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Abstract
Bacterial microcompartments (MCPs) are protein-bound organelles that carry out diverse

metabolic pathways in a wide range of bacteria. These supramolecular assemblies consist

of a thin outer protein shell, reminiscent of a viral capsid, which encapsulates sequentially

acting enzymes. The most complex MCP elucidated so far is the propanediol utilizing (Pdu)

microcompartment. It contains the reactions for degrading 1,2-propanediol. While several

experimental studies on the Pdu system have provided hints about its organization, a clear

picture of how all the individual components interact has not emerged yet. Here we use co-

evolution-based methods, involving pairwise comparisons of protein phylogenetic trees, to

predict the protein-protein interaction (PPI) network governing the assembly of the Pdu

MCP. We propose a model of the Pdu interactome, from which selected PPIs are further in-

spected via computational docking simulations. We find that shell protein PduA is able to

serve as a “universal hub” for targeting an array of enzymes presenting special N-terminal

extensions, namely PduC, D, E, L and P. The varied N-terminal peptides are predicted to

bind in the same cleft on the presumptive luminal face of the PduA hexamer. We also

propose that PduV, a protein of unknown function with remote homology to the Ras-like

GTPase superfamily, is likely to localize outside the MCP, interacting with the protruding β-

barrel of the hexameric PduU shell protein. Preliminary experiments involving a bacterial

two-hybrid assay are presented that corroborate the existence of a PduU-PduV interaction.

This first systematic computational study aimed at characterizing the interactome of a bac-

terial microcompartment provides fresh insight into the organization of the Pdu MCP.

Author Summary

Many bacteria produce giant proteinaceous structures within their cells, which they use to
carry out special metabolic reactions in their interior. Much has been learned recently
about the individual components—shell proteins and encapsulated enzymes—that
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assemble together, thousands of subunits in all, to make these bacterial microcompartments
or MCPs. However, in order to carry out their biological functions, these systems must be
highly organized through specific protein-protein interactions, and such a higher level un-
derstanding of organization in MCP systems is lacking. In this study, we use genomic data
and phylogenetic analysis to predict the network of interactions between the approximate-
ly 20 different kinds of proteins and enzymes present in the Pdu MCP. Then, we use
computational docking to examine a subset of those that are predicted to involve enzymes
bound to the interior surface of the shell proteins, and show that the results are consistent
with recent experimental data. We further provide new experimental evidence for one of
the predicted protein-protein interactions. This study expands our understanding of a
complex system of proteins serving as a metabolic organelle in bacterial cells, and provides
a foundation for further experimental investigations.

Introduction
Cellular organization has long been considered to be much simpler in bacteria than in eukary-
otic cells. However, accumulating evidence indicates a higher-order organization in terms of
cellular compartmentalization [1–3] and cell structure [4,5]. In particular, electron microscopy
and higher resolution structural studies have demonstrated that some bacteria can form poly-
hedral capsid-like bodies that are 80 to 150 nm in diameter [6,7]; reviewed in [8–11]. These
polyhedral inclusions, known as bacterial microcompartments, are widely distributed across
nearly 20% of known bacterial strains [9,12,13]. We refer here to bacterial microcompartments
as MCPs; they are sometimes referred to as BMC’s, but we reserve the latter name to refer to
the family of shell proteins that comprise MCP shells. As opposed to membrane bound organ-
elles characteristic of eukaryotic cells, MCPs are exclusively proteinaceous assemblies; they
consist of a thin outer protein shell enclosing a metabolically active core of enzymes, earning
them the status of bacterial organelles. MCPs fulfill diverse roles: enhancement of metabolic
flux in their hosted enzymatic pathway [14], confinement of toxic or volatile intermediates
[15–17] and shielding of interior enzymes from reactions with reactive or competing molecules
[18].

The founding member of the MCP family, the carboxysome, was first isolated 40 years ago
[19]. Carboxysomes are present in some chemotrophic bacteria and probably all cyanobacteria
[18,20,21]. The carboxysome serves as an organelle for carbon fixation through the encapsula-
tion of two enzymes: carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase
(RubisCO). Several other kinds of MCPs are found dispersed across the bacterial kingdom,
where they carry out metabolic pathways different from carbon fixation. These include the Pdu
and the Eut microcompartment from Salmonella [22–24] and E.coli [25,26], which carry out
the degradation of 1,2-propanediol and ethanolamine, respectively. These pathways rely on a
similar mechanism: an initial substrate is first converted by a B12-dependent enzyme to give an
aldehyde intermediate, which is sequestered long enough to be converted to less toxic metabo-
lites, e.g. an alcohol and/or carboxylic acid. However, these three relatively well-characterized
MCPs (carboxysome, Pdu and Eut) constitute only a subset of the entire MCP family. Recent
computational and experimental studies delineate at least seven kinds of MCPs, all with differ-
ent metabolic purposes [13,27–30]. The accepted three-dimensional model of the Pdu MCP
and its encapsulated metabolic pathway is summarized in Fig. 1B.

Though MCPs differ substantially according to their metabolic nature, they share a number
of genomic and structural characteristics. In particular, most MCP proteins are encoded within
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Figure 1. An idealized model of the Pdu MCP shell and its encapsulated pathway. The MCP shell is
assembled from a few thousand copies of proteins belonging to the BMC (bacterial microcompartment)
protein family. Several distinct paralogs from the BMC family are present within a single shell. BMC proteins
self-assemble into cyclical hexamers (in blue). Also present in fewer copies are proteins from a distinct family,
referred to as BMVs, which are pentameric proteins (in yellow) forming the vertices of the polyhedral
structure. The polyhedron is shown here idealized as an icosahedron, while the Pdu MCP is typically less
regular in shape. Sequentially acting enzymes (in black) carrying out the Pdu pathway are enclosed by the
shell (A). The Pdu pathway degrades 1,2-propanediol to propionaldehyde via a B12-dependent catalytic
mechanism, the aldehyde being subsequently converted to 1-propanol or propionyl-phosphate (B).

doi:10.1371/journal.pcbi.1004067.g001
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operons, which consist of multiple paralagous genes coding for the shell proteins alongside the
genes for the associated enzymes. Consistent with this shared genomic signature, diverse
MCPs share a similar organization and structure. Typically, each shell protein sequence is
comprised by a bacterial microcompartment (BMC) domain, or sometimes two such domains
duplicated in tandem. The first high resolution structures of BMC proteins shed light on the
structural organization of the MCP shell [9–11,28,31–35]. A few thousand copies of these
BMC proteins self-assemble into cyclic hexameric units packed side-by-side in a layer forming
the essentially flat facets of the roughly icosahedral structure (Fig. 1A). The top and bottom
sides of a BMC hexamer typically show distinctly different features: one face bears a central
depression giving rise to a concave shape, whereas the other side is typically flatter and more
polar in chemical character. Which of the two sides (convex or flat) faces inward to the MCP
lumen is a question of key significance for MCP function [36–38]. Most often, the center of the
hexamer is perforated by a narrow (4–7 Å) hydrophilic pore that is thought to act as a canal for
molecular transport [32,38–40]. In addition to the main BMC shell proteins, other minor pro-
teins have been found to be essential to the formation or closure of the shell. These proteins,
which our group recently coined the bacterial micrompartment vertex (BMVs) proteins, as-
semble into pentamers suspected to close the vertices of the MCP [37,41,42] (Fig. 1A). Further-
more, a number of intriguing variations such as domain fusion, tandem duplication, circular
permutation, or FeS cluster binding sites, have been revealed among the crystal structures of
the paralogous BMC shell proteins [43–46]. Speculations on the roles of such variations sup-
port the idea that each type of BMC paralog has a defined role beyond simply assembling to
form a physical barrier.

Interactions between the shell proteins and the encapsulated enzymes are vital for MCP
function. Recent studies on the assembly of the α-type carboxysome suggest assembly of
this type of MCP is initiated from the interior; the formation of enzymatic seeds precedes ac-
quisition of the shell [47,48]. However, the processes governing the interactions between the
encapsulated enzymes and the shell proteins are complex and apparently divergent between
different types of MCPs. Specific interactions have been demonstrated in a few cases using
pull-down assays and other experiments [36,49]. Fan et al. [50] first showed that short se-
quence extensions present at the N-terminus of numerous enzymes exist to bind enzymes to
the MCP shell. A subsequent study showed that the C-terminal region of an α-carboxysomal
protein (CcmN) interacted with the shell in that system [49]. Though enzyme targeting
mechanisms are presumed to be widespread across the MCP systems, only a few enzyme-
shell protein interactions have been specifically identified. Characterizing these interactions
would open new perspectives on MCP biology and applications in synthetic biology [51,52].
Some progress has already been made along these lines. Fluorescent proteins and other pro-
teins have been successfully directed to MCPs by appending terminal targeting peptides
[29,50,53–55].

Despite knowing the identities of a few interactions between enzymes and shell proteins,
atomic level detail is lacking. Attempts to isolate and determine the structures of cognate com-
plexes have been unsuccessful. This has prompted us to undertake a computational study to de-
velop interaction models for an MCP system. The ever-increasing genomic and structural data
available for MCPs provides an unprecedented opportunity to apply computational methods
to characterize the molecular networks ruling these extraordinary supramolecular machines.
Over the last two decades, a handful of methods exploring genomic data have been developed
for predicting functional linkages between different proteins in a cell. Popular methods such as
protein phylogenetic profiles [56,57], gene fusion [58,59], gene neighborhood [60,61] or a com-
bination of these [62–64], have been used extensively to make functional inferences about pro-
teins. Indeed, one of our recent studies featured an adaptation of protein phylogenetic profile
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methods for investigating co-occurrence patterns in MCP operons, and led to an articulated
classification of existing MCP pathways [13].

Here, we aim to characterize the molecular network of physical protein-protein interactions
(PPIs) in a single MCP type, the Pdu system. In this case, strategies relying on genomic context
have limited application due to the high similarity of the genomic patterns found for different
proteins across the Pdu operons; essentially all of the MCP shell proteins and enzymes typically
found in the Pdu operon are functionally linked according to genomic context, but only a sub-
set engage in direct physical PPIs. Other computational strategies are therefore required to de-
velop models for direct physical PPIs. Detailed sequence variations within protein families can
be analyzed via phylogenetic tree-based approaches, and indeed methods based on mining of
phylogenetic features have proven useful for predicting PPIs in multiple cases, as recently re-
viewed [65,66]. A non-exhaustive list of such methods includes the so-calledmirror tree [67],
or its variant the tol-mirror [68], which compares trees—one for each protein of interest—by
computing the pairwise correlation of their underlying evolutionary distance matrices. Others
explore the topological similarity of the trees, coined congruence by Vienne et al. [69]. All fol-
low the co-evolution hypothesis, where interacting protein families are expected to exhibit sim-
ilar phylogenetic trees with similar patterns of amino acid sequence divergence.

In this work, we seek to identify new PPIs in the Pdu MCP with a coevolution-based ma-
chine learning algorithm. Specifically, we approach the PPI prediction problem within a binary
classification framework: from the pairwise comparison of phylogenetic trees, coevolution fea-
tures can be computed and subsequently mined by a decision tree classifier, a concept earlier
described in Craig and Lio [70]. A group of PPIs that have been experimentally characterized
recently in the Pdu system constitute a set of known positives for use as a “gold standard” for
training the classifier. In the first part of this work, we design and train a Random Forests
classifier to identify pairwise interactions of Pdu gene products, and then propose a model of
the Pdu interactome. Following this genomic-based model, we further analyze selected predic-
tions of PPIs and their probable binding modes via three-dimensional protein-protein docking
calculation. We then provide new experimental data to support one of the
predicted interactions.

Results
For each pair of Pdu gene products, we defined seven continuous-valued coevolution descrip-
tors extracted from the pairwise comparison of their respective phylogenetic trees, and com-
bined those seven values into a vector (Fig. 2). As an example, one of the seven descriptors is
the linear correlation coefficient between two phylogenetic trees calculated by themirrortree
method. The other descriptors are variations on a similar theme (see Methods). Within this
framework, and using experimental data on known interactions as a training set, we ran a bina-
ry classifier against these vectors of coevolution descriptors to identify positive PPIs.

Predicting PPIs of the Pdu interactome
We culled protein sequences from Pdu operons of 34 fully sequenced bacterial genomes, and
collapsed them into 22 orthologous protein groups according to the canonical Pdu nomencla-
ture [23]. For each of the 22 distinct protein families so identified, we inferred a phylogenetic
tree from a multiple sequence alignment of its constitutive sequences. We refer to this as the
‘Pdu tree’ for that protein. Subsequently, for each pair of proteins seven co-evolution descrip-
tors were computed from a comparison of their respective Pdu trees, following the general pro-
cedure depicted in Fig. 2. Pairwise combinations of the 22 orthologous protein groups resulted
in 231 unique pairs that needed to be classified. For this purpose, we used a Random Forests
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classifier [71] exploring the seven descriptors, which after a training and cross-validation
phase exhibited an area under the receiver-operator (ROC) curve of 0.75 (S1 Fig., suppl. Data),
thereby demonstrating a reasonably good discriminative power. We also assessed whether sim-
ilar classification performance could be obtained with fewer descriptors than the seven initially
employed. We evaluated the discriminatory power of the descriptors individually by ranking
their accuracies in the context of an unsupervised analysis (S2 Fig.). We found that the RF per-
forms best when all seven of the descriptors are included in the classification analysis. Much of
the signal can be recovered with just a few descriptors, but addition of subsequent descriptors
does result in slight improvements in performance. When applied to the whole Pdu dataset,
the classifier predicted a list of 109 positive PPIs along with their mean probabilities. To be
conservative and increase the specificity of the classifier (even if at the expense of the sensitivi-
ty), we removed the putative PPIs with a probability less than 0.7, which reduced the final
number of predicted PPIs to 51 (Suppl. data). From these results we modeled the Pdu interac-
tome as a molecular network of 51 interactions and 22 nodes. The resulting network model is
presented in Fig. 3.

An analysis of this model showed that 15 of the 16 experimentally characterized PPIs could
still be retrieved under a high specificity criterion, and that they yielded the highest probabili-
ties, confirming the robustness of the method. Furthermore, the missing positive interaction,

Figure 2. Description of the procedure for defining pairwise coevolution descriptors. Calculation of coevolution descriptors relies on the comparison of
phylogenetic trees. For each given pair of Pdu gene products, three descriptors are extracted from a topological comparison of their respective phylogenetic
trees (blue and green) and the Tree of Life (ToL, pink), while four other descriptors are calculated by comparing the distance matrices that underlie these
trees. These seven descriptors are further combined into a vector for subsequent analysis by the RF classifier.

doi:10.1371/journal.pcbi.1004067.g002
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PduK-PduT, was initially predicted as positive by the classifier, but did not pass our 0.7 thresh-
old. One striking feature of this model is the absence of a PPI connecting the PduX node to the
network (Fig. 3). PduX is an enzyme involved in de novo synthesis of coenzyme B12, an essen-
tial cofactor for enzymes of the Pdu pathway[72]. However, there is no evidence that PduX is
directly associated with the MCP by any physical interaction [73]. Its tendency to occur within
the Pdu operon (typically at the end) likely reflects an advantage of being under the influence
of the Pdu promoter, rather than physical interaction with other MCP components. Two likely
spurious findings involving interactions with PduF also appeared in our model, namely
PduF-PduC and PduF-PduD. PduF is a propanediol/glycerol diffusion facilitator protein and is
believed to be an integral membrane protein [74], making its physical presence in the MCP un-
likely. Finally, after exclusion of the “gold standard” interactions and the suspected spurious
predictions, the final dataset consisted of 36 predicted PPIs, with an average node connectivity
of 4.8 partners, which can be loosely compared to results obtained with other interactome stud-
ies across whole cellular systems in yeast [75] or in cell junction complexes [76].

One intriguing observation is the hyperconnectivity of certain specific nodes, such as PduA
(11 PPIs), PduC (9PPIs) and PduG (9 PPIs). The central position of the propanediol dehydra-
tase large subunit PduC in the Pdu pathway makes it an essential piece of the interactome
(Fig. 1B). Likewise, PduG is the large subunit of the diol dehydratase-reactivating factor, which
works in tight coordination with the propanediol dehydratase (PduCDE). In a complex with
PduH, PduG is believed to reactivate the dehydratase by exchanging its B12 cofactor, which be-
comes inactive during repeated catalytic cycling [73,77]. In our model, PduG was indeed pre-
dicted to interact with PduC and PduE but not with PduD. Although no structural information
about this complex in Salmonella is available, crystal structures of highly similar homologs
from Klebsiella oxytoca have been solved [22,78,79]. Studies with these same homologs demon-
strated that the binding mechanism involved a subunit exchange between the dehydratase and

Figure 3. A model of the Pdu interactome. The Pdu PPI network, inferred from predictions made by the RF
classifier in its analysis of coevolution descriptors. Individual Pdu gene products are represented as nodes.
Enzymes are shown in light blue, while shell proteins are shown in gray; the shell proteins include several
BMC type proteins and a single protein (PduN) from the BMV family presumed to be pentameric vertex
proteins. Edges connecting two nodes correspond to predicted PPIs. The numerous PPIs emerging from the
PduA node are highlighted in pink. It is not possible to fully convey the likely spatial relationships of all the
proteins and enzymes (some of whose locations remain uncertain), but nodes for the shell proteins have
been placed at the periphery of the layout to convey their outer locations.

doi:10.1371/journal.pcbi.1004067.g003
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the reactivase, where one PduH subunit is released from the reactivase and replaced by one
PduD subunit [80].

Particularly notable in our interactome model is the number of PPIs in which PduA [73,81],
one of the most abundant shell proteins in the Pdu MCP, is predicted to be involved. Presently,
PduP is the only enzyme in the Pdu MCP whose binding to individual shell proteins has been
characterized. It was revealed that PduP interacts via its N-terminal region with PduA and
PduJ, another major shell protein that shares high sequence identity (83%) with PduA [36].
Other Pdu enzymes besides PduP are suspected to carry such N-terminal extensions [50], but
their shell protein partners have not been identified yet [54,82]. Sequence analysis as well as
spectroscopic experiments on the PduP N-terminal segment show that it has a strong propen-
sity to fold into an alpha-helical structure [36,55]. Here, we hypothesize that these structural
features and associated binding mechanism are not specific to the PduP case, but that PduA
(or PduJ) likely serves as a central binding hub for different enzymes carrying N-terminal ex-
tensions. To pursue this particular set of interactions further, we generated atomic models of
predicted PduA-enzyme-tail complexes by molecular docking and analyzed their predicted
modes of binding.

Additionally, we analyzed the PduU-PduV case, the only PPI in which PduV was predicted.
PduU was the first BMC shell protein from a non-carboxysome MCP whose three-dimensional
structure was determined [44]. Its topology involves a circularly permuted BMC domain, and
the existence of a six-stranded β-barrel capping the central pore of the hexamer makes it
unique in the BMC protein family. Previous speculations about the peculiar beta barrel include
a possible role in gating an unusually wide pore, but further data are lacking. Additionally,
PduV is a Ras-like GTPase that has been implicated in MCP dynamics within the cell by Par-
sons et al. [82]. In this case, PduV is believed to reside outside the shell, as opposed to the other
Pdu enzymes that appear to be sequestered in the MCP interior. To clarify how these two
might interact, as predicted by our interactome model, we modeled the PduU-PduV complex
with docking simulations and compared the result to control calculations involving non-inter-
acting protein pairs.

PduA: A universal hub for binding encapsulated enzymes
Of the 11 predicted interactions involving PduA, six include Pdu enzymes, namely PduC,
PduD, PduE, PduG, PduP, and PduL (Fig. 3). As noted above, one of these interactions (PduA-
PduP) has been demonstrated experimentally. Here we investigated whether enzymatic part-
ners in addition to PduP are also able to bind PduA via terminal peptides, by attempting to
model their presumptive binding modes computationally (see Methods).

As a first step, we searched for possible terminal peptidic extensions in the sequences of
these six Pdu enzymes. Prediction of these extensions was done according to the method
developed in Fan et al. [50]. The central idea is that enzymes that are targeted to the MCP ex-
hibit extensions at their termini that are absent from homologous versions of the same enzyme
that are not part of an MCP system. It is notable that among the six enzymes that are predicted
by our model to bind to shell protein PduA (or its close homolog PduJ), our computational
analysis indicates that five carry recognizable sequence extensions (PduC,D,E,P,L), (as reported
in [50] and [54]). In contrast, none of the 15 enzymes that do not have predicted interactions
with PduA (or PduJ) exhibit recognizable terminal sequence extensions. Sequence comparisons
between the N-terminal peptide tails did not reveal strong similarities (less than 30% identity
overall). However, ab initio predictions of their structures consistently modeled them as am-
phipathic α-helices. Experimental studies have already investigated the possible targeting of
some of the Pdu enzymes; targeting by the N-terminal tail of PduP was noted above [50]. In

The Pdu Microcompartment Interactome

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004067 February 3, 2015 8 / 23



the case of PduD, experiments showed that its N-terminal peptide can be used as a targeting
signal, but there was no evidence that it would fold identically to the PduP peptide or that its
interaction would be with PduA [54]. In these same studies, PduE was implicated as having
such terminal extensions, but fusion of GFP to its respective peptides did not provide clear evi-
dence for targeting. In the case of PduC, Parsons, et al. showed that that enzyme could direct
other proteins to the MCP when fused genetically, though the presence of a terminal tail on
PduC was not indicated [81]. Despite the mixed findings on terminal targeting peptides on dif-
ferent enzymes in different experimental protocols, the presence on several of the Pdu enzymes
in our bioinformatics analysis of extended termini with predicted alpha-helical propensities,
and the prediction here of interactions between those enzymes and the PduA shell protein,
supported the idea that some of these peptides likely recognize the interior surface of the shell
using similar binding modes.

Since it was demonstrated that the targeting of PduP is mediated mostly by its terminal pep-
tide segment [50], we sought to characterize the binding mode of the various implicated en-
zymes by docking their N-terminal peptides onto the hexameric structure of the PduA shell
protein; 18-amino acid terminal segments were used in all cases. The benefits of using a model
of the terminal peptide instead of a complete protein are twofold: (1) to avoid spurious model-
ing of full-length proteins in the absence of close structural homologs, and (2) to substantially
reduce the size of the search space to be explored by the docking algorithm. In earlier work we
proposed a model of the PduP N-terminal extension bound to the concave face of a PduA hex-
amer (proposed to be inward facing) [35]. However, this model was generated with a rigid-
body approach, where the PduP peptide had only flexible side chains. Here we push further the
flexibility limits of the docking simulation by additionally allowing conformational degrees of
freedom for the peptide backbone. To do so, we employed a two-stage docking approach: a
rough search by Autodock Vina [83] of the binding site in the PduA hexamer with a rigid heli-
cal model of the peptide, followed by a second docking phase with the FlexPepDock protocol
from the Rosetta suite [84]. In this second step, the peptide is placed in its start position accord-
ing to Vina’s predictions; it is then simultaneously refolded and docked over the surface of the
receptor. We applied this approach to the five identified PPIs and to a control case involving
the N-terminal sequence from PduQ, an aldehyde dehydrogenase from the Pdu pathway that
has no obvious targeting signal. In addition, the five peptides were alternatively docked on
both faces of the PduA hexamer, with the expectation that meaningful results would have pep-
tides docking to only one side of the PduA shell protein.

Results of the peptide docking simulations are overlaid in Fig. 4 along with their energy
scores and their buried surface areas. Remarkably, when docked onto the concave (presump-
tively luminal) face of PduA, all five peptides were predicted to bind the same binding cleft
formed by the C-terminal segments of two adjacent PduA monomers in the hexamer (Fig. 4A).
Moreover, with the exception of PduL, FlexPepDock automatically folded the peptides into
well-defined α-helical structures. In the case of PduA-PduP, the model is similar to the one ini-
tially proposed in Yeates et al. [35], with a slight rotation and translation inside the cleft. Inter-
estingly, the different peptides occupy the common binding cleft of PduA in different
orientations: PduP and PduE have their N-termini pointing toward the pore, whereas PduC
and PduD are docked in the opposite direction. The PduL peptide was also predicted to bind
roughly the same region, but the flexible docking protocol did not automatically fold that pep-
tide into a well-ordered alpha helix, leaving the veracity of the predicted binding mode in ques-
tion in the case of PduL. In their computationally predicted bound configurations, most of the
polar residues of the peptides are exposed to the solvent. A notable exception is an arginine re-
currently found towards the center of each peptide, which is in all cases buried in the predicted
interface and poised to form a salt-bridge with glutamate (E36) of either one of the two
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monomers constituting the binding cleft (Fig. 5A). The hydrophobic residues are oriented to
interact with the C-terminal segment of PduA (Fig. 5B).

Various other docking calculations served as computational controls. In contrast to the re-
sults obtained for docking to the concave surface of the shell protein, docking of the peptides
on the other (flat) side of PduA showed no consistent or compelling modes of binding. Those
peptide models are instead scattered over the hexamer surface (Fig. 4B). Moreover, comparison
of the energy scores and buried surface areas in both docking cases shows that the peptides
have a significantly better fit to the concave surface (Fig. 4C). Another control consisted of
docking the N-terminal 17 residues from PduQ (which was not predicted to have a targeting
tail) following the same protocol. In the docking simulation the PduQ peptide partially folds
into an α-helix, but does not seem to bind intimately in the canonical cleft (Fig. 4A). An addi-
tional calculation involved the docking of N-terminal peptides onto a layer of three PduA hex-
amers packed side-by-side, to verify that potential binding modes at the interfaces between

Figure 4. Models of N-terminal peptide extensions from different enzymes docked onto a PduA hexamer. All the models were aligned and overlaid
using the PduA structure as guide. (A) Six N-terminal peptides are docked on the concave (presumptively luminal) face of the PduA hexamer. Four of the
five identified earlier as probable targeting sequences (PduC, PduD, PduE, PduP) were folded into α-helices by the flexible docking procedure (see text and
Methods) and were docked in the same cleft on the PduA surface. The tail of PduL adopted a less regular conformation during the simulation. The tail from
PduQ, which was not predicted to act as a targeting sequence and thereby serves as a control, exhibits an apparently spurious binding mode. To convey
depth, the surface of PduA is shaded according to diffusion accessibility [106]. (B) The five targeting peptides, when docked onto the other (flat) face of the
PduA shell protein, were found scattered across the surface in arrangements exhibiting poorer interaction interfaces. (C) Binding statistics are reported for all
the docking simulations. In all cases, both the predicted energy score (in Rosetta Energy Units) and the buried surface at the interface yielded better values
when peptides were docked onto PduA’s concave side. Because the shell protein hexamer is 6-fold symmetric, in all cases the solutions were rotated by
multiples of 60° around the axis of symmetry to allow internal consistency.

doi:10.1371/journal.pcbi.1004067.g004
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hexamers were not overlooked. This simulation exhibited similar binding modes to those
found with a single PduA hexamer. Overall, these computational predictions and control calcu-
lations support the hypothesis that the interior surface of PduA serves as a hub for binding
multiple enzymes with terminal extensions. The findings are largely consistent with previous
experimental data, while painting a more detailed picture of how interior enzymes in the Pdu
MCP interact with PduA, as predicted by our coevolution analysis.

A predicted PduU-PduV complex
As an initial step in modeling a possible interaction between PduU and PduV, which was pre-
dicted by the coevolution analysis, a homology model had to be constructed for PduV. The
PduV model was then docked into the crystal structure of the PduU hexamer using Rosetta-
Dock [85] (see Methods). As a control, we ran two docking simulations under identical condi-
tions on cases involving either PduU or PduV and non-interacting molecules: PduA-PduV,
and PduU-ERA (the homologous GTPase used as the template for modeling of PduV). A

Figure 5. N-terminal extension sequences and atomic details of the PduD peptide docked onto a
PduA hexamer. (A) Sequences of the five N-terminal extensions proposed to be acting as targeting
peptides. An arginine is recurrently found near the center of the peptide (red). (B) The hydrophobic surface (in
beige) of the PduD N-terminal tail peptide is predicted to interact with the C-terminal tail of PduA. A central
arginine (in red), which is found in all of the N-terminal peptides predicted to dock in the cleft, is consistently
oriented to make interactions with a glutamate in the BMC domain.

doi:10.1371/journal.pcbi.1004067.g005
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model of the PduU-PduV complex is proposed in Fig. 6A, along with statistics from the differ-
ent docking simulations (Fig. 6B). Compared to the two controls, the predicted interface be-
tween PduU and PduV achieved a better Rosetta energy score. Likewise, the PduU-PduV
complex featured a better shape complementarity and larger buried surface than the controls.
In this model, PduV is sitting on the axis formed by the PduU beta-barrel; this PduU protuber-
ance is exclusively contributing to the interface and precludes any interaction between PduV
and the main BMC domain of PduU. Most of the interaction surface on PduV is formed by the
N-terminal region spanning residue 13 to 35. This is consistent with preliminary results from
Parsons et al., where the first 42 amino acids from PduV were demonstrated to play a crucial
role in PduV targeting to the MCP [82]. As a final control calculation, we investigated the bind-
ing mode of PduV after deleting the 17 N-terminal residues forming the β-barrel in the PduU
hexamer. Here again, the model yielded worse interaction statistics than for the full-size PduU-
PduV complex, supporting the model in which the β-barrel of PduU plays a crucial role in the
interaction with PduV (Fig. 6B).

Figure 6. Model of PduV docked onto a PduU hexamer. (A) Docking calculations predict that the N-
terminal region of PduV binds the PduU β-barrel that protrudes from the conserved BMC domain. Binding
statistics for the PduU-PduV docking and three control simulations are reported in a separate table (B). Those
latter, which included the docking of PduU to a non-cognate GTPase homolog of PduV (labeled PduU-ERA),
a truncated version of PduU lacking the beta-barrel docking to PduV (labeled PduU Δ17-PduV), and PduV
docking to PduA instead of PduU (labeled PduA-PduV), all had substantially worse binding statistics than the
PduU-PduVmodel.

doi:10.1371/journal.pcbi.1004067.g006
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Experimental confirmation of a PduU-PduV interaction
Preliminary experimental assays were carried out on the PduU-PduV pair in parallel with our
computational analysis. The BacterioMatch II two-hybrid system was used to test for interac-
tions between these two proteins. In this system, a reporter strain is co-transformed with ap-
propriate target and bait fusion genes. A protein-protein interaction between the target and
bait activates the transcription ofHIS3, an essential gene for histidine biosynthesis [86], thereby
increasing the expression of theHIS3 product to levels that are sufficient to allow growth on
a selective medium lacking histidine and to overcome the effect of 3-amino-1,2,4-triazole
(3-AT), a competitive inhibitor of the His3 enzyme. If a large number of colonies are obtained
following co-transformation, an interaction between the target and bait proteins is indicated.
When PduU and PduV were tested, the number of colonies obtained following co-transforma-
tion was comparable to that of a positive control with bait and prey proteins (LGF2 and
Gal11P) that are known to strongly interact (Table 1). Results showed that PduU and PduV
also interacted in reciprocal tests where their roles as bait and prey were reversed (Table 1).
Negative controls showed that PduU or PduV alone did not confer 3-AT resistance (Table 1).
The positive result with the UV pair was confirmed by streptomycin resistance of co-trans-
formed E. coli which requires expression of a second reporter gene, aadA. This experimental
confirmation of a PduU-PduV interaction supports the Pdu MCP interactome model devel-
oped in the first (coevolution analysis) part of our work, while the docking calculations reveal a
plausible mode of binding between those proteins.

Discussion
Proteins rarely carry out biological processes on their own. Instead, they typically participate
with other proteins in the context of larger interaction networks. This is especially true for
MCPs, where encapsulated pathways require coordination and spatial organization of their nu-
merous components, from shell proteins to enzymes. Though structural studies of individual
MCP components have paved the way to a better understanding of their assembly mechanism,
a full comprehension of such metabolic systems requires investigation of their PPI networks.
Unfortunately, experimental data for MCP protein complexes are still sparse, leading us to

Table 1. Two hybrid assay to test the interaction between PduU and PduV.

Pairs tested NSa NS 1:100b Sc

pBT-LGF2, pTRG-Gal11P TNTCd 1000 ± 87 1000 ± 72

pBT-pduU, pTRG TNTC 11 ± 3 0 ± 0

pBT-pduV, pTRG TNTC 19 ± 10 0 ± 0

pBT, pTRG-pduU TNTC 167 ± 21 0 ± 0

pBT, pTRG-pduV TNTC 740 ± 75 7 ± 3

pBT-pduU, pTRG-pduV TNTC 1000 ± 66 600 ± 12

pBT-pduV, pTRG-pduU TNTC 840 ± 79 TNTC

Different combinations of bait(pBT) and prey (PTRG) genotypes are tested. The LGF2 and Gal11p pair

serves as a positive control. Tests with each pair were repeated three times and the numbers shown are

the mean±1 standard deviation.
acfu obtained on nonselective (NS) screening medium (no 3-AT) plates.
bcfu obtained on nonselective screening medium plates with 1:100 diluted cells
ccfu obtained on selective (S) screening medium (with 3-AT) plates.
dtoo numerous to count

doi:10.1371/journal.pcbi.1004067.t001

The Pdu Microcompartment Interactome

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004067 February 3, 2015 13 / 23



turn to predictive methods. Here, we used coevolution calculations and a binary classifier to
predict pairwise PPIs in the Pdu MCP, and proposed a model of its interactome. Approaches
using binary classifiers for coevolution-based PPI predictions have been developed by others.
Comparable approaches have been successfully applied to E.coli [87], and to the human ge-
nome [88]. Interpreting such networks is not a trivial task, considering that such methods are
predictive in nature and can therefore include spurious predictions of PPIs or, a contrario, miss
true interactions. Additionally, these methods cannot always distinguish direct (i.e. physical
binding) and indirect (functional) correlations, a recurrent problem in coevolution studies that
is illustrated here by the integration of PduF in our network. In order to mitigate the deficien-
cies of the computational methods we employed, a conservative approach was taken by consid-
ering only those predicted interactions that had the highest probability (p�0.7). These cases
were largely consistent with existing experimental data, where they were available. An example
of a positive result is the agreement between our predictions and structural data relating to the
reactivation mechanism of the diol dehydratase [80].

Extending on our predicted interactome model, we focused further analyses on PPIs ema-
nating from the PduA shell protein node and involving Pdu enzymes (Fig. 3). Of these PPIs,
five where identified as presenting an N-terminal extension, a characteristic of lumen-targeted
enzymes. These N-terminal peptides, when docked onto a PduA hexamer, consistently bound
the same cleft on the concave surface of the hexamer. Likewise, most of them folded into am-
phipathic α-helical structures, their hydrophobic faces oriented towards the C-terminal tail of
the PduA shell protein, a region somewhat less conserved than the main BMC domain. These
atomic details are depicted in Fig. 5, where for example the PduA-PduD case is more clearly
pictured. These results are consistent with experimental studies by Fan et al., which demon-
strated the necessity of the PduA C-terminal helix in PduP binding and the role of hydrophobic
residues in that interaction [36]. An exceptional case during these docking simulations was the
PduL peptide, which did not fold into an amphipathic helix. With regard to our inability to ob-
tain a robust docking result with a PduL peptide, it is notable that the interior vs exterior loca-
tion of PduL remains unclear in current models of the Pdu MCP. If it is interior, its enzymatic
reaction (depicted in Fig. 1B) could internally recycle the coenzyme A used by PduP for the
conversion of propionaldehyde to propionyl-coA. Indeed, a similar mechanism is used for HS-
CoA recycling by the Eut MCP [89] and has been demonstrated for NAD+ recycling by PduQ
[90]

The results of our docking studies are of particular significance for the issue of sidedness of
the MCP shell—i.e. which side of the shell proteins faces inward vs. outward. Previous argu-
ments have suggested that the concave side of the shell protein faces into the MCP lumen
[35,37,38]. Mutagenesis experiments by Fan et al. on the PduA C-terminal helix support that
assignment [36]. In our present docking study, the consistent binding of the targeting peptides
onto the concave side of the PduA hexamer, and the consistently better interface statistics com-
pared to docking on the other side, strongly corroborate this idea.

PduA and PduJ, two highly similar paralogs of the BMC shell protein, are the two most
abundant shell proteins after PduBB’ in the Pdu system. As a consequence, they are suspected
to play a critical structural role [73]. Indeed, while deletions of pduK, pduT or pduU do not af-
fect the formation of the MCP, pduAmutations produce disrupted or enlarged shells [82,91].
Pull-down assays confirmed this architectural importance, where PduA was shown to interact
with multiple other shell proteins [82]. Here we suggest that in addition to its transport and
structural roles, PduA likely serves as a universal hub for a clique of cargo enzymes, attaching
them to the shell via their N-terminal extensions. The highly similar shell protein PduJ is also
predicted to interact with four of the same six enzymes associated with PduA. A possible inter-
pretation is that the same clique of enzymes is able to bind both PduA and PduJ, some pairs
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being more thermodynamically favored than others. Another explanation would be that these
PPIs are in fact exclusive, but that our approach is not sensitive enough to discriminate PPIs
involving close homologs. Note that the absence of an available structure for PduJ prevented a
comparison by computational docking. Whether PduA and PduJ have similar or different af-
finities for various enzymatic partners will require further investigations, including
experimental studies.

Attributing a special functional role to PduA (or PduJ) is consistent with the view that,
though the multiple paralogous shell proteins in the MCP share a canonical BMC structure,
each shell protein variant fulfills a specific task. For instance, tandem BMC proteins such as
EutL are proposed to regulate the transport of metabolites via conformational changes and a
gated pore [38,40,92,93]. The recent crystal structure of PduB, a EutL homolog, presents a view
of a tandem domain shell protein from the Pdu system in a closed conformation [46]. Another
apparently specialized shell protein is PduT, a tandem BMC domain shell protein that is sus-
pected to bind an iron sulfur cluster in its central pore [39,45].

In this portrait of the Pdu family, the role of PduU remains to be elucidated. Here, we aimed
to bring new clues by investigating the intriguing PduU-PduV case. Indeed, PduV is also poor-
ly characterized compared to other Pdu components. Furthermore, from our predictions,
PduV was the only enzyme exclusively interacting with a shell protein. The diverse docking
simulations involving PduU and PduV all agreed with the existence of such a PPI, and pre-
dicted the N-terminal region of PduV binds directly to the PduU beta-barrel, consistent with
recent experimental data on the importance of the N-terminus of PduV [82]. These predic-
tions, coupled to our preliminary experimental data on a PduU-PduV interaction, fill a gap in
understanding the role of the unique β-barrel in PduU.

To conclude, the present study brings further insights into the organization of the Pdu
MCP, and constitutes the first systematic computational effort to describe an MCP interaction
network. The basis of this work is predictive, but we have investigated one of the predicted
interactions experimentally as part of this investigation, with a positive result. Further experi-
mental studies will be required to more fully evaluate the interactome model developed here.
Application of the same approach to other types of characterized MCPs might be of equal
interest and could reveal similar insights.

Materials and Methods

Collection of Pdu operons and construction of phylogenetic trees
Protein orthologs were collected from 34 bacterial genomes in the KEGG database [94] and
collapsed among the 22 types of MCP proteins known to be associated with the Pdu system:
pduABCDEFGHJKLMNOPQSTUVWX (Suppl. Data). Incomplete or erroneous annotations of
the Pdu gene products were corrected after sequence comparison with the Pdu operon from
Salmonella enterica LT2, the best-characterized strain in terms of Pdu MCP.

For each ortholog group, its corresponding protein sequences were aligned with MUSCLE
[95]. The multiple sequence alignments were subsequently input in PhyML [96] for the
construction of phylogenetic trees using the Maximum Likelihood method. Since some of
the co-evolution descriptors also involve the Tree of Life of the 34 genomes studied, sequences
of their respective 16S ribosomal RNA were submitted to similar treatment. For amino acid
and nucleotide-based tree construction in PhyML, we used the LG [97] and HKY85 [98]
substitution matrices, respectively. Additionally, distance matrices were calculated for each
tree, where the distance between two leaves corresponds to the sum of the branch lengths
separating them.
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Dataset construction
Seven coevolution descriptors measuring the pairwise tree similarities have been defined.
Of these, four are based on pairwise comparison of the distance matrices, as defined in the
mirrortree approach, while three others reflect topological similarities (Fig. 2). In the former
class of descriptors, the metrics correspond to the linear correlation coefficient between the
two matrices in consideration, while in the latter, it involves the congruence index Icong as
defined in Vienne et al [69]. Noteworthy is the fact that comparing two trees can be subject to
artefacts and lead in some cases to spurious correlations if speciation events are not taken in ac-
count. For this reason, some of these descriptors involve comparisons of the individual proteins
to the Tree of Life. Let A and B be the two MCP ortholog groups, mA and mB their respective
matrices, tA and tB their trees, and ToL the Tree of Life of the 34 genomes. The parameter mir-
rorAB is the correlation between mA and mB, mirrorA is between mA and ToL, and mirrorB is
between mB and ToL. The fourth descriptor, mirrorAB-ToL, involves an adaptation of the mirror
tree, also known as tol-mirror [68], which measures the correlation between mA and mB after
removing the background similarity inherent to speciation events in the ToL. Since distances
in the ToL are computed from a nucleotide-based substitution matrix, the distances in the ToL
matrix have to be rescaled as proposed in [68] for proper comparison with the protein-based
distance matrices.

Topological descriptors are derived from the Icong index, defined as the probability that the
Maximum Agreement Subtree (MAST) between two trees is arising by chance. Along the same
idea, topological similarities were computed between tree A and ToL, tree B and ToL, and final-
ly A and B ( topA,topB,topAB).

Binary classifier
We implemented a Random Forests (RF) classifier [71] from the Weka Library in Java [99].
Two classes were defined: pos for an interacting protein group pair and neg for those not inter-
acting. Each of the ortholog group pairs sees its input vector of seven coevolution descriptors
evaluated by the RF classifier. To classify a pair, its input vector is run through each decision
tree of the forest and sees its mean probability attributed. The mean probability threshold for
distinguishing the pos from the neg cases was set to 0.5, where a probability� 0.5 will classify
the pair as pos.

Gold standard and cross validation
The dataset used for training the RF classifier—the “gold standard”—was derived from experi-
mental data found in the literature on the Pdu MCP. Manual mining of this data led to a total
of 40 pairs of Pdu proteins whose physical interactions (or lack of interaction in many cases)
could be verified experimentally via binding assays [36,82,90,100,101], complementation and
expression studies [22] or crystallographic data [79]. An example of a verified non-interaction
would be a direct binding experiment in which one protein component of a candidate pair
failed to pull down the other. Among these, 16 are actual PPIs while the remaining 24 are
non-interacting pairs. Of the 16 PPIs, 4, 6 and 6 pairs fall within the categories of: shell-enzyme
(S-E) interactions, shell-shell (S-S) interactions and enzyme-enzyme (E-E) interactions, respec-
tively. Likewise, the non-interacting pairs include 12 S-E, 12 S-S and zero E-E interactions.
Each of these cases was assigned a class according to the rules defined earlier. The reported
AUC value (0.75) for the classifier was calculated after a 10-fold cross validation. In parallel, we
also carried out a 5 -fold cross validation that yielded a comparable AUC (0.73).
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Interactome representation
The interactome was pictured as an undirected graph with the igraph library in R [102]. Nodes
and edges were computed with a Fruchterman-Reingold layout [103].

Modeling of interacting partners with no structural information
While the structures of PduA and PduU are available in the PDB [104], structural information
on the specific enzymes believed to interact with the shell proteins is limited. A recent NMR
structure of the PduP tail showed an alpha helical structure, consistent with sequence-based
predictions. Similar data are not available for the tails of the other enzymes of interest. We
elected to assume as little as possible about the various tail structures and to model ab initio the
first 18 residues of each enzyme with the PEP-FOLD server [105].

PduV was not presumed or predicted to bind by way of a terminal extension, so a model of
that intact enzyme fold was required for docking analysis. The structure of PduV is presently
unknown. Therefore, to enable computational docking, we built a homology model with I-
TASSER [106] by threading the sequence of PduV onto two structural templates from the PDB
(3IEV_A and 3R9W_A). The final model achieved a TM-score of 0.76, which is reasonable for
further investigation by docking simulations [107].

Docking simulations
For protein-peptide docking, our approach relied mainly on the Rosetta-based protocol Flex-
PepDock [84]. Its ability to simultaneously fold and dock allows full flexibility of the peptide.
However, FlexPepDock sees its accuracy decrease when the starting peptide conformation has
an RMSD higher than 5.5 Å compared to the native structure. Mindful of this constraint, we
designed a two-step method for docking the N-terminal enzymatic peptides onto the PduA
hexamer. The first stage is a coarse-grained search of the approximate binding mode by Auto-
Dock Vina [83]. This model is subsequently refined by an ab initio FlexPepDock run, where
the Vina model is used as an input coordinates file. Vina has been designed for small molecule
docking, which allows a ligand flexibility up to 32 rotatable bonds only, a limit not existing in
FlexPepDock. However, it can still be used efficiently when medium-sized ligands like peptides
are treated as semi-rigid for predicting an approximate binding region. File preparation for
AutoDock Vina included a configuration file specifying an exhaustiveness of 10 and a 27000
Å3 grid box encompassing the surface of the hexamer and centered on the pore. Coordinate
files in PDBQT format were generated from the PduA crystal structure and the PEP-FOLD
models of each peptide. For the peptides, rotatable bonds were defined for the side chains while
Kollman United Atom charges were assigned to both the hexamer and the peptides. The pose
computed by Vina with the lowest energy score was subsequently considered as the starting
point for FlexPepDock. In this second stage, we ran 10000 simulations where the peptide was
completely refolded and docked into the PduA hexamer. After ranking the 10 000 poses by
lowest Rosetta energy, the top 500 poses were collapsed into clusters for which the internal
RMSD was less than 2.5 Å. Finally, we picked the definitive model as the one with the lowest
energy among the two most populated clusters.

For the PduU-PduV case, we used a standard RosettaDock protocol where the input includ-
ed coordinates of both partners in their unbound state, typically those from the PduU hexamer
and and the PduV homology model. The number of simulations, the ranking, clustering and
selecting methods were identical to the FlexPepDock procedure, while the allowed flexibility in
this case is limited to the side chains.
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Two-hybrid assay on the PduU-PduV pair
To test for interactions between PduU and PduV, the BacterioMatch II two-hybrid system
(Agilent technologies) was used according to the manufacturer’s instructions with the follow-
ing modification: co-transformation was carried out by using 30 ng each of the bait and prey
vector. To construct the needed plasmids, pduU and pduV DNA sequences were amplified by
PCR and then restricted and ligated into pBT for expression as fusions with the λcI protein,
and into pTRG for expression as fusions with the RNAPα protein. Ligation reactions were
used to transform E. coli XL1-Blue MRF’. Plasmid DNA was purified using a Qiagen mini prep
kit, and all clones were verified by DNA sequencing. Self-activation by each recombinant bait
and prey was tested before the two-hybrid interaction assays to determine if the bait or prey
was capable of activating the reporter cassette on its own. Determination of protein-protein in-
teraction was carried out by co-transforming BacterioMatch II validation reporter competent
cells using recombinant bait and target.

Supporting Information
S1 Fig. Receiver Operating Characteristic(ROC) curves for the RF classifier with different
combination of co-evolution descriptors. The quality of the RF classifier was assessed for
three different combinations of coevolution descriptors: One combines the descriptors based
on direct relationships between two proteins (A and B in Fig. 1) and exhibits an Area under the
ROC Curve(AUC) of 0.47(green). The second scenario, which combines only the descriptors
based on comparison between the Tree Of Life and one of the protein (A or B) obtains an AUC
of 0.67(purple). A third case that uses all descriptors yields the best performance with an AUC
of 0.75 (blue).
(TIF)

S2 Fig. Assessment of the classifier performance using incremental combinations of coevo-
lution descriptors. AUC values were calculated after running the RF classifier with different
incremental combinations of the descriptors, starting from the most accurate and adding the
next best one at a time. Here again the classifier yields the best performance when combining
all the descriptors.
(TIF)

S1 Dataset. List of probabilities of protein-protein interactions in the Pdu MCP. Protein-
Protein interactions predicted by the RF classifier along with their respective mean probabili-
ties (PPI in bold had P>0.7 and were used for the construction of the Pdu interaction network
pictured in Fig. 3).
(DOCX)

S2 Dataset. KEGG ID of the genes encoded within the Pdu operons analyzed in this study.
(DOCX)
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