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Abstract: Membrane distillation technology, as a new membrane-based water treatment technology
that combines the membrane technology and evaporation process, has the advantages of using
low-grade heat, working at atmospheric pressure with simple configuration, etc. In this study,
heat and mass transfer were coupled at the membrane surfaces through the user-defined function
program. The effects of feed temperature, feed velocity and permeate velocity on temperature
polarization were mainly investigated for a high-concentration NaCl solution. The temperature
polarization was increased with the increase of feed temperature and the decrease of feed and permeate
velocity. The effects of temperature, inlet velocity and solution concentration on the evaporation
efficiency of the membrane module for co- and counter-current operations were investigated in detail.
The counter-current operation performed better than co-current operation in most cases, except for
the condition where the NaCl concentration was relatively low or the module length was long enough.
In addition, the optimal membrane thickness for both PVDF and PTFE was studied. The optimal
membrane thickness was found in the range of 10 to 20 µm, which corresponded to the highest
permeate flux for the selected materials, pore size distribution, and operation conditions. Membrane
material with lower thermal conductivity and larger porosity was prone to get higher permeate flux
and had larger optimal membrane thickness. Increasing feed velocity or feed temperature could
decrease the optimal membrane thickness.

Keywords: direct contact membrane distillation; evaporation efficiency; optimal membrane thickness;
high-salt wastewater

1. Introduction

High-salt wastewater treatment attracts the attention of researchers and engineers in the field of
wastewater treatment for production processes in chemical industries, seawater desalination, water
recovery from desulfurization process in power plants, etc. In power plants, a large amount of
desulfurization wastewater is produced in the process of flue gas desulfurization (FGD) and, in many
countries, FGD wastewater is required to be recovered and reused due to environmental requirements
and economic considerations. The process is usually composed of a pretreatment unit, after which
wastewater contains mainly salt, and evaporation unit, where most of water is recovered accompanied
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even by a crystallization process. In the evaporation step, evaporation techniques such as mechanical
vapor recompression (MVR) or membrane distillation (MD) are used for water recovery. MVR is
popularly applied but consumes high power and leads to high cost. However, MD can make use of
heat energy instead of power energy. In power plants, sufficient low-grade heat sources are available,
which are not efficiently reused currently. From the point view of energy saving, one feasible method
is to concentrate the solution close to saturation by MD, and then to further vaporize by MVR to
separate completely water from salt. MD is a promising technology for desalting wastewater. It is
a thermally driven separation process using a hydrophobic microporous membrane, different from
the pressure-driven membrane process [1–7]. Heat and mass transfer through the membrane are
both involved in the process [8]. The polarization effects due to concentration profile, or temperature
profile, can lead to low vapor pressure difference, causing a performance reduction. Low-pressure
operation condition and high rejection factors of non-volatile solutes, utilization of low-grade waste
heat is the main advantage of the MD process [9]. Direct contact membrane distillation (DCMD) is a
MD configuration where both feed and permeate solutions are in direct contact with the membrane.
Vapor is condensed in the permeate side by direct contact with cooling water. DCMD is a simple
configuration and has been widely studied [10].

DCMD performance is often characterized by permeate flux, temperature polarization,
concentration polarization [11], and energy efficiency [12,13], etc. Temperature polarization and
concentration polarization refer to the temperature or concentration difference between the bulk
solution and the solution near the membrane interface, which results in a reduction of the driving force.
Temperature polarization is caused by the existence of thermal gradient near the membrane surface.
Concentration polarization is caused by the accumulation of solutes adjacent to the feed side of the
membrane. It reduces the transmembrane vapor pressure difference [14]. There are several factors
affecting the performance of DCMD, including the operation conditions, membrane characteristics,
and flow patterns. Numerous studies have successfully investigated the heat and mass transfer
mechanisms either by the using Nusselt and Sherwood numbers [8,15–18], or by computational fluid
dynamics (CFD) simulation [19–31]. Unidimensional numbers based on specific parameters or physical
assumptions offer a simplified method. It takes much less computational time, but cannot capture the
local variation of polarization, permeate flux, and conductive heat loss along the membrane. CFD has
the advantage of studying the full temperature, velocity, and concentration fields along the membrane.
Some studies focused on the coupled simulation of momentum, heat and mass transfer [8,20], some
were targeted at understanding the flow patterns on MD performance related to module orientation
and design [19,24,28,30], and some investigated the influence of membrane properties, including
membrane materials, thickness, porosity, and tortuosity [32–36]. It is generally accepted that an
optimal membrane thickness exists due to the balance between mass transport and heat transfer [35]
for membrane structures and the permeability can be improved by reducing tortuosity or by increasing
porosity and pore size [32–34].

The CFD simulation of DCMD modules was employed to investigate the heat transfer and
mass transfer of DCMD modules for concentrated NaCl solution. The evaporation process at the
high-concentration state is more critical as it is close to the final step of MD process, and it was not well
studied. In this work, the treatment of high salt solutions with MD was studied. The real conditions
for treating desulfurization wastewater in power plants were used as boundary conditions to explore
the influence of the temperatures of both permeate and feed solutions, as well as the flow rate of
the feed solution. The salt concentration used in the current study was high, thus the concentration
polarization could be negligible [37]. The effects of Tf, vf, vp and cf on evaporation efficiency (EE) for
co- and counter-current operations were investigated in detail. The optimal membrane thickness for
various membranes was analyzed in different operation conditions. The performance of membrane
distillation in high-salt solution including evaporation efficiency and permeate flux were evaluated for
different flow patterns, membrane materials and operation conditions, which could provide guidance
for optimizing DCMD processes.
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2. Theoretical Background

DCMD is the MD configuration in which both feed and permeate solutions are in direct contact
with the hydrophobic porous membrane. The transmembrane temperature gradient serves as the
driving force for mass transfer. As shown in Figure 1, heat was transferred from the feed solution to
the heat boundary layer, and then the membrane surface, where water was vaporized. The heat loss
from the feed solution was composed of the latent heat of vaporization, and the heat conduction of
the membrane itself. The latter reduced the temperature difference between the two solutions. After,
the vapor was diffused to the permeate side through the membrane. Vapor condensed at the interface.
Conductive heat was transferred from the feed side to the permeate side of the membrane and then
through the heat boundary layer.
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Figure 1. Heat transfer schematic diagram of direct contact membrane distillation (DCMD).

The temperature polarization was schematically shown in Figure 1. Temperatures, Tfm, Tpm

at the membrane–liquid interfaces were different from bulk solution temperature, Tf, Tp, caused by
the resistance to the heat flux across the membrane boundary [26]. Furthermore, a concentration
boundary layer was also formed near the membrane surface of the liquid layer, so that the membrane
surface solute concentration was higher than the bulk solute concentration, i.e., the concentration
polarization [18]. Temperature and concentration polarization reduced the mass transfer driving force,
leading to a reduction in permeation flux, which needed to be considered in the simulation.

The heat transfer from feed solution to membrane surface of feed side was given by,

Qf = hf(Tf − Tfm). (1)

The heat transfer across the membrane consists of two parts: the latent heat of vaporization and
the heat conduction. The latter one was considered as energy loss. The evaporation efficiency (EE) was
defined as the ratio of the efficient heat due to vaporization and the total heat transfer through the
membrane and was calculated as,

EE =
QN

QN + Qc
, (2)

where QN and Qc could be calculated as,

QN = N∆H (3)
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Qc =
km

δ
(Tfm − Tpm) (4)

The heat transfer from the membrane surface of permeate side to permeate solution was given by,

Qp = hp(Tp − Tpm). (5)

According to the conservation of energy,

Qf = QN + Qc = Qp. (6)

The latent heat of vaporization was obtained by [8],

∆H = −0.001351T2
fm − 1.4461Tfm + 2986.5. (7)

The thermal conductivity was obtained by [18],

km = εkg + (1− ε)ks. (8)

When Tf ranged from 45 to 60 ◦C, the mean free path in DCMD was from 0.107 to 0.11 µm.
The pore size of membrane ranged from 0.2 to 1.0 µm. Kn number ranged from 0.107 to 0.55. The mass
transport took places via the combination of Knudsen diffusion and Molecular diffusion [38], and the
mass transfer model was given by,

N =

(
ε
λ

)
PTDw-a

δRTm
× ln(

DKn
(
PT − Ppm

)
+ ( ελ )PTDw-a

DKn(PT − Pfm) + ( ελ )PTDw-a
) (9)

Dkn =
4
3
εdm

λ

√
RTm

2πmw
(10)

Pfm = (1− xs)P(T f m)γw. (11)

The activity coefficient of water under different concentration conditions could be obtained by the
following empirical formula [39]:

γw = 1− 0.5xs − 10x2
s , (12)

where xs was the molar fraction of solute in the solution. Dw−a was evaluated by the empirical formula,
given by [40],

PTDw-a = (1.895× 10−5)T2.072. (13)

The water vapor pressure Pfm, and Ppm were calculated through Tfm, Tpm by Antoine equation,

P(T) = exp
(
23.1964−

3816.44
T − 46.13

)
. (14)

In the MD process, the temperature polarization was measured with the temperature polarization
coefficient (TPC),

TPC =
Tfm − Tpm

Tf − Tp
. (15)

The concentration polarization was characterized using a concentration polarization coefficient
(CPC), which was defined as the ratio of the membrane surface concentration to the feed
inlet concentration,

CPC =
cfm

cf
. (16)
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3. Methodology

3.1. Geometry and Governing Equations

As shown in Figure 2, the geometry model was a rectangle flow channel which was 100 mm
long, 2.5 mm high. The computational domain consisted of permeate and feed channels. Boundary
conditions were set as shown in Figure 2. The inlet of permeate and feed channel were set to
Velocity-Inlet. The outlet of permeate and feed channel were set to Pressure-Outlet. The membrane
materials used in the simulation were shown in Table 1. The membrane module was placed horizontally.
The NaCl solution was taken as feed solution, and pure water was used as the cooling substance. Tf

was set from 45 to 75 ◦C according to the fact that the desulfurization wastewater temperature was
about 50 ◦C [41]. The temperature difference of feed and permeate solution was from 20 to 50 ◦C.
The flow rate was set from 0.05 to 0.25 m/s. In Section 4.3, in order to investigate the temperature field
and EE of co- and counter-current operations obviously, the calculation domain of x direction was
extended by three times.
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Figure 2. Schematics of the 2-D geometry model of the membrane module.

Table 1. Properties of the selected membranes.

Membrane Type Producer Material dp (µm) δ (µm) km (W·m−1·K−1) ε λ Ref.

GVHP Millipore PVDF 0.22 120 0.041 0.75 2 [18]
HVHP Millipore PVDF 0.45 110 0.041 0.75 2 [18]
TF200 Gelman PTFE 0.20 178 0.031 0.80 1.8 [33]
TF450 Gelman PTFE 0.45 178 0.031 0.80 1.8 [33]
TF1000 Gelman PTFE 1.00 178 0.031 0.80 1.8 [33]

In the current work, quadrilateral structured mesh was generated. In order to describe the
fluid properties of the boundary layer near the membrane accurately, finer grids on both sides of the
membrane were taken. The first layer of mesh on both sides of the film had a thickness of 10 µm and a
growth factor of 1.05. Grids consisted of about 12,000. Grid independent analysis was undertaken to
determine the grid sizes by examining the pressure drop of the modules via a hydrodynamic simulation.

The laminar model was chosen to describe the feed and permeate flows in the channels.
The second-order upwind scheme was chosen to discrete the equations. The SIMPLE algorithm
was used to solve the equations. The residuals of all the variables were set to 10−6.

The feed and permeate flow were governed by continuity equation, Navier-Stokes equations and
energy equation,

∇ u = 0 (17)

ρ

[
∂u
∂t

+ (u·∇)u
]
= −∇p +∇·σ, σ = µ

[
∇u + (∇u)T

]
(18)

ρcp

[
∂T
∂t

+ (u·∇)T
]
= ∇·(k∇T). (19)

where σ was the viscous stress tensor, u, p, ρ were the velocity vector, pressure, density, respectively, µ
was dynamic viscosity, cp was the fluid heat capacity.
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Mass transport was modeled using advection-diffusion equation,

∂c
∂t

+ (u·∇)c = ∇·(D∇c) (20)

where D was the effective mass diffusivity.
Effective mass diffusivity D was obtained by [22],

D(T) = 17.872× 10−14
×

ϑNaϑCl
ϑNa + ϑCl

T (21)

ϑNa = 50.11(1 + 0.02(T − 298.15), ϑCl = 76.35(1 + 0.02(T − 298.15), (22)

where ϑNa was the equivalent limiting ionic conductance of the sodium and ϑCl was the equivalent
limiting ionic conductance of the chloride.

In order to simulate the transmembrane mass transfer process, it was necessary to load the mass
source of water on the first layer grid near the permeate side and the feed side of the membrane.
Besides, the transmembrane heat transfer process was achieved by loading the heat transfer source.

Sw =
N
b

, (23)

where b was the height of the first grid. For the membrane distillation process, the mass source term
on the liquid side was not only related to the feed side grid temperature, but also affected by the
corresponding permeate side grid temperature, and it was achieved by the user-defined function (UDF).

The function of the UDF program was divided into three steps. First, the temperatures of cell
center on both sides of the membrane wall was obtained by the UDF program, which were Tfm, Tpm,
respectively. Then, the heat and mass transfer sources were calculated by UDF program through
Equations (9)–(14). Finally, the UDF program was used to add the heat flux to membrane wall as
boundary condition and mass transfer source as source terms.

3.2. Model Validation

The experimental data in the literature [18] were used to verify the model. In Figure 3, permeate
fluxes were shown in different feed temperature for pure water and 24.2 wt.% NaCl solution,
respectively. The simulation results agreed to the experiment data, which showed the results based on
the current simulation model were reliable and the developed simulation methods were suitable for
the following analysis.
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4. Results and Discussion

In the current work, the influence of Tf, vf, vp on the temperature polarization in high-salt solution
were simulated and analyzed. The effects of Tf, vf, vp and solution salinity on EE were studied.
The optimal membrane thickness was discovered in different operation conditions.
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4.1. Temperature Polarization

As shown in Figures 4 and 5, there was a decrease in both TPC and Tf over the membrane surface
along the x-axis in each Tf. This was because that the temperature boundary layer became thicker
along the x direction, and the temperature difference between the membrane surface and the bulk
area became larger, which caused a decrease of TPC. With the Tf was increased from 45 to 75 ◦C,
the TPC decreased correspondingly from 69.9% (x = 0.01 m) to 62.8% (x = 0.01 m). The variation
of temperature difference between two sides of the membrane surface was smaller than that of the
temperature difference between the bulk and membrane surface, which led to the decrease of TPC.
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Ali’s [42] study showed the theoretical and experimental TPC as a function of Reynolds number
(Re) in the range of 1000 to 5000. When the Re was below 1000, which was exactly the Re of current
study, TPC was around 0.68, showing good coincidence with the current study.

As shown in Figures 6 and 7, the temperature boundary layer became thinner with the increasing
vf, vp. When the vf, vp were 0.05 m/s, TPC decreased from 60.36% at inlet to 41.87% at outlet and the
temperature difference between inlet and outlet at feed side was 5.86 ◦C. When vf, vp were increased
to 0.25 m/s, TPC decreased from 75.32% at inlet to 54.62% at outlet and the temperature difference
between inlet and outlet at feed side was decreased to 4.56 ◦C. Results suggested that increasing the vf,
vp could reduce temperature polarization significantly.

4.2. Co- and Counter-Current Operations

In this section, in order to well investigate the temperature field and EE of co- and counter-current
operations, the calculation domain of x direction was extended by 3 times. The influence of vf, vp, Tf

and salinity on EE for co- and counter-current operation was evaluated in detail.
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4.2.1. Temperature Fields

As shown in Figure 8, there was a decrease in Tf and an increase in Tp along the x-axis in co- and
counter-current operations. In the studied cases, the feed side temperature difference between the inlet
and outlet for co- and counter-current operations was 2.06 ◦C and 4.42 ◦C, respectively, which indicated
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that counter-current operation performed better than co-current. The temperature distribution of
both feed and permeate sides along the x-axis was more homogeneous in counter-current operation,
which resulted less thermal stress on the membrane. It was beneficial to prolong the working life of
the membrane module. The temperature fields of count-current and co-current were well coincided
with experimental data [43].Membranes 2020, 10, x FOR PEER REVIEW 9 of 20 
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4.2.2. Evaporation Efficiency for Co- and Counter-Current Operations

As shown in Figure 9, the EE was increased with the increase of Tf in all cases. It could be
concluded that temperature difference was the main influencing factor for EE. Besides, there was
a decrease of EE over the membrane surface along the x-axis due to the decrease of temperature.
It was essential to control the length of membrane module to avoid the effect. Comparing the co- and
counter-current operations in different Tf, it was found that the counter-current operation performed
better than co-current at upstream at all the studied temperatures. The priority of counter- to co-current
operation at 45 ◦C was more evident than at 75 ◦C. This phenomenon could be attributed to several
factors. In general, the temperature difference between feed and permeate membrane surface in
counter-current operation was larger than co-current operation. The higher temperature difference
lead to higher EE. According to Lou’s study [22], the concentration polarization of counter-current was
less than that of co-current operation in the upstream and larger than that of co-current operation in
the downstream.

As shown in Figure 10, the decrease in EE with x-axis occurred in all cases due to the reduced
temperature difference across the membrane and increased cf. The EE for counter-current operation
performed better than that for co-current operation in the same vf, vp. With the vf, vp increasing, the EE
of both co- and counter-current increased. The difference of EE between counter- and co-current was
decreasing along x-axis. When vf and vp were both 0.05 m/s, the EE for counter-current operation
decreased slowly along the x-axis compared to co-current operation. This was due to the fact that the
temperature different between the feed and permeate surface along x-axis was almost constant for
counter-current operation and gradually decreased for co-current operation.
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As shown in Figure 11, it was found that the EE was generally low in high-salt solution due to the
high concentration resulting in small permeate flux. It was worth noting that the EE for co-current
operation started to higher than counter-current when the concentration was 2.9 wt.% at x = 0.15,
which suggested that, in low concentrations, the impact of concentration polarization on EE was larger
than temperature difference.
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4.3. Optimal Membrane Thickness

Theoretically, two competitive effects are associated with membrane thickness. The thin membrane
gives low mass transfer resistance and thus provide high transmembrane water flux at fixed operation
condition. However, as the membrane thickness decreases, conductive heat loss through the membrane
increases, leading to a low temperature gradient across the membrane and resulting low flux. Therefore,
there must be an optimal thickness balancing the mass transfer resistance and conductive heat losses,
and this thickness depends on operating conditions and other membrane characteristics.

Membrane thickness is an important property of membrane module but seldom studied [35,44–46].
Martinez [46] established a resistance-in-series model which was quite suitable to express the change of
membrane thickness due to the import of transport resistance. Swaminathan [44] coupled the membrane
thickness with the module size together and got the cost-optimal membrane thickness. Wu figured out
the optimal membrane thickness both by analytical model and by experiment. The results indicated
that the optimal thickness was much thicker than that could be made in experiment. Eykens [35] made
a systematic research on membrane thickness. The influence of membrane thickness on DCMD at
various salinities was investigated in detail. However, there were no studies involving in comparing of
different membranes on membrane thickness and permeate flux.

The current study investigated the influence of membrane pore size, conductivity, tortuosity and
porosity through comparing the different membrane materials, i.e., TF450 and HVHP, had the same
pore size while the membrane conductivity, tortuosity and porosity were different, GVHP and HVHP
had the same membrane conductivity, tortuosity and porosity while the pore size was different.

Figure 12 showed the flux as function of membrane thickness for different membrane materials.
There existed a threshold of permeate flux. By decreasing the membrane thickness, the permeate flux
could be improved until reached this threshold. In Wu’s work [45], they found that the flux decreases
with the decrease of membrane thickness through experiment, which was well reproduced in our
simulations. The optimal membrane thickness and the largest permeate flux varied with different
membrane materials. When the membrane thickness was kept as 15 µm, the permeate flux increased
with the increasing of pore size for TF1000, TF450 and TF200, that was 20.30, 18.68, and 15.948 kg/(m2

·h),
respectively. It indicated that the pore size had great impact on the permeate flux. The effect of thermal
conductivity and porosity could be analyzed through TF450 and HVHP which had the same pore size,
corresponding to permeate flux of 20.30 kg/(m2

·h) and 13.8 kg/(m2
·h). The thermal conductivity was

0.031 and 0.041 W·m−1
·K−1 and the porosity was 0.8 and 0.75, respectively. Membrane material which

had lower thermal conductivity and larger porosity showed higher permeate flux and thicker optimal
membrane thickness. Lower thermal conductivity was helpful to reduce the heat loss, and larger
porosity was beneficial to improving permeate flux. However, the optimal membrane thickness at
24.2 wt% was quite different with literature [30] (18 µm in the current work for GVHP and 49 µm
in the literature for PP). The reason is that the tortuosity in our study is larger—the larger tortuosity
means a thinner optimal membrane thickness. The membrane thermal conductivity is lower, the lower
membrane conductivity also corresponds to a thinner optimal membrane thickness.

4.3.1. Optimal Membrane Thickness for Different Tf

Figure 13 demonstrated the impact of Tf on the permeate flux and the membrane thickness for
GVHP. Increase of permeate flux was observed when Tf increased from 45 to 60 ◦C. It was clearly seen
that the higher Tf corresponded to the thinner membrane thickness. When Tf was 45 ◦C, the optimal
membrane thickness was 18 µm. However, when Tf reached 60 ◦C, the optimal membrane thickness
turned to 10 µm.
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4.3.2. Optimal Membrane Thickness for Different vf, vp

As shown in Figure 14, the permeate flux was improved with the increasing of vf, vp. The optimal
membrane thickness differed with different vf, vp. When vf, vp was 0.1 m/s, the optimal membrane
thickness was 20 µm, corresponding to permeate flux at 9.51 kg/(m2

·h), while these data became 15 µm
corresponding to 13.93 kg/(m2

·h) when vf, vp reached 0.2 m/s. The vf, vp affected the optimal membrane
thickness to a certain extent, but its impact was small.Membranes 2020, 10, x FOR PEER REVIEW 16 of 20 
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The developed model could contribute to industrial application of MD, especially for supporting
MD module designs in terms of optimization on membrane material and structure, working conditions
or operating mode. In the current work, when the pore size varied from 0.2–1 µm, the Knudsen
diffusion mechanism should be mainly considered for flux prediction, since the Knudsen diffusion
coefficient is 50 times higher than that of molecular diffusion for the average pore size of 0.2 µm, and 10
times higher for the average pore size of 1 µm, when the membrane porosity is fixed. In the industries
such as power plants, where a large amount of heat supply is present, the feed temperature should be
properly increased to promote flux. In the industries such as for chemical synthesis with a low enthalpy
of reaction, the selection of feed and permeate velocities, or pressure loss should be mainly considered
for obtaining higher evaporation efficiency, where the model can be used for optimization by applying
the conditions of the specific industries. Usually, counter-current operation performs better than
co-current operation in terms of evaporation efficiency. Counter-current operation mode should be
considered as priority. However, when the placement of MD module is geometrically limited and the
aspect ratio of the membrane is high, counter-current mode is not necessarily better, the selection of
co-current or counter-current mode can be determined by using simulation with the current model.
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5. Conclusions

The simulation model coupling heat and mass transfer at the membrane surface through a
user-defined function program was established. The optimal thickness for typical commercialized
PVDF and PTFE membranes was studied, and it was found to be decreased with the increase of vf, vp

or Tf. The TPC increased with the decrease of Tf or the increase of vf, vp. The counter-current operation
mode performed better than co-current operation in most cases except for the condition where the cf

was low and the module length was long enough. The difference of EE between co- and counter-current
was due to the combined effect of temperature difference and concentration polarization. In addition,
membranes with lower thermal conductivity and larger porosity were prone to get higher permeate
flux and thinner optimal membrane thickness. The developed model could also provide guidance for
MD module designs.
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Nomenclature
Q Heat flux, W·m−2

h Convective heat transfer coefficient, W·m−2
·K−1

T Temperature, K
v Velocity, m·s−1

dm Hydraulic radius, m
∆H Latent heat of water, J·kg−1

N Mass flow across membrane, kg·m−2
·s−1

k Thermal conductivity, W·m−1
·K−1

km Membrane thermal conductivity, W·m−1
·K−1

kg Thermal conductivity of air, W·m−1
·K−1

ks Thermal conductivity of membrane materials, W·m−1
·K−1

Dw-a Diffusivity of water vapor-air mixture, m2
·s−2

Dkn Knudsen diffusion coefficient, m2
·s−1

P Vapor pressure, Pa
PT Total pressure, Pa
R Gas constant (8.314 J·mol−1

·K−2)
xs Molar fraction of solute
mw Molecular weight of water
b Height of first grid, m
Sw Source, kg·m−3

·s−1

u Velocity vector, m·s−1

p Pressure, Pa
x,y Cartesian coordinates, m
cp Specific heat capacity, J·kg−1

·K−1

D Mass diffusivity, m2
·s−1

c concentration, g·L−1

EE Evaporation Efficiency, %
CPC Concentration polarization coefficient, %
t Time, s
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Greek Symbols
δ Membrane thickness, m
ε Membrane porosity
λ Membrane tortuosity
γw Activity coefficient of water
ρ Density, kg·m−3

σ Viscous stress tensor
µ Dynamic viscosity, Pa·s
ϑNa The equivalent limiting ionic conductance of the sodium
ϑCl The equivalent limiting ionic conductance of the chloride
Subscripts
f The bulk of the feed
fm Membrane surface of the feed
p The bulk of the permeate
pm Membrane surface of the permeate
m Membrane
N Flux
C Conduction
Abbreviations
DCMD Direct contact membrane distillation
FGD Flue gas desulfurization
MD Membrane Distillation
CFD Computational fluid dynamics
CPC Concentration polarization coefficient
TPC Temperature polarization coefficient
UDF User-defined function
EE Evaporation efficiency
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