For example, the increase in
activity of SRB Candidatus Desulfosporosinus infrequens
can occur independent of cell growth-associated processes
[73]. Thus, the low degree of 18O labeling in abundant
deltaproteobacteria SRB seen in our study (Fig. 3) may
relate to a different ecophysiological strategy (e.g., slow
growth) compared with the faster growing Acidobacteria
SRB.

Within the Planctomycetes, members of the uncultured
OM190 clade were abundant (44% total Planctomycetes)
and only became 18O labeled at day 28 (Fig. 3), indicating
anaerobic growth. Representatives of the OM190 clade
closely related to anaerobic ammonia oxidizing bacteria
(anammox) were also detected in hypoxic estuarine surface
sediments in the East China Sea [74]. The anaerobic growth
of OM190 clade organisms seen here is consistent with a
potential anammox metabolism.

The 18O-labeled Actinobacteria were dominated by
OTUs most closely related to the enigmatic Sva0996 acti-
nobacterial clade first described from marine sediments
[75], the “Candidatus Actinomarinales” [76], and Rhodo-
coccus. While aerobic growth of Rhodococcus is well
known as it relates to hydrocarbon degradation [77], our
results showing facultative anaerobic growth indicate that
Rhodococcus has potential to degrade hydrocarbons also
under anoxic conditions in sediments. A facultative

Fig. 4 a Quantification of dsrB gene copies across CsCl density gra-
dient fractions after 28 days. 18O water replicates are represented by
blue solid lines with triangles and unlabeled replicates (control) are
represented by red dashed lines with circles. The y axis represents the
relative abundance of dsrB genes quantified with qPCR normalized to
maximal abundance across all density fractions. b Phylogenetic tree of
18O-labeled dsrB genes including their most similar sequences from
the NCBI nr database, bold sequences indicate those from this study.
Collapsed clades (triangles) show the number of 18O-labeled dsrB
gene sequences contained within the clade. Black circles at nodes
represent bootstrap support of 90%, gray circles represent bootstrap
support from 70 to 90%, and white circles represent bootstrap support
from 70 to 50%
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anaerobic lifestyle also explains why Rhodococcus are often
found in deep subseafloor anoxic marine sediments [78].

The 18O-labeled Verrucomicrobia were dominated by
OTUs affiliated with the uncultured DEV007 clade, first
reported from the Elbe River in Germany (unpublished data,
accession number: AJ401107). 18O-labeled OTUs affiliated
with DEV007 were labeled at 7 days and became increas-
ingly labeled after 28 days and the establishment of anoxic
conditions (Fig. 2). This is consistent with biogeographic
surveys that have detected this group in anoxic estuarine
sediments (unpublished data, accession number: JN672646),
OMZs (unpublished data, accession number: MG875625),
and marine sediments [79]. However, the DEV007 clade is
also found in oxic seawater attached to particles [35]. Our 18O
labeling results showing a facultative anaerobic growth of the
DEV007 clade explains this wide biogeographic range.

An OTU affiliated with the WPS-2 (Writtenberg Polluted
Soil) clade was the only MDM group exhibiting facultative

anaerobic growth (Fig. 2). The WPS clade was first
described in a study of polychlorinated biphenyl-polluted
soil in Germany [80] and was since detected in a wide range
of oxic and anoxic environments [81]. The facultatively
anaerobic growth shown here could potentially explain the
ability of the WPS-2 group to survive in a large number of
habitats with widely varying redox states.

Growth and death dynamics of 18O-labeled
populations

Although total microbial abundance decreased over the
incubation by nearly an order of magnitude, 16S rRNA
genes became increasingly enriched in 18O (Fig. 1c). This
raised the possibility that within populations, a high number
of cells were dying while a smaller number were growing.
In order to investigate this possibility further, we applied a
model [51] that uses the 18O-qSIP data to calculate the

Fig. 5 Population growth rates
(r) at 7 and 28 day timepoints.
After 28 days, all taxa exhibited
mortality rates greater than
reproduction rates. Points
indicate bootstrapped medians
and bars show 90% confidence
intervals for each OTU. The
positive net production rates
here are considered as
statistically significant increase
in the populations if the
bootstraps are not crossing the
zero. Open circles: rates of
reproduction, black filled circles:
mortality rates, blue filled
circles: net reproduction rates.
The only groups that exhibiting
significant net production at day
7 are indicated with asterisks
(see legend)
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number of 18O-labeled and -unlabeled 16S rRNA genes per
OTU and the changes in their ratio over time to estimate
rates of gross reproduction, mortality, and net production of
individual OTUs (Fig. 5).

After seven days, only three OTUs exhibited net pro-
duction (defined as net production 90% CI not overlapping
zero), which were affiliated with the Sva0081 sediment
group (Desulfobacteraceae), Desulfobacterium catecholi-
cum, and SB-5 family of Bacteroidetes. Our analysis sug-
gests that the Sva0081 marine benthic group (MBG), a
putative group of SRB that are an important sink of acetate
[82] and H2 [83] in coastal marine sediments, was one of the
fastest growing populations under micro-aerophilic condi-
tions at day seven (Fig. 5). The increased micro-aerophilic
growth of Sva0081-MBG individuals is consistent with
their higher acetate uptake rates in oxic–suboxic surface
layer sediment slurries [82]. As Sva0081-MBG are H2

oxidizers [83], it is possible that the fast growing Sva0081-
MBG individuals at the oxic–anoxic interface were also
utilizing fermentation-derived H2 diffusing upwards from
the deeper anoxic sediments. Desulfobacterium catecholi-
cum, which exhibited net production at day seven (Fig. 5),
is a mesophilic SRB that can also perform dissimilatory
reduction of nitrate to ammonium [84]. This would explain
its higher growth rate under the micro-aerophilic conditions
at day seven during which nitrate was possibly still present.
The SB-5 group of Bacteroidetes belongs to the Cytopha-
gales and was previously detected in a benzene degrading,
sulfate-reducing consortium [85]. The high net production
under micro-aerophilic conditions indicates this group was
growing faster compared with most other OTUs (Fig. 5).

After 28 days, most of the OTUs were 18O labeled
(Fig 2). However, the rate of mortality per genus was higher
at day 28 than day 7, indicating that establishment of
euxinic conditions caused the majority of cells per genus to
die faster than they grew (Fig. 5). However, despite the
higher the net mortality rates, many exhibited relatively low
positive gross reproduction rates. This indicates that a
smaller proportion of individuals within each OTU were
actively growing, while the majority of individuals were
dying. This small fraction of active cells per population
explains how nearly all OTUs became 18O labeled by day
28, despite of the increase in total microbial mortality.

Larger mortality compared with production at the end
of the 28-day incubation could be partly explained by a
decrease in electron donors (e.g., organic matter) and
acceptors (e.g., nitrate, Fe(III), and sulfate). Indeed, under
normal conditions organic matter and dissolved ions from
seawater (e.g., sulfate) would be slowly but continuously
entering the sediment to fuel new microbial growth. In our
incubations, however, nutrients were constantly being
depleted without replacement. Some of the inactive
populations could also be explained by an increase in

dormant cells due to unfavorable environmental condi-
tions [9].

Conclusions

Our findings provide the first experimental evidence
demonstrating the redox conditions promoting growth in
several groups of uncultured “microbial dark matter”,
validating hypotheses put forth by earlier metagenomics
studies. The data help to explain previously observed bio-
geographic patterns for many uncultivated groups of bac-
teria that tend to correlate with anoxic or low oxygen
conditions in aquatic habitats. This information could be
helpful to guide future cultivation efforts for groups of
ubiquitous, yet uncultured, bacterial taxa.
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