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Abstract: The bond fluctuation model was employed to characterize the approach to the mesophase
separation transition of pure linear AB copolymers and symmetric miktoarms, also called Janus,
star polymers, Af /2Bf /2, where f = 6 or 12 is the total number of arms, in a common good solvent.
We consider a concentration sufficiently high to mimic the melting behavior and also a lower
concentration. The segregation between A and B units is represented by a repulsive interaction
parameter, ε. Different total numbers of units are also considered. Results for different properties,
such as the molecular size, the asphericity and orientational correlation of blocks, or arms, of different
compositions are obtained as a function of the segregation parameter. We also calculate scattering
structure factors. The initial effect of segregation on the scattering with opposite contrast factors
between the A and B blocks can be explained with a common description based on the random phase
approximation for both the linear copolymers and the f = 6 miktoarms, once the numerical form
factors of the different molecules in their particular systems are considered. However, the results for
f = 12 clearly deviate from this description probably due to some degree of ordering in the position
of highly armed molecules.

Keywords: diblock copolymers; miktoarm polymers; Janus star polymers; Monte Carlo simulations;
bond fluctuation model

1. Introduction

AnBm miktoarm polymers [1,2] are molecules composed of n+m arms of homopoly-
mers with different repeat units, A and B, joined to a common core or central units. They
show peculiar properties because of the segregating heterointeraction between arms of
different types. Therefore, their behavior is different from that of the (AB)n diblock arm
star polymers where each one of the n arms is constituted by a diblock AB polymer. The
symmetric AnBn molecules are also known as Janus stars [3,4], since the A and B units tend
to symmetrically align in different directions, in arrangements similar to those observed in
other Janus nanostructures [5].

Polymers composed of different blocks have a transition from the disordered state
to form mesophases due to segregation between the block. This microphase separation
transition (MST) is the subject of theoretical [6–8] and numerical simulation [9–11] studies.
Leibler [6] applied a mean-field theory for ideal diblock copolymers some years ago,
characterizing different types of mesophases whose formation depends on the copolymer
composition and thermodynamic conditions. In the case of symmetric diblocks, the theory
predicts a single transition to lamellar structure located at (χN)MST ∼= 10.5, where χ and N
are the thermodynamic parameter and number of polymer units as defined in the Flory–
Huggins (FH) theory. A similar study was subsequently accomplished by Olvera de la
Cruz and Sanchez [8] for different types of star copolymers. In the case of ideal symmetric
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AnBn, or Janus, stars with arms of N/2n A or B units, a transition to a lamellar mesophase
is similarly found at [χ(N/n)]MST ∼= 10.5.

The mean-field results can be simply described through the prediction of the ran-
dom phase approximation (RPA) [12–14] for the symmetric diblock copolymer scattering
structure factor or normalized scattering intensity, IAB(q),

IAB(q) = 1/NΦPAB(q)− χ/2 (1)

where PAB(q) is the ideal copolymer form factor of a single molecule (in the absence
of segregation effects and assuming Gaussian statistics) and Φ is its volume fraction
introduced as a correction when the molecule is immersed in a common, optically neutral
solvent, for A units and B units. For the case of symmetric molecules in the melt, the
copolymer form factor is obtained assuming the opposite unit contrast factor of 1 and −1
for the A and B units. The same choice can be applied to copolymers immersed in an
optically neutral solvent. PAB(q) is calculated from the vectors that connect the positions of
each pair of units i and j (A-A, B-B or A-B) [15]:

PAB(q) = (1/N2)

[
N/2

∑
iA

N/2

∑
jA

eiq.(RiA−RjA) +
N/2

∑
iB

N/2

∑
jB

eiq.(RiB−RjB) −
N/2

∑
iA,iB

N/2

∑
jB,jA

eiq.(Ri−Rj)

]
(2)

The mesophase transition can be characterized by a divergence of IAB(q) at a given
value of the scattering variable, qmax. Therefore, the corresponding value of the Flory–
Huggins parameter is given by:

NχTMSΦ = 2/PAB(qmax) (3)

For a symmetric diblock copolymer it is shown that:

PAB(q) = PN/2(q)− PN(q) (4)

Finally, with the consideration of Gaussian statistics, one obtains PAB(qmax) ∼= 0.190.
When this value is introduced in Equation (1) it leads to the Leibler result for (χN)MST in
the melt case, Φ = 1.

Similarly, we verified that the form factor of an AnBn miktoarm can be obtained as:

PAB(q) = (1/n)[PN/2(q)− PN(q)] (5)

This also leads to the melt value for [χ(N/n)]MST obtained by Olvera de la Cruz and
Sanchez. We use this approach to introduce corrections in the case of non-ideal molecules
for which a numerical evaluation of the form factor can be easily accomplished.

More recently, a renormalized one-loop (ROL) theory [14,16,17] was able to introduce
corrections to the peak intensity and location of the structure-function of diblock copoly-
mers, describing how the variation of 1/IAB(q) with χN shows a deviation upwards from
the initial linear behavior when the systems approach the MST. This theory was shown to
give a good description of simulation data showing the approach to the MST transition of
symmetric linear diblock copolymers in the disordered melt state.

In the present work, we present Monte Carlo simulations for linear diblock copoly-
mers, f = 2, and symmetric miktoarms composed of f = 6 and f = 12 arms, or n = 3 and
n = 6, [18,19] in solution, with different values of the interaction parameter, number of units
and concentration in a common, implicit, good solvent. We use the bond fluctuation model
(BFM) [20,21] that permits the study of systems composed of a relatively large number of
polymer molecules. Deviations from Gaussian statistics are expected in the case of the star
polymers due to the presence of a central core. The highest concentration considered in this
work represents a system close to the melting behavior. The aim of this study is to verify
whether the different topologies, number of polymer units and concentrations may exhibit
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a common initial approach to the MST and to establish the way to use the RPA description
for this purpose

2. Numerical Methods

We introduce nt molecules, each of N units, in a cubic lattice of length L. The copoly-
mers are composed of two blocks of N/2 units. Each symmetrical star molecule contains
(N−1)/2 A units, (N−1)/2 B units and a central unit. The A and B units are distributed
into f arms, constituting a symmetrical star molecule. b is the length unit and corresponds
to the distance between adjacent lattice sites. According to the BFM specifications [20],
each bead occupies a site and it also blocks its closest 26 sites. This fulfills the self-avoiding
walk (SAW) condition. Bond lengths are all possible connections between sites in the range
between 2 and 101/2, but the value 81/2 is avoided because bonds of the type (±2 ±2 0) may
cross each other during the simulation. Furthermore, we consider a distance-dependent
energy term between A and B beads of non-bonded units [10,21,22] whose sites are at a
distance smaller than 101/2. This energy is multiplied by a factor, ε, in units relative to the
Boltzmann factor kBT. Positive values of ε gauge a net repulsion between A and B units.
Therefore, ε is proportional to χ. Box lengths are fixed in the range L = 92–112, which
is high enough to avoid a significant number of interactions between the replicas of any
unit of a given molecule that can be generated by the application of periodic boundary
conditions. nt is fixed to comply with the fixed polymer volume fraction. According to the
blocked site specifications, a molecule unit effectively occupies 8 sites, Φ = 8nN/L3.

The initial configurations are constructed by building a regular arrangement of
molecules, leaving sufficient unoccupied beads between them so as to allow for an ef-
ficient and complete equilibration. The details about this procedure for linear chains and
star polymers are specified elsewhere [23]. From these initial configurations, the simula-
tions run over a given number of Monte Carlo simple bead jumps. Each bead jump consists
of the displacement of a single unit to one of its closest neighboring sites. The jump is
accepted if it complies with the bond distance specifications and the SAW condition with
respect to non-bonded units, also taking into account the variation in energy according
to the Metropolis criterion. Consistently with this criterion, the previous configuration
is again considered if a jump is rejected. A step corresponds to ntN jump attempts, after
which each unit has a single statistical chance to move. We introduce a certain number
of equilibration steps (2 × 106) and properties are collected every 4000 steps. The simula-
tions are extended to obtain averages on 1000 to 7000 property values, depending on the
particular system.

We consider two values of the total number of units, N = 72 or 144 for the diblock
copolymers and N = 73 or 145 for the f = 6 or 12-star molecules. We also consider two
different volume fractions Φ ∼= 0.275 or Φ ∼= 0.135 for the different types of molecules. The
former value may correspond to systems close and behaving similarly to melts as will be
discussed below. Therefore, we study the properties of 12 different systems, each with
varying values of the parameter ε.

We calculate properties that indicate the progressive segregation between A and B
units. The acceptance ratio of jumps, ar, gives useful information about the system behavior.
In addition, we obtain the averaged scalar product of the vectors defined by the molecule
center and the two ends of the diblock copolymers or between the central unit and the end
unit in arms of different A and B types for the miktoarms.

CAB =
〈(

vA
ce.v

B
ce

)
/v2

ce

〉
where v2

ce =

〈(
vA

ce

)2(
vB

ce

)2
〉1/2

(6)

We also examine the asphericity [24,25], i.e., the deviation from a spherical shape,
defined as:
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A =

〈
3
∑
i>j

(
λi − λj

)2
〉

〈
2
(

3
∑

i=1
λi

)2
〉 (7)

where λi is the ith eigenvalue of the radius of gyration tensor. Moreover, we obtain
the molecule size and extension, represented by the averaged mean quadratic radius
of gyration, R2

g, and the averaged mean quadratic distance between end units,
〈

R2
ee
〉
.

Furthermore, we estimate the average number of repulsions between A and B units as
<Erep>/ε, where Erep is the repulsion energy obtained for a given configuration. The results
corresponding to ε = 0 are obtained as limits from data obtained with very small repulsion.

As stated in the Introduction, a quantification of the approach to the MST that can be
directly compared with the RPA is provided by the structure factor, a property that can
also be related to scattering experiments. As with our computation of the form factor, we
can obtain this property assuming opposite, 1 and −1, optical contrast factors for units
A and B, but now using vectors connecting the pairs of sites, iA or iB, occupied by all the
units in the lattice, taking into account the total number of sites actually blocked [22]:

IAB(q) = (8/L2)

[
L

∑
iA

L

∑
jA

eiq.(RiA−RjA) +
L

∑
iB

L

∑
jB

eiq.(RiB−RjB) −
L

∑
iA ,iB

L

∑
jB ,jA

eiq.(RiA−RiB)

]
(8)

We assume that sites that are not occupied or blocked by the molecule units are
occupied by the solvent and they do not contribute to the total scattering. As explained in
the case of the form factor, this is obviously true if the concentration of the systems is high
enough to be representative of a melt from the optical point of view. Otherwise, it can only
be related to a scattering experiment if the refractive index of the solvent is chosen to give
a null scattering contribution.

We also checked the global distribution of the molecules along the systems not directly
related to the arrangement of A and B units. To this end, we computed the alternative
structure function:

Ips(q) = (8/L2)
L

∑
i

L

∑
j

fie
iq.Rij (9)

where fi = (1 − Φ/8) if the site contains a unit or fi = − Φ/8 otherwise [22]. This function
gauges any heterogeneity in the distribution of copolymer chains or miktoarm molecules
in the box, considering the same optical contrasts for the A and B units with respect to the
solvent. The appearance of peaks in Ips(q) can be related to some degree of ordering or can
reflect segregation between the molecules and solvent (or empty sites). The latter effect
can only be present in models where attractive AA and BB interactions are introduced to
describe net AB repulsions but it is not possible for the present model with purely repulsive
AB interactions.

3. Results and Discussion

Table 1 contains the numerical results obtained for properties for diblock copolymers,
N = 144, and miktoarms, N = 145, and the higher volume fraction, Φ ∼= 0.275, including
segregation, together with data corresponding to ε = 0 for other systems. Comparing values
obtained with the different systems without segregation we observe that, as expected, the
acceptance ratio is greater for lower concentration and number of units and it has a weak
dependence on f. CAB shows a slightly negative value even without segregation because
of the mutual exclusion of different blocks. Its absolute value decreases with f as the
number of contributions to the average from different blocks increases. The asphericity has
a remarkable decrease with f as molecules with a high number of units adopt a shape close
to spherical and also a decrease for the systems with a smaller number of units and density.
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Ratios
〈

R2
ee
〉
/R2

g are close to the expected values of six for linear chains and two for star
molecules. Additionally, averaged quadratic sizes are expected to be proportional to the
number of units, but the results for the lower densities clearly show a further increase with
N due to excluded volume effects associated with the presence of a good solvent, which is
more significant for the linear chains. This effect also causes an increase in the size with
density for the lower density systems that can be observed in all the cases. Finally, the
number of repulsions also obeys the expected behavior, increasing with f and decreasing
with density.

Table 1. Values of conformational properties related to the degree of segregation, type of molecule,
density and number of units.

ε ar 102CAB A R2
g 〈R2

ee〉 10−4<Erep>/ε

Φ ∼= 0.275
f = 2, N = 144

0 0.225 −2.0 0.528 285 1727 1.4
0.01 0.224 −2.6 0.528 283 1706 2.5

0.015 0.223 −2.9 0.528 282 1700 4.7
0.03 0.221 −6.0 0.536 282 1700 2.1
0.05 0.218 −10 0.543 290 1762 1.6
0.07 0.215 −15 0.562 305 1864 1.06
0.10 0.211 −21 0.582 324 2015 0.83
0.15 0.201 −24 0.591 330 2060 0.460
0.20 0.192 −26 0.599 331 2087 0.350

f = 6, N = 145 0 0.231 −1.0 0.156 142 295 3.2
0.03 0.212 −1.2 0.156 141 292 2.4
0.05 0.201 −1.5 0.155 141 292 2.2
0.07 0.191 −2.0 0.155 142 291 2.0
0.10 0.176 −3.1 0.157 144 293 1.4
0.15 0.153 −5.1 0.167 150 304 0.89
0.20 0.133 −6.3 0.176 156 315 0.61

f = 12, N = 145 0 0.236 −0.78 0.061 87 162 4.3
0.03 0.220 −1.1 0.061 88 162 3.1
0.05 0.210 −1.34 0.061 88 162 2.8

0.075 0.197 −1.8 0.060 88 162 2.4
0.10 0.184 −2.2 0.061 89 163 2.2
0.15 0.161 −3.5 0.062 90 164 1.54
0.20 0.140 −4.7 0.065 91 166 1.10
0.25 0.122 −5.6 0.069 93 169 0.88
0.30 0.106 −6.2 0.072 94 173 0.63
0.40 0.079 −6.8 0.078 96 176 0.48

f = 2, N = 72 0 0.227 −2.04 0.526 137 825 1.78
f = 6, N = 73 0 0.234 −1.12 0.147 71 143 3.3

f = 12, N = 73 0 0.247 −1.02 0.052 44.9 79.6 4.2

Φ ∼= 0.135
f = 2, N = 144 0 0.249 −4.46 0.535 345 2121 0.45
f = 6, N = 145 0 0.253 −1.072 0.148 166 345 0.57
f = 12, N = 145 0 0.259 −0.99 0.054 102 191 0.82

f = 2, N = 72 0 0.262 −3.32 0.532 160 973 0.32
f = 6, N = 72 0 0.263 −1.47 0.138 81 164.1 0.69

f = 12, N = 72 0 0.271 −1.18 0.047 48.5 89 1.2

The different properties also vary with increasing repulsion between A and B units,
or increasing values of ε. Thus, the acceptance ratio decreases as the A and B units adopt
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more stable distributions. The decrease is more dramatic for the miktoarms, which initially
suffer stronger hindrances due to the arm constraints than for the diblock copolymers.
The averaged scalar product between center and end units, CAB, is always negative and
its absolute value increases with segregation as units of the same type tend to align.
Additionally, it is significantly greater for the diblock copolymers in absolute values
because the segments are less constrained. However, the effect is similar in percentage
for the different molecules. Asphericity increases with the segregation between A and B
units since similar units align. The relative effect is more pronounced for the miktoarms,
especially in the case of the f = 12 molecules, whose shape in absence of segregation is
closer to spherical for a similar total number of A and B units. The size of molecules,
characterized by R2

g and
〈

R2
ee
〉
, relates with asymmetry and also increases with segregation,

especially in the case of the more flexible diblock copolymers. A substantial decrease in the
number of net repulsions can be observed when segregation increases as the molecules
adopt more ordered configurations. In summary, more pronounced variations are observed
for the highest values of ε for all these properties, though these changes are not sharp
enough in any range of values of ε to give a precise indication of the MST location.

Our values of IAB(q) for each given system are analyzed to determine its maximum
value and its location. Both IAB(qmax) and qmax are expected a systematic variation with ε.
The maximum scattering should show a dramatic increase when the systems approach
the MST, as predicted by the RPA. Moreover, qmax suffers a small decrease as segregation
increases. The ROL theory predicts a maximum decrease of about 20% for segregated
simulation data of diblock copolymers [16], that it is somehow reproduced in the present
systems. We also observe a similar decrease showing an earlier onset for the highly armed
molecules. This can be related to the increase in intermolecular interactions.

In the absence of interactions between units, it is expected that the structure factor can
be simply obtained by adding the individual molecular contributions represented by the
form factor according to the expression:

IAB(q, ε = 0) = NΦPAB(q) (10)

The values for the form factor obtained from Equation (10) with our simulations for
star polymers do not agree with the results obtained for the ideal star molecules, implicit
in the Olvera de la Cruz and Sanchez predictions, due to the finite size of the chains. The
BFM is able to describe the restricted disposition of the units belonging to different arms
in the bulky core near the star center. More external A and B units cannot easily access
this densely packed core which induces a greater degree of exclusion between different
arms. In Table 2, the results PAB(q) obtained from IAB(qmax) and Equation (10) for Φ ∼= 0.275
are compared with the average of the form factor values that can be directly calculated
from individual molecules, <PAB(qmax)>. Deviations from ideality are small for both sets
results in the case of the diblock copolymers, but they are more significant for the f = 6-star
molecules. It can also be observed that the form factors from Equation (10) are greater than
the <PAB(qmax)> values for this particular case. This can be explained because A and B units
belonging to other molecules are also excluded from the bulky core. Moreover, correlations
in the disposition of units corresponding to separate molecules with a central core are
possible as they were observed in the case of non-dilute solutions of dendrimers [26].

Using a different model previously employed for the study of single linear and star
polymers [27,28] (off-lattice with Gaussian distribution of distances between neighboring
units and both attractive and repulsive long-range interactions, set to reproduce the theta
conditions), we also study the approach of PAB(qmax) to the pseudo-ideal results of indi-
vidual molecules with a greater number of units. The results relative to the ideal limit
values are compared with the BFM data corresponding to our highest volume fraction in
Figure 1. It is observed that the star molecules tend to reach the ideal values only when
the number of units is remarkably high, while this approach is much faster in the case of
linear chains. It can also be observed that the approach of the star molecules to their limits
is slower for the non-diluted systems. Thus, the results are significantly higher than the
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ideal limit for some of the systems with the studied number of units. Since the number of
monomers represented by a unit in a given model depends on the polymer characteristics
(in particular, of its Kuhn length as the first estimation of its rigidity), and the presence
of other chains reinforces the exclusion of units from the core in non-dilute systems, it is
possible that real star polymers of relatively high molecular weight in non-dilute solutions
or melts cannot reach the ideal value for PAB(q). Consequently, real miktoarm molecules
may show deviations from the RPA results for ideal molecules simply because of finite size
effects induced in their form factors by the presence of a bulky core and its influence on
intermolecular interactions.

Table 2. Values of the form factor according to the RPA and simulation results obtained from the two
different models explained in the text for the systems with the highest density, Φ ∼= 0.275.

Ideal Limit PAB(q), Equation (10) <PAB(qmax)>

f = 2 0.190
N = 144 0.205 0.204
N = 72 0.208 0.198
f = 6 0.063

N = 145 0.086 0.078
N = 73 0.091 0.086
f = 12 0.032

N = 145 0.048 0.048
N = 73 0.05 0.05
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Figure 1. Ratio between the simulation form factors obtained from simulations with the higher
density systems, Φ ∼= 0.275, and the predictions for ideal chains. Results for single chains obtained
with a non-lattice model: solid blue line and blue + crosses, f = 2; dashed red line and open red
squares, f = 6; dotted green line and open green triangles down, f = 12. Results from simulation data
obtained with the BFM and Equation (10), ε = 0: blue x crosses, f = 2; filled red circles: f = 6; filled
green triangles up, f = 12.

The values of IAB(qmax) and their variation with the parameter describing segregation,
ε, deserve particular attention as they can be directly compared with the accuracy of the
RPA to give a quantitative description of the approach to the MST. With this aim, we
normalized these results with respect to the data obtained for ε = 0. In Figure 2, we show
the variation of IAB(qmax,ε = 0)/IAB(qmax,ε) with fPεNΦ for the different molecules, the
number of units and volume fractions. fp is a numerical constant for each system that takes
into account the deviation of the form factor at qmax for the systems that do not include
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segregation, evaluated from Equation (10), from the ideal value corresponding to diblock
copolymer molecules (that is taken as a reference), PAB(qmax) ∼= 0.190,

fp = IAB(qmax, ε = 0)/0.190NΦ (11)

fp incorporates both the purely topological differences between the ideal diblock copoly-
mers and miktoarms expected from the application from Equations (4) and (5) even in the
case of ideal molecules and also the deviations from Gaussian statistics due to the presence
of the bulky star cores and related intermolecular effects.
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In the simplest RPA description, Equations (1) and (3) predict a linear variation of
IAB(qmax,ε = 0)/IAB(qmax,ε) reaching the value 0 at the MST. The ROL theory provides a more
detailed description [14,16,17], reflecting an upward deviation of the data with respect
to the RPA prediction as the systems approach MST. This feature has previously been
confirmed in previous Monte Carlo simulations for diblock copolymers in the melt state.
Our data qualitatively obey this behavior but, given the diverse nature and complexity of
the systems investigated, we are not attempting here to make a quantitative comparison of
our simulation data with this theory.

It can be observed that all the diblock copolymer and the f = 6 miktoarm data show
the expected linear behavior in the range of small values of ε. Taking into account statistical
fluctuations, the data do not show a systematic variation with the number of units or
fraction volume. It should be noted that the ROL theory predicts a small but noticeable
dependence of the 1/IAB(qmax) vs. χN curves with the number of units in the whole interval
of χN values. The actual extent of this dependence depends on the particular type of model.
Some accurate simulations for diblock copolymers melt also show a model dependence on
N, though it is actually smaller than the theoretical prediction except for some particular
cases [16].

Results for the two different volume fractions employed in our simulation are roughly
grouped for small ε values. However, the results for lower values of Φ exhibit an earlier
upwards deviation, consequently showing a greater difficulty to achieve the MST, as it
can be intuitively expected. Moreover, the results seem to be practically independent of
topology, when considering the linear chains and the f = 6 miktoarms, once the simulation
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results for PAB(qmax), describing the star core finite size and its influence on intermolecular
effects, are introduced in the factor fp.

The common linear initial behavior shown by the diblock and f = 6 miktoarm
molecules can be extrapolated to the point where IAB(qmax,ε = 0)/IAB(qmax,ε) = 0. This
way, our simulations predict a common fpεNΦ value for the theoretical prediction of the
MST according the RPA, (fpεNΦ)MST ∼= 1.60. This value can be discussed taking into ac-
count the particular features of the BFM. Previous simulations for polymer-solvent systems
with this model were able to establish that the theta state (parameter χ = 1/2 in the FH
theory) corresponds to a value εPS ∼= 0.2 for the attractive interactions between units in a
homopolymer chain [29]. The definitions of interactions in the FH theory are consistent
with considering ε = εPS/2, for attractive or repulsive interactions. Therefore, we can
assume χ ∼= 5ε and, therefore, (χNΦ)MST ∼= 8.0. It was previously discussed that the value
Φ = 1 in the BFM does not correspond to the melt state since a fully occupied lattice does
not allow for any motion of the units. Actually, the alternative value Φ = 0.5 was proposed
as a more accurate representation of the melting behavior [30]. Taking into account the
RPA theoretical value, fp(χN)MST ∼= 10.5, the present simulation data are consistent with a
smaller effective value for the BFM melt state, Φmelt

∼= 0.36.
The results for f = 12, however, cannot be treated in a similar way. In Figure 3, we

show that all these points clearly deviate downwards from the RPA prediction when we
employ the same representations used in other cases. In Table 2 we can observe that the
form factor results obtained from Equation (10) and the averages <PAB(qmax)> roughly
agree for f = 12 molecules. However, in the absence of additional effects, we would expect
greater core differences between the form factors obtained from Equation (10) and the
averages <PAB(qmax)> for the f = 12 molecules than those calculated from the f = 6 form
factor results. Therefore, the intermolecular effects on the exclusion of A or B units from
the core shown by the f = 6 chains were somehow eliminated even though the cores are
assumed to be bulkier for stars with more arms. Consistently, it can be observed in Figure 1
that the discrepancy between the form factor results for non-diluted systems and those
found for single chains is greater for f = 6 than for the f = 12 cases.
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Figure 3. Ratio between the scattering functions obtained with opposite optical contrast factors for
A and B units without segregation and with different values of scattering functions obtained with
opposite optical factors for A and B units without segregation and with different values of ε vs. fPεNΦ

for f = 12. Magenta triangles up: N = 145; green triangles down: N = 73. Filled symbols correspond
to Φ ∼= 0.275 and open symbols correspond to Φ ∼= 0.135. Solid black line: best fit of the points of
Figure 2 in the linear region of low ε values.
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A possible explanation is that the core effects for the form factors were partially
canceled out in the f = 12 molecules due to other intermolecular effects only present in high-
armed stars. A form factor maximum smaller than expected implies a correction leading
to a faster approach to the MTS in the common representation which is in qualitative
agreement with the observed trend. Therefore, we would need to substitute fp with a
greater factor, fhb, if we want to apply the adequate correction in the RPA description to
align the data of our highly armed stars with the results obtained for the other systems.

We investigated if there are spatial correlations, between positions of different molecules
as it can be expected from simulations for non-diluted f = 12 homopolymer star molecule
solutions obtained some time ago with the BFM [23] and, also, from theoretical predictions
related to the discontinuity of the osmotic pressure at the overlapping concentration of
non-dilute solutions [31]. They manifest themselves in terms of a peak in the scattering
structure factor obtained assuming the same scattering for all units with respect to the
solvent, Ips(q), according to Equation (9). In Figure 4, we plotted our results for Ips(q)
obtained for the different molecules with ε = 0.
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Figure 4. Scattering functions obtained with identical optical contrast factors for A and B units
with respect to the solvent, Equation (9), see text, vs. the scattering variable, q, for systems without
segregation, ε = 0 case. Blue rhombuses, N = 144, f = 2; red circles: N = 145, f = 6; green triangles
down: N = 73, f = 12; cyan stars: N = 72, f = 2; black squares, N = 73, f = 6; magenta triangles up:
N = 145, f = 12. Filled symbols correspond to Φ ∼= 0.275 and open symbols correspond to Φ ∼= 0.135.

We observe that the scattering functions are practically flat for the linear and f = 6
stars and the highest density, showing that these systems are similar to melts. The data for
the same molecules and the smaller density exhibit a flat peak for q ∼= 0 with a decrease
when higher values of q are considered. This behavior represents the intermediate behavior
between the scattering shown by dilute molecules and melts that can be characterized by
the size of the blobs that describe semidilute solutions [12]. It can be observed that the
decrease is slower in the case of the f = 6 with a melt-like density of beads in the cores and
smaller blobs. The f = 12 molecules, however, show sharp peaks at intermediate values of
q, with a dramatic increase at small values corresponding to the range where the maximum
in the IAB(q) curves are located. Therefore, we conclude that our f = 12 star systems show a
crystal-like structure. It can also be observed that the intensity of the peaks has a noticeable
dependence on density, being flatter for the higher density that is closer to the melt state.

In Figure 5, we plotted the data for Ips(q) obtained with different values of ε for one of
the systems with the lower density where the peak for ε = 0 is particularly prominent. We
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can distinguish a slight decrease in the peak for higher values of ε, showing that segregation
tends to moderately relax the spatial ordering of the molecules.
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However, it is possible that spatial ordering may reinforce segregation for increasing
values of ε. Intuitively, one can expect that the formation of mesophase structures is easier
for ordered systems. We explored the possibility that the relative increase in IAB(qmax,ε) for
the f = 12 systems can be described assuming that the hypothetical factor fhb described
above can be related with our results obtained with ε = 0 for Ips(q). The total intensities for
q = 0 and qmax obtained for the f = 12 cases are included in Table 3. The relative increase in
the intensity at qmax has a noticeable dependence on density, confirming that the smaller
density corresponds to a semidilute solution that is closer to the overlapping concentration.
We included in Figure 2 the results corresponding to miktoarms with the highest number
of arms, f = 12, but using the alternative plots of IAB(qmax,ε = 0)/IAB(qmax,ε) vs. fhbεNΦ,
with fhb = fpIps(qmax)/Ips(q = 0). This factor tries to include a correction in the form factor
maximum due to the non-uniform distribution of the star positions. It is observed that we
obtain a reasonable alignment of the f = 12 data with the rest with the help of this purely
tentative type of description. It should be noted that factor fhb is concentration-dependent.

Table 3. Scattering functions at q = 0 and qmax obtained assuming the same optical contrast factors
for A and B units with respect to the solvent corresponding to the f = 12-star molecules without
segregation and with different densities and number of units.

f = 12 Ips(qmax) Ips(q = 0)

Φ ∼= 0.275, N = 145 0.30 0.23
Φ ∼= 0.275, N = 73 0.30 0.22

Φ ∼= 0.135, N = 145 0.71 0.42
Φ ∼= 0.135, N = 73 0.73 0.41

4. Summary and Conclusions

The present simulations study segregation between blocks for several non-diluted so-
lutions of diblock copolymers and miktoarms, or Janus star polymers, with f = 6, 12 number
of arms in a solvent of good quality for the two types of blocks. Although different prop-
erties are calculated, particular attention is paid to characterize the approach to the MST



Polymers 2021, 13, 2377 12 of 13

through the scattering structure function obtained by setting opposite optical contrast fac-
tors for the different units A or B. It is verified that the dependence of the minimum value
of the inverse scattering function with the segregation variable employed in the simulations
(proportional to the FH parameter) follows a reasonably good universal decreasing linear
function for low values of ε and the simulation data corresponding to different systems can
be grouped into a single plot. An extrapolation of the IAB(qmax)−1 data to zero determines
the value of ε that corresponds to the MST in the melt state for the BFM model. However,
the f = 12 miktoarm results for IAB(qmax)−1 show a systematically faster approach to the
MTS, and they can be included in the universal representation only with the help of an
additional tentative modification related to the spatial correlation between star molecules.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Huynh, B.-G.; Jérome, R.; Teyssié, P.H. Star-shaped block copolymers. I. Synthesis of new A(B)2 starshaped block copolymers

based on vinyl or diene hydrocarbons (A) and oxirane (B). J. Polym. Sci. Polym. Chem. Ed. 1980, 18, 3483–3498. [CrossRef]
2. Iatrou, H.; Hadjichristidis, N. Synthesis and characterization of model 4-miktoarm star co- and quaterpolymers. Macromolecules

1993, 26, 2479–2484. [CrossRef]
3. Jin, P.-F.; Shao, Y.; Yin, G.-Z.; Yang, S.; He, J.; Ni, P.; Zhang, W.-B. Janus [3:5] Polystyrene−polydimethylsiloxane star polymers

with a cubic core. Macromolecules 2018, 51, 419–427. [CrossRef]
4. Han, D.; Wen, T.-J.; Han, G.; Deng, Y.-Y.; Deng, Y.; Zhang, Q.; Fu, Q. Synthesis of Janus POSS star polymer and exploring its

compatibilization behavior for PLLA/PCL polymer blends. Polymer 2018, 136, 84–91. [CrossRef]
5. Walther, A.; Muller, A.H. Janus particles: Synthesis, self-assembly, physical properties, and applications. Chem. Rev. 2013, 113,

5194–5261. [CrossRef] [PubMed]
6. Leibler, L. Theory of microphase separation in block copolymers. Macromolecules 1980, 13, 1602–1617. [CrossRef]
7. Matsen, M.W.; Bates, F.S. Unifying Weak- and Strong-Segregation Block Copolymer Theories. Macromolecules 1996, 29, 1091–1098.

[CrossRef]
8. Olvera de la Cruz, M.; Sanchez, I.C. Theory of microphase separation in graft and star copolymers. Macromolecules 1986, 19,

2501–2508. [CrossRef]
9. Binder, K.; Müller, M. Monte Carlo simulation of block copolymers. Curr. Opin. Colloids Interface Sci. 2000, 5, 314–322. [CrossRef]
10. Freire, J.J.; McBride, C. Mesophase formation in solutions of diblock copolymers simulated using the bond fluctuation model.

Macromol. Theory Simul. 2003, 12, 237–242. [CrossRef]
11. Glaser, J.; Medapuram, P.; Beardsley, T.M.; Matsen, M.-W.; Morse, D.C. Universality of block copolymer melts. Phys. Rev. Lett.

2014, 113, 068302. [CrossRef]
12. de Gennes, P.-G. Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, NY, USA, 1979.
13. Hakem, I.F.; Benmouna, A.; Benmouna, R.; Ferebee, R.; Benmouna, M.; Bockstaller, M.-R. Interpretation of small-angle scattering

of block copolymer/nanoparticle blends using random phase approximation. Eur. Phys. J. E 2014, 37, 54. [CrossRef] [PubMed]
14. Qin, J.; Grzywacz, P.; Morse, D.C. Renormalized one-loop of correlations in disordered diblock copolymers. J. Chem. Phys. 2011,

135, 084902. [CrossRef] [PubMed]
15. Molina, L.A.; López Rodríguez, A.; Freire, J.J. Monte Carlo study of symmetric diblock copolymers in nonselective solvents.

Macromolecules 1994, 27, 1160–1165. [CrossRef]
16. Glaser, J.; Qin, J.; Medapuram, P.; Morse, D.C. Collective and single-chain Correlations in disordered melts of symmetric diblock

copolymers: Quantitative comparison of simulations and theory. Macromolecules 2014, 47, 851–869. [CrossRef]
17. Beardsley, T.M.; Matsen, M.W. Fluctuation correction for the order–disorder transition of diblock copolymer melts. J. Chem. Phys.

2021, 154, 124902. [CrossRef]
18. Vlahos, C.H.; Horta, A.; Freire, J.J. Conformational properties of A(x)B(f-x) miktoarm star copolymers. Macromolecules 1992, 25,

5974–5980. [CrossRef]
19. Vlahos, C.H.; Horta, A.; Hadjichristidis, N.; Freire, J.J. Monte-Carlo calculations of A(x)B(f-x) miktoarm star copolymers.

Macromolecules 1995, 28, 1500–1505. [CrossRef]
20. Carmesin, I.; Kremer, K. The bond fluctuation method: A new effective algorithm for the dynamics of polymers in all spatial

dimensions. Macromolecules 1988, 21, 2819–2823. [CrossRef]

http://doi.org/10.1002/pol.1980.170181215
http://doi.org/10.1021/ma00062a013
http://doi.org/10.1021/acs.macromol.7b02268
http://doi.org/10.1016/j.polymer.2017.12.050
http://doi.org/10.1021/cr300089t
http://www.ncbi.nlm.nih.gov/pubmed/23557169
http://doi.org/10.1021/ma60078a047
http://doi.org/10.1021/ma951138i
http://doi.org/10.1021/ma00164a008
http://doi.org/10.1016/S1359-0294(00)00074-1
http://doi.org/10.1002/mats.200390025
http://doi.org/10.1103/PhysRevLett.113.068302
http://doi.org/10.1140/epje/i2014-14054-9
http://www.ncbi.nlm.nih.gov/pubmed/24965150
http://doi.org/10.1063/1.3609758
http://www.ncbi.nlm.nih.gov/pubmed/21895217
http://doi.org/10.1021/ma00083a013
http://doi.org/10.1021/ma401694u
http://doi.org/10.1063/5.0046167
http://doi.org/10.1021/ma00048a018
http://doi.org/10.1021/ma00109a022
http://doi.org/10.1021/ma00187a030


Polymers 2021, 13, 2377 13 of 13

21. Rubio, A.M.; Storey, M.; Lodge, J.F.M.; Freire, J.J. Dynamics of bond-fluctuation model chains in good and theta solvents.
Macromol. Theory Simul. 2002, 11, 171–183. [CrossRef]

22. Rubio, A.M.; Lodge, J.F.M.; Freire, J.J. Simulation of dynamic scattering from homopolymer and symmetric diblock copolymer
solutions with the bond fluctuation model. Macromolecules 2002, 35, 5295–5303. [CrossRef]

23. Di Cecca, A.; Freire, J.J. Monte Carlo simulations of star polymer systems with the bond fluctuation model. Macromolecules 2002,
35, 2851–2858. [CrossRef]

24. Bishop, M.; Clarke, J.H.R.; Rey, A.; Freire, J.J. The shape of linear and star polymers with and without excluded volume. J. Chem.
Phys. 1991, 94, 4009–4011. [CrossRef]

25. Freire, J.J.; Rubio, A.M.; McBride, C. Coarse-grained and atomistic simulations for the G=4 PAMAM-EDA dendrimer. Macromol.
Theory. Simul. 2015, 24, 432–441. [CrossRef]

26. Smeijers, A.F.; Markvoort, A.J.; Pieterse, K.; Hilbers, P.A.J. Coarse-grained simulations of poly(propylene imine) dendrimers in
solution. J. Chem. Phys. 2016, 144, 074903. [CrossRef] [PubMed]

27. Freire, J.J.; Pla, J.; Rey, A.; Prats, R. Monte Carlo calculations for linear and star polymers with intramolecular interactions. 1.
Dimensions. Macromolecules 1986, 19, 402–457. [CrossRef]

28. Rey, A.; Freire, J.J.; Bishop, M.; Clarke, J.H.R. Radius of gyration and viscosity of linear and star polymers in different regimes.
Macromolecules 1992, 25, 1311–1315. [CrossRef]

29. Grassberger, P. Pruned-enriched Rosenbluth method: Simulations of θ polymers of chain length up to 1,000,000. Phys. Rev. E
1997, 56, 3682–3693. [CrossRef]

30. Hsu, H.-P. Lattice Monte Carlo simulations of polymer melts. J. Chem. Phys. 2014, 141, 234901. [CrossRef]
31. Witten, T.A.; Pincus, P.A.; Cates, M.-E. Macrocrystal ordering in star polymer solutions. Europhys. Lett. 1986, 2, 137–140. [CrossRef]

http://doi.org/10.1002/1521-3919(20020201)11:2&lt;171::AID-MATS171&gt;3.0.CO;2-A
http://doi.org/10.1021/ma0121262
http://doi.org/10.1021/ma011688i
http://doi.org/10.1063/1.460677
http://doi.org/10.1002/mats.201500028
http://doi.org/10.1063/1.4941379
http://www.ncbi.nlm.nih.gov/pubmed/26896998
http://doi.org/10.1021/ma00156a037
http://doi.org/10.1021/ma00030a017
http://doi.org/10.1103/PhysRevE.56.3682
http://doi.org/10.1063/1.4903506
http://doi.org/10.1209/0295-5075/2/2/011

	Introduction 
	Numerical Methods 
	Results and Discussion 
	Summary and Conclusions 
	References

