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Recent studies have significantly improved our understanding of the role microRNAs
(miRNAs) play in regulating normal hematopoiesis. miRNAs are critical for maintaining
hematopoietic stem cell function and the development of mature progeny.Thus, perhaps it
is not surprising that miRNAs serve as oncogenes and tumor suppressors in hematologic
malignancies arising from hematopoietic stem and progenitor cells, such as the myeloid
disorders. A number of studies have extensively documented the widespread dysregulation
of miRNA expression in human acute myeloid leukemia (AML), inspiring numerous
explorations of the functional role of miRNAs in myeloid leukemogenesis. While these
investigations have confirmed that a large number of miRNAs exhibit altered expression in
AML, only a small fraction has been confirmed as functional mediators of AML development
or maintenance. Herein, we summarize the miRNAs for which strong experimental
evidence supports their functional roles in AML pathogenesis. We also discuss the
implications of these studies on the development of miRNA-directed therapies in AML.
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INTRODUCTION
Hematopoietic stem cells (HSCs) exhibit the unique ability to
undergo self-renewal and to give rise to all cells of the hematopoi-
etic system throughout the lifetime of an organism (Weissman,
2000; Kondo et al., 2003). In order for HSCs to maintain
hematopoiesis, the balance between self-renewal and differen-
tiation is finely regulated under both steady-state and stress
conditions. Several molecular networks that control these pro-
cesses have been identified in recent years (Ramalho-Santos et al.,
2002; Park et al., 2003; Zhang et al., 2006; Miyamoto et al., 2007;
Deneault et al., 2009; Hope et al., 2010; Aguilo et al., 2011; Ting
et al., 2012). As a part of this effort, microRNAs (miRNAs) have
been identified as regulators of HSC maintenance and lineage
commitment (Kluiver et al., 2007; Vasilatou et al., 2010). For exam-
ple, miR-223 regulates granulopoiesis (Fazi et al., 2005), miR-221
and miR-222 negatively control erythropoiesis (Felli et al., 2005),
and miR-146, miR-150, and miR-181 promote B-lymphocyte
development (Chen et al., 2004; Zhou et al., 2007; Cameron et al.,
2008).

Given the role of miRNAs in regulating normal hematopoiesis,
it is perhaps not surprising that miRNA misexpression may con-
tribute to the development of hematopoietic malignancies such
as acute myeloid leukemia (AML). AML consists of a heteroge-
neous group of malignancies characterized by the accumulation
of immature blasts and limited production of normal blood cell
components in the bone marrow (BM). While better supportive
care practices have mildly improved the prognosis of AML in the
past two decades, approaches to treat AML have remained essen-
tially unchanged. Thus, understanding the molecular mechanisms
regulating the pathogenesis of AML is of great interest.

The importance of miRNAs in carcinogenesis has been inferred
by their localization to genomic regions that are frequently deleted

or amplified, and to their presence near translocation breakpoints,
in various human cancers (Calin et al., 2004). The relevance of
miRNAs to hematologic malignancies was first established when
miR-15 and miR-16 were shown to be the critical genetic ele-
ments deleted from chromosome 13q14 in a significant proportion
of chronic lymphocytic leukemia (CLL) patients. In the con-
text of AML, gene expression profiling of AML patient blasts
revealed a widespread deregulation of miRNAs. These studies also
established associations between different miRNA signatures and
specific molecular subtypes of disease, suggesting their potential
role in AML pathogenesis (Dixon-McIver et al., 2008; Garzon et al.,
2008a; Jongen-Lavrencic et al., 2008). The results of these studies
can be found in a number of previously published reviews (Kluiver
et al., 2006; Havelange et al., 2009; Vasilatou et al., 2010; Chung
et al., 2011).

While these gene expression analyses have been used to docu-
ment the transcriptional dysregulation of miRNAs in AML and
to identify potential diagnostic and prognostic miRNAs, they
have provided limited definitive evidence regarding the roles of
miRNAs in AML pathogenesis. In fact, few miRNAs have been
experimentally validated as mediators of initiation and/or main-
tenance of AML. In this review, we will focus our discussion on
miRNAs for which a functional link between miRNA dysregula-
tion and the development of AML has been established, including
miRNAs-125, -146, -155, -142, and -29.

miR-125
miR-125 is among one of the most extensively studied miRNAs
in the hematopoietic system. Members of the miR-125 family are
located in three highly conserved miRNA clusters throughout the
human genome. These clusters include miR-125a/miR-99b/let-7e,
miR-125b-2/miR-99a/let-7c-1, and miR-125b-1/miR-100/let-7a-2
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located on human chromosomes 19, 21, and 11, respectively. The
miR-125 family is highly conserved across species, with the same
clusters identified on chromosomes 17, 16, and 9 in the mouse
genome.

miR-125 IN HSC SELF-RENEWAL AND SURVIVAL
A number of groups have observed high expression of miR-
125 family members in HSCs and decreased expression during
myeloid differentiation, suggesting that miR-125 positively regu-
lates HSC function (O’Connell et al., 2010; Ooi et al., 2010; Gerrits
et al., 2012). O’Connell et al. (2010) ectopically expressed miR-
125b in human CD34+ cells and showed that this leads to a
significant increase in the number of CD45+ cells and to the
expansion of human stem and progenitor cells (HSPCs) in the
bone marrow of xenotransplanted mice (O’Connell et al., 2010).
Similarly, Ooi et al. (2010) ectopically expressed miR-125b at levels
35-fold higher than endogenous levels via lentiviral transduc-
tion in mouse HSCs. Upon transplantation of these transduced
HSCs, recipient mice displayed increased numbers of HSCs,
but not of other immature hematopoietic cells, in both pri-
mary and secondary recipients. miR-125b overexpression was
also shown to reduce the levels of apoptosis in HSCs, a process
likely mediated through miR-125b inhibition of the pro-apoptotic
genes Klf13 and Bmf. Thus, these findings suggest that miR-125b
promotes HSC self-renewal by promoting HSC survival (Ooi
et al., 2010). Consistent with this prediction, overexpression of
miR-125b by 100-1000 fold in HSC-enriched bone marrow sig-
nificantly improved engraftment in lethally irradiated recipients
(Gerrits et al., 2012). Similarly, Guo et al. (2010) described an 8-
fold increase in HSC number following enforced expression of
miR-125a. Lastly, 5-fluorouracil (5-FU)-treated BM cells overex-
pressing miR-125a displayed increased HSC function as measured
by day-35 cobblestone-area forming cell (CAFC) activity and long-
term transplantation assays (Gerrits et al., 2012). Therefore, both
miR-125a and miR-125b appear to be potent mediators of HSC
self-renewal.

miR-125 IN HEMATOPOIESIS AND LEUKEMIA
miR-125b can act as a tumor suppressor or an oncogene depend-
ing upon tumor type. In breast cancer, miR-125b appears to act as
a tumor suppressor, as high levels of miR-125b inhibit the expres-
sion of the proto-oncogenic proteins ERBB2 and ERBB3 (Sonoki
et al., 2005; Bousquet et al., 2008). In contrast, in prostate can-
cer, miR-125b exhibits pro-oncogenic activity, with high miR-125b
expression inducing androgen-independent growth through the
negative regulation of Bak1, a pro-apoptotic Bcl2 family mem-
ber (Shi et al., 2007). In AML, miR-125b is strongly up-regulated
in patient blasts, and both in vivo and in vitro models sug-
gest that miR-125b can promote the transformation of normal
hematopoietic cells into malignant cells.

Insight into the biological effects of miR-125b comes from
both in vitro and in vivo ectopic expression studies. miR-125b
overexpression blocks terminal (monocytic and granulocytic) dif-
ferentiation in HL60 and NB4 AML cell lines (Bousquet et al.,
2008; Klusmann et al., 2010) and confers interleukin-3 (IL-
3) growth independence to the leukemic cell line, 32Dclone3
(Bousquet et al., 2012). ABTB1 and CBFB have been identified

as miR-125b targets that may mediate these anti-apoptotic and
pro-proliferative effects (Lin et al., 2011; Bousquet et al., 2012). In
vivo, primary recipients of HSCs overexpressing miR-125b (35-
fold) display myeloid-biased differentiation and expansion at the
expense of B cells, while secondary recipients develop a lym-
phoproliferative disease. This increase in lymphocyte output is
likely due to the preferential expansion of lymphoid-biased Slam−
HSCs, as they display intrinsically higher basal apoptotic rates,
which makes them more prone to miR-125’s anti-apoptotic effects.
Furthermore, a 35-fold overexpression of miR-125b was also asso-
ciated with an expansion of common lymphoid progenitors (CLPs;
Ooi et al.,2010). Consistent with these studies, enforced expression
of miR-125a in BM cells by 1000-fold enhanced long-term recon-
stitution of all blood lineages following transplantation. This effect
persisted in secondary transplants, although it was also associated
with increased myeloid cell output (Guo et al., 2010; Gerrits et al.,
2012). The majority of these mice also exhibited a myeloprolifera-
tive neoplasm (MPN)-like phenotype that occasionally progressed
to AML beginning ∼5 months post-transplant. The AML pheno-
type persisted upon serial transplantation (Gerrits et al., 2012). In a
separate study, however, engraftment of HSCs ectopically express-
ing miR-125a declined over time in secondary recipients (Gerrits
et al., 2012), suggesting that miR-125a cannot maintain long-term
HSC self-renewal.

The pro-apoptotic gene, Bak1, was shown to be a bona fide
target of miR-125a since its co-expression with miR-125a in 5-FU-
treated BM blocked hematopoietic expansion in vitro. However,
Bak1-null mice displayed a different hematopoietic phenotype,
suggesting that miR-125a targets multiple genes to produce the
myeloproliferative phenotype (Lindsten et al., 2000, 2003). In
another study, Lin28a, a known target of miR-125, was suggested to
partially mediate miR-125’s effects on lineage commitment since
knocking down Lin28a in bone marrow cells increased myeloid
cell number and reduced the number of B cells in mice, a phe-
notype reminiscent of the effects of miR-125b overexpression.
However, leukemia did not develop in mice transplanted with
Lin28a knockdown HSCs, suggesting that Lin28a is necessary, but
not sufficient, for miR-125-driven leukemogenesis (Chaudhuri
et al., 2012).

The miR-125 overexpression studies have revealed numer-
ous phenotypes including lineage bias, enhanced HSC function,
and the induction of leukemia, raising questions regarding
the physiologic role of miR-125. It appears that the varying
phenotypes are likely due to differences in miR-125 expres-
sion levels. Mice transplanted with human fetal liver (FL) cells
expressing miR-125b at ∼1500-fold higher than endogenous
levels develop a MPN-like disorder, while slightly lower lev-
els of miR-125b expression (500-1000 fold) induce B- or T-cell
acute lymphoblastic leukemias (B-ALL, T-ALL; Bousquet et al.,
2010). Similarly, mice transplanted with 5-FU-treated BM cells
expressing approximately 100-fold higher levels of miR-125b-
1 and miR-125b-2 display expansion of all leukocyte lineages
including lymphocytes, while mice expressing miR-125b at signif-
icantly higher levels (500-1000 fold) develop a MPN-like disorder.
Although other experimental factors, such as starting HSPC
populations and methods of handling of HSCs in vitro dur-
ing viral transduction were not completely identical in these
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studies, the data suggest a strong gene dose:phenotype correla-
tion.

Consistent with miR-125b’s leukemogenic function, co-
transducing 5-FU-treated BM cells with miR-125b (overexpressed
500-fold) and the BCR-ABL fusion gene or mutant C/EBPα accel-
erated the development of leukemia (B-ALL, MPN, or mixed
leukemia with BCR-ABL, and myeloid leukemia with C/EBPα;
Bousquet et al., 2010; Enomoto et al., 2012). Furthermore, a num-
ber of studies have implicated miR-125b in the development of
acute megakaryocytic leukemia (AMKL), particularly in patients
with Down’s syndrome (DS). DS is characterized by trisomy 21;
miR-125b-2 is located on chromosome 21, and is expressed at
markedly higher levels in patients with AMKL (both DS and
non-DS related). Consistent with its role in determining the
differentiation characteristics of AMKL, ectopic expression of
miR-125b in K562 cells promotes megakaryocytic differentiation,
and enforced expression of miR-125b in megakaryocytic pro-
genitors (MPs) and megakaryocyte-erythroid progenitors (MEPs)
isolated from mouse E12.5 FL leads to increases in the size, fre-
quency, and re-plating capacity of megakaryocyte colony-forming
units (Klusmann et al., 2010).

To better understand the mechanism by which miR-125 pro-
motes megakaryocytic differentiation, investigators have studied
two miR-125b target genes, DICER1 and the tumor suppressor
ST18, both characterized as negative regulators of megakary-
opoiesis. Knocking down DICER1 or ST18 in FL cells leads
to megakaryocytic expansion, reminiscent of the phenotype
observed upon miR-125b overexpression. However, the expansion
was milder when compared to the miR-125b-driven phenotype,
suggesting that other miR-125b targets are likely involved in
this process. These studies also suggest that miR-125b aberrantly
induces self-renewal in fetal committed MPs and MEPs, as miR-
125b-2 overexpression in these cells causes them to continue to
proliferate in the presence of limited growth factors (e.g., TPO
alone) in liquid culture for >1 month. Similar results were
obtained using CD34+ cells from human cord blood (Klusmann
et al., 2010), but not adult bone marrow MEPs, suggesting that
miR-125 plays distinct roles in adult and fetal hematopoiesis. These
results provide a potential molecular basis for the robust asso-
ciation between DS and the development of AMKL, and likely
explains the higher incidence of AMKL in pediatric populations
relative to adults (Hasle, 2001).

In summary, the miR-125 family regulates self-renewal, both in
HSCs as well as fetal MP and MEPs. The variance in hematopoietic
phenotypes induced by miR-125 overexpression can be attributed,
in large part, to the level of overexpression, with lower levels
of miR-125 expression regulating hematopoietic differentiation
and proliferation and leading to myeloid (and sometimes T-cell)
expansion at the expense of B cells, while the highest levels induce
the development of a MPN-like phenotype that progresses to AML
(Table 1). The relevance of these studies to human disease is
worth considering, as miR-125 is upregulated by no more than
90-fold in myeloid malignancies (Bousquet et al., 2008). There-
fore, the high levels of miR-125 expression in these studies raise
concerns for possible non-physiologic and/or off-target effects
that may not entirely reflect miR-125’s normal biological con-
tribution to these processes. These concerns could be addressed

by developing miR-125 seed sequence mutants or through over-
expression at levels similar to that observed in patient samples.
In addition, complementary studies using additional knockdown
approaches [e.g., locked nucleic acids (LNA’s) and sponges], and
miR-125-targeted deletions could be used to determine whether
miR-125 is required for the development of leukemia in mouse
models and if it regulates the function of leukemic stem cells or
HSCs (Elmen et al., 2005; Ebert and Sharp, 2010; Chu et al., 2012).
Unfortunately, the presence of multiple miR-125 family mem-
bers and their potentially overlapping and/or redundant functions
make the generation of a miR-125-null mouse technically challeng-
ing. Finally, while the two miR-125 paralogs share the same seed
sequence, they differ in their mature sequence; thus, understand-
ing the target genes mediating the specific effects of miR-125a
and miR-125b will be an important area of investigation in the
future.

miR-146
miR-146a is located on chromosomes 5 and 11 in the human and
mouse genomes, respectively. Mature miR-146a is differentially
expressed during hematopoietic development, with relatively low
expression levels in HSPCs, and higher levels upon differentiation,
especially in activated macrophages and T-cells (Boldin et al., 2011;
Starczynowski et al., 2011; Yang et al., 2012), pointing to a potential
role in hematopoiesis. However, miR-146a is expressed ∼1.5-fold
higher in HSCs and in myeloid progenitors compared to other
progenitor subtypes (Zhao and Starczynowski, 2014). miR-146a
expression is regulated by several lineage-dependent transcription
factors including the myeloid-specific transcription factor, PU.1
(Jurkin et al., 2010; Ghani et al., 2011), and the megakaryocyte-
specific transcription factor, PLZF (Labbaye et al., 2008). In this
section, we will focus on the role of miR-146a in the innate immune
system, myelopoiesis and the development of myelodysplastic
syndromes (MDS) and AML.

miR-146 AND INNATE IMMUNITY
miR-146a has been shown to both regulate, and be regu-
lated by, the NF-kB pathway, a critical mediator of inflamma-
tory signaling, cell survival, differentiation, and proliferation
(Silverman and Maniatis, 2001; Taganov et al., 2006; Hayden
and Ghosh, 2008; Figure 1). NF-kB positively regulates miR-
146a expression by binding two consensus-binding sites in the
miR-146a promoter (Taganov et al., 2006). In contrast, miR-
146a negatively regulates the NF-kB pathway by targeting of
two positive regulators of NF-kB, tumor necrosis factor receptor-
associated factor 6 (TRAF6) and IL-1 receptor-associated kinase-1
(IRAK1; Taganov et al., 2007; Figure 1). Consistent with miR-
146a’s negative regulation of NF-kB signaling, miR-146a knockout
mice display hypersensitivity in response to lipopolysaccharide
(LPS) challenge, as evidenced by significantly elevated pro-
inflammatory cytokine production (Boldin et al., 2011). Thus,
miR-146a is an important negative regulator of innate immune
activation.

miR-146a AND NORMAL HEMATOPOIESIS
In normal hematopoiesis, miR-146a is a negative regulator of
megakaryopoiesis and granulocyte/macrophage differentiation.
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Table 1 | Summary of studies on miR-125 in hematopoiesis and leukemia.

miRNA Study Cell type 1◦ transplant 2◦ transplant Potential

targets
Timepoint

analyzed

Hematopoietic phenotype Timepoint

analyzed

Hematopoietic

phenotype

miR-125b Ooi et al. (2010),

PNAS

HSC 2.5 months 35X expression:

• Increased hematopoietic

stem cell (HSC) number

• Reduced HSC apoptosis

• GM expansion

• Reduced B cells

2.5 months • GM expansion

• Increased B cells

• Lymphoprolifera-

tive disease with

low penetrance

Pro-apoptotic

Klf13 and Bmf

miR-125b-1,

miR-125b-2

O’Connell et al.

(2010), PNAS

5-FU-treated

BM cells

2 months 100X expression:

• Expansion of all WBCs

including myeloid cells and

lymphocytes

500–1000X expression:

• Myeloproliferative disease

(MPD), as evidenced by

granulocyte/monocyte (GM)

expansion

• Reduced B cells,

• Reduced platelets and

RBCs,

• Splenomegaly

• Myeloid cell infiltration in

the liver

• Not investigated

miR-125b Bousquet et al.

(2008, 2010),

JEM, PNAS

Fetal liver

(FL) cells

4 months 500X expression:

• T-ALL

1000X expression:

• B-ALL

1500X expression:

• Myeloproliferative

neoplasm (MPN)

• Not investigated ABTB1, CBFB

miR-125a Guo et al.

(2010), PNAS

5 × 105 Total

BM

4 months 1000X expression:

• Enhanced reconstitution

• >8-fold HSC expansion

using limiting dilution

analysis

• The number of myeloid

cells predominated with a

reduced proportion of

lymphoid cells

5 months • Enhanced

reconstitution

Pro-apoptotic

Bak1

miR-125a Gerrits et al.

(2012), Blood

5–10 × 106

5-FU-treated

BM cells

2.5–5 months 1500X expression:

• Increased stem cell

number

• The number of GM and

T-cells predominated with a

reduced proportion of B

lymphoid cells

1.5–6 months • Unlike Guo et al.

(2010), reduced

engraftment of

HSCs
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FIGURE 1 | Proposed model for the effect of miR-146a deficiency in

the pathogenesis of del(5q) myelodysplastic syndromes (MDS). Loss
of one copy of miR-146a results in a decrease in its inhibitory effect on
tumor necrosis factor receptor-associated factor 6 (TRAF6 ).
TRAF6-mediated increase in IL-6 expression leads to autocrine and
paracrine effects on HSPCs. Moreover, while TRAF6 exerts autocrine

anti-apoptotic roles in HSPCs, it leads to increased apoptosis in a
paracrine manner. Thus, these observations could provide a possible
mechanism for the observed bone marrow hypercellularity in MDS bone
marrows, despite the presence of increased overall apoptosis.
Downstream mediators of TRAF6 leading to these effects are currently
under investigation.

Labbaye et al. (2008) showed that miR-146a is downregulated
during megakaryopoiesis and that this downregulation is impor-
tant for normal megakaryopoiesis. Overexpressing miR-146a in
human CD34+ cells impaired megakaryocytic proliferation, dif-
ferentiation, and maturation in vitro, while knocking down
miR-146 reversed this phenotype. These phenotypes appear to be
mediated by at least two mechanisms: (i) circumventing the neg-
ative regulation of miR-146a by PLZF, a megakaryocytic lineage
promoting transcriptional repressor, that binds to the miR-146a
promoter (Labbaye et al., 2002), and (ii) directly inhibiting CXCR4,
which is indispensible for megakaryopoiesis and contains a 3′UTR
miR-146a binding site (Avecilla et al., 2004). Together, these studies
suggest that megakaryopoiesis is controlled by the PLZF suppres-
sion of miR-146a, which in turn relieves the inhibition of CXCR4
by miR-146a. In support of this model, Starczynowski et al. (2010)
showed that knocking down miR-146 using a miRNA decoy sys-
tem in mouse HSPCs increased megakaryopoiesis in vivo through
a TRAF6-dependent pathway, and that overexpressing TRAF6
in mouse bone marrow cells resulted in a similar phenotype
(Figure 1).

Despite these data supporting a negative role for miR-146a
in megakaryopoiesis, other studies have generated contradictory
results. For instance, Opalinska et al. (2010) showed that overex-
pressing miR-146a in mouse HSCs fails to alter megakaryocyte
development or platelet production in vivo and in vitro; these

findings were confirmed in a separate study by Starczynowski
et al. (2011). These conflicting results may stem from the atten-
uation of miRNA inhibition in the presence of abundant target
transcripts, which has been previously described in other con-
texts (Arvey et al., 2010). As such, miR-146a expression may be
sufficiently high in HSCs for maximal target gene inhibition;
thus ectopic expression of miR-146a would not be expected to
induce a substantial phenotypic change, while knocking down
miR-146a would still be expected to release its inhibition of TRAF6
and increase megakaryopoiesis, consistent with early findings of
Starczynowski et al. (2010). Alternatively, the effect of miR-146a
may be context-specific, since miR-146a overexpression in human
HSPCs, specifically, has been shown to impair megakaryocytic
differentiation (Labbaye et al., 2008). Bioinformatic approaches
assigning miR-146a “inhibition indices” to its key target gene(s)
(e.g., TRAF6) in human and mouse HSPCs might help resolve
these paradoxical results (Arvey et al., 2010).

While miR-146a seems to a play a role in normal megakary-
opoiesis, it also appears to be a negative regulator of granulo-
cyte/macrophage differentiation in the context of aging. miR-
146a-null mice display no detectable hematopoietic phenotypes
under normal conditions during the first 2 months of life. While
the absence of such a phenotype might be explained, in part, by
compensatory effects of other members of the miR-146 family,
it might also be explained by a model in which miR-146a exerts
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its effects under non-homeostatic and/or stress conditions. Con-
sistent with the latter, miR-146a-null mice produce increased
numbers of granulocyte/monocyte (GM) cells with advancing
age (Boldin et al., 2011). Such GM expansions have also been
detected in young miR-146a-null mice upon repeated exposure
to LPS (Zhao et al., 2013), suggesting that chronic inflamma-
tion may contribute to the myeloproliferative phenotype observed
in aging miR-146-null mice. Furthermore, overexpressing miR-
146a in young HSPCs results in opposite effects on granulopoiesis
in young mice, suggesting that miR-146a functions as a tran-
sient positive regulator of myelopoiesis in young mice (Opalinska
et al., 2010; Starczynowski et al., 2011). Consistent with this,
transplantation of miR-146a knockdown HSPCs into lethally irra-
diated mice results in mild neutropenia (Starczynowski et al.,
2010).

In addition to its regulation of myelopoiesis, miR-146a plays a
role in HSC maintenance. miR-146a-null mice harbor decreased
numbers of CD150+CD48− LT-HSCs by 8 months of age and
HSC exhaustion by 12 months. In addition, a functional decline in
HSCs is apparent as early as 2 months of age in competitive repop-
ulation assays. These effects are predominantly cell-intrinsic since
transplanting WT HSCs into miR-146a-null and normal donors
results in minor differences. Intriguingly, miR-146a-deficient lym-
phocytes display a hyper-activated phenotype with dysregulated
cytokine production, suggesting a lymphocyte-mediated mecha-
nism for the reduction of HSC numbers. To test this possibility,
miR-146a and Rag1, a gene required for lymphocyte maturation,
were simultaneously deleted, leading to a partial rescue of the
HSC exhaustion and the myeloproliferative phenotypes observed
in miR-146a-null mice (Zhao et al., 2013). These findings are con-
sistent with the systemic autoimmunity observed in some MDS
patients (Nimer, 2008).

miR-146a AND MYELOID MALIGNANCIES
miR-146a is located within the common deleted region (CDR)
of del(5q) MDS. This deletion is associated with significantly
reduced levels of miR-146a in human bone marrow cells com-
pared to other subtypes of MDS. Similar reductions in expression
are also observed with miR-145, which is also present in the 5q
CDR (Starczynowski et al., 2010). To elucidate the role of these
miRNAs in MDS, Starczynowski et al. (2010) knocked down miR-
146a and miR-145 in mouse HSPCs and transplanted them into
lethally irradiated mice. Eight weeks following transplantation,
recipient mice exhibited thrombocytosis, variable neutropenia,
and hypolobated megakaryocytes in the bone marrow—all fea-
tures observed in human del(5q) MDS patients. Using luciferase
reporter assays, TIRAP and TRAF6 were identified as target genes
of miR-145 and miR-146a, respectively. In order to determine
whether TRAF6 is a mediator of the del(5q) MDS pheno-
type, TRAF6 was overexpressed in mouse bone marrow cells
and transplanted into recipient mice. By 12 weeks, the recipi-
ent mice developed neutropenia, thrombocytosis, and increased
hypolobated megakaryocytes in the bone marrow, and most
progressed to bone marrow failure or AML at ≥5 months
post-transplantation. In addition, knocking down miR-146a in
TRAF6-null cells failed to increase megakaryocyte colony for-
mation in vitro. Similarities between the TRAF6-induced mouse

hematopoietic phenotype and human del(5q) MDS strongly sug-
gest that down-regulation of miR-146a in HSPCs plays a critical
role in the development of MDS, largely by inhibiting TRAF6.
As TRAF proteins are key intermediaries in the activation of
canonical NF-kB signaling pathway (Bradley and Pober, 2001),
these data suggest that NF-kB may be downstream of miR-146a
and responsible for mediating a significant part of the miR-146a
phenotype. Support for this model was provided by experi-
ments in which the NF-kB p50 subunit was knocked down and
confirmed to rescue some aspects of the myeloproliferative phe-
notype of miR-146a-null mice (Zhao et al., 2011). Nevertheless,
other signaling pathways, including non-canonical NF-kB path-
ways, contribute to the miR-146a phenotype as well (Etzrodt
et al., 2012). For instance, TRAF6 is known to regulate addi-
tional signaling pathways through its E3 ubiquitin ligase domain
(Yang et al., 2009). Future studies are needed to identify path-
ways regulated by this activity of TRAF6 in miR-146a-deficient
HSPCs.

The co-occurrence of peripheral blood cytopenias with bone
marrow hypercellularity and apoptosis is frequently observed in
MDS (Boldin et al., 2011; Zhao et al., 2011). To explain this appar-
ent paradox, it has been proposed that the increase in apoptosis is
counterbalanced by a simultaneous increase in HSPC proliferation
(Lepelley et al., 1996). This possibility was investigated in TRAF6-
mutant mice that had progressed to bone marrow failure or AML.
Non-TRAF6 transduced regions of the bone marrow exhibited
elevated levels of apoptosis relative to transduced regions. This
finding raises the possibility that TRAF6 protects HSPCs from
cell death in a cell autonomous manner while simultaneously
promoting apoptosis in non-TRAF6-expressing cells in a non-
autonomous manner (Figure 1). Furthermore, megakaryocyte
expansions observed in both the transduced and non-transduced
cells in mice transplanted with miR-146a knockdown cells sug-
gest a potential paracrine mechanism inducing thrombocytosis
(Figure 1). To investigate this possibility, cytokines and growth
factors involved in megakaryopoiesis were measured. Increased
circulating IL-6, but not other cytokines, was detected in the
serum of miR-146a-chimeric mice (Kishimoto, 2005). Concurrent
transduction of dominant-negative TRAF6 into mouse HSPCs
reversed the phenotype, indicating that IL-6 induction by miR-
146a knockdown is mediated through TRAF6. Interestingly, the
leukemogenic activity of TRAF6 was not affected when overex-
pressed in IL-6-null HSPCs, suggesting that a non-IL-6 dependent
mechanism mediates the role of TRAF6 in the development of
leukemia.

Additionally, the role of miR-146a as a tumor suppressor in
MDS is supported by the development of pancytopenia and myelo-
proliferation involving the spleen, bone marrow, and secondary
lymphoid organs in aging miR-146-null mice. Consistent with
its negative regulation of myeloproliferation, miR-146a-null BM
derived macrophages (BMDM) exhibit increased rates of prolif-
eration, likely due to elevated levels of M-CSF receptor (CSF1R)
expression and M-CSF signaling (Boldin et al., 2011).

In summary, miR-146a regulates HSC maintenance as well
as megakaryocytic differentiation. It also regulates GM differ-
entiation in an age-dependent manner. Moreover, miR-146a
down-regulation contributes to the development of del(5q) MDS
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and promotes disease progression to AML through the TRAF6-
mediated induction of NF-kB and apoptosis. Additional studies
are necessary to elucidate the relative contribution of miR-146a to
del(5q) MDS pathogenesis by investigating the potential additive
or synergistic effects of miR-146a with other genes located in the 5q
deleted region (e.g., ribosomal protein RPS14; Ebert et al., 2008)
using both mouse models and primary MDS patient samples.

miR-155
Human miR-155, located on human chromosome 21, resides in
a spliced and polyadenylated non-coding RNA transcript called
the B-cell integration cluster (BIC; Tam, 2001). BIC is an evo-
lutionarily conserved RNA that was initially shown to cooperate
with c-Myc to induce lymphomas in chickens when aberrantly
activated by pro-viral integrations at a common retroviral inte-
gration site (Tam et al., 1997; Tam and Dahlberg, 2006). More
recently, studies suggest that miR-155 may also play a role in
mediating leukemogenesis. While the mechanisms underlying the
transformative activity of this non-coding RNA were a mystery
for some time, it has now become clear that BIC contains the pre-
miR-155 sequence and that it mediates its oncogenic functions
by giving rise to the mature miR-155 transcript (Lagos-Quintana
et al., 2002; van den Berg et al., 2003; Eis et al., 2005; Kluiver
et al., 2005). In this section, we will review studies that have
established a role for miR-155 in the pathogenesis of myeloid
malignancies.

miR-155 IN NORMAL AND MALIGNANT MYELOPOIESIS
During steady state hematopoiesis, miR-155 is expressed at high
levels in HSPCs and at low levels in most mature hematopoietic
cells; for example, miR-155 is expressed at high levels in ery-
throblasts relative to maturing erythroid progenitors (Georgantas
et al., 2007; Masaki et al., 2007; O’Connell et al., 2008). Moreover,
miR-155 expression increases during B- (Tam, 2001; van den Berg
et al., 2003; Eis et al., 2005; Tam and Dahlberg, 2006; Masaki et al.,
2007; Garzon et al., 2008b) and T-cell activation (Rodriguez et al.,
2007), and upon exposure of innate immune cells (e.g. mono-
cytes) to inflammatory stimuli such as LPS (Gorgoni et al., 2002;
Hayden and Ghosh, 2008; O’Connell et al., 2009). The latter likely
explains miR-155’s role in mediating innate immune responses
(Georgantas et al., 2007).

Overexpressing miR-155 in HSCs leads to the expansion of
GM cells, extramedullary hematopoiesis, and the development of
GM cells with morphologic dysplasia in C57BL/6 mice, compati-
ble with a myeloproliferative-like disorder (Garzon et al., 2008a,b;
Jongen-Lavrencic et al., 2008). miR-155 is also expressed at low
levels in mature erythroid cells, and overexpression of miR-155 in
HSCs is associated with a reduction in Ter119+ erythroid progen-
itors in the mouse bone marrow. This latter finding is consistent
with observations in human CD34+ cells overexpressing miR-
155 (Georgantas et al., 2007). miR-155 may concurrently inhibit
megakaryopoiesis, as miRNA-155-transduced K562 cells treated
with hemin, an inducer of megakaryocytic differentiation, exhibit
reduced expression of CD41 (Georgantas et al., 2007). While these
studies collectively indicate that miR-155 regulates myeloid lin-
eage commitment, the mechanisms by which miR-155 exerts its
effects – whether by negatively regulating apoptosis, promoting

commitment to the common myeloid progenitor (CMP) lineage
in HSPCs, or by increasing the rate of proliferation among myeloid
progenitors or their maturing progeny – remains unresolved and
will need to be explored in future studies.

Consistent with ectopic overexpression of miR-155 induc-
ing a myeloproliferative phenotype, several studies have shown
the upregulation of miR-155 in the bone marrow of NPM1
and FLT3-ITD-mutant AML patients (Garzon et al., 2008a,b;
Jongen-Lavrencic et al., 2008). It is also possible that the miR-
155 myeloproliferative phenotype was observed due to the effects
of miR-155 overexpression being only assessed in the transplan-
tation setting, which requires lethal irradiation, the induction of
strong inflammatory responses, and the up-regulation of miR-
155 expression in the bone marrow of recipient mice. Consistent
with this idea, altered myeloid phenotypes have not been observed
in the bone marrow or peripheral blood of miR-155-null mice
(Rodriguez et al., 2007).

MECHANISM OF ACTION OF miR-155
To determine which miR-155 target genes are required to induce
the miR-155 overexpression phenotype, O’Connell et al. (2008)
overexpressed miR-155 in RAW 264.7 myeloid cells and showed
reductions in the transcripts of several genes (Bach1, Sla, Cutl1,
Csf1r, Jarid2, Cebpβ, PU.1, Arntl, Hif1α, and Picalm) known
to play critical roles in hematopoiesis; subsequent studies have
established that miR-155 directly inhibits src homology 2 domain-
containing inositol-5-phosphatase (SHIP1) as well as CCAAT-
enhancer-binding protein-beta (CEBP-β) to mediate leukemoge-
nesis (Gorgoni et al., 2002; O’Connell et al., 2009). The functional
link between SHIP1 and miR-155 was strongly suggested by show-
ing that knocking down SHIP1 or overexpressing miR-155 in
HSPCs induces similar myeloproliferative phenotypes character-
ized by increased numbers of CD11b+ myeloid cells in the bone
marrow and spleen, decreased erythropoiesis in the bone marrow,
and splenomegaly (O’Connell et al., 2009). In contrast to miR-155,
which may require previous irradiation to mediate myeloprolifer-
ation, SHIP1-null mice display a myeloproliferative phenotype in
the absence of stress/inflammatory stimuli. This is likely due to
higher baseline levels of cell-intrinsic inflammation in SHIP1-null
mice as they are hyper-responsive to cytokine stimulation in vitro
(Helgason et al., 2000) due to the loss of SHIP1’s negative regu-
lation of cytokine signaling (Kalesnikoff et al., 2003; Leung et al.,
2009). This functional interaction is of great interest since SHIP1
was previously shown to be a tumor suppressor in AML (Luo et al.,
2003).

SHIP1 is a phosphatase that mediates the conversion of
phosphatidylinositol triphosphate (PIP3) to phosphatidylinositol
diphosphate (PIP2). PIP3 normally acts as a docking site for sig-
naling molecules in the PI3K-Akt pathway (e.g., Akt and PLC) and
helps relay the signal (Figure 2). Thus, SHIP1 blocks the activation
of the PI3K-Akt pathway (Damen et al., 1996; Ono et al., 1996).
SHIP1’s ability to suppress the development of AML is probably
mediated through this pathway (Luo et al., 2003). Since SHIP1 has
been shown to negatively regulate PI3K/Akt signaling, it would be
interesting to investigate whether miR-155-induced phenotypes
depend on the activation of this pathway. Moreover, in these
studies, the phenotypes of SHIP1 and miR-155 were investigated
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FIGURE 2 | Proposed mechanism for miR-155-mediated myeloid

leukemogenesis. Overexpression of miR-155 leads to the activation of
the PI3K-Akt pathway through negative regulation of Src Homology 2
domain-containing Inositol-5-Phosphatase (SHIP1). SHIP1 is a
phosphatase that mediates the conversion of phosphatidylinositol
triphosphate (PIP3) to phosphatidylinositol diphosphate (PIP2). PIP3

normally acts as a docking site for signaling molecules in the PI3K-Akt
pathway and helps relay the signal. Upon miR-155 overexpression and
thus, SHIP1 downregulation, PIP3 level is increased, which leads to
the activation of the PI3K-Akt pathway. Green arrows indicate
increased, and red arrows decreased activity upon miR-155
overexpression.

independently. However, the importance of SHIP1 in the miR-155
overexpression phenotype has not been explored by testing the
ability of miR-155 to induce phenotypes in the context of SHIP1
loss-of-function or deficiency. It is also unclear at which stage
of hematopoietic development the miR-155:SHIP1 interaction is
required to induce these phenotypes. It would presumably be in
an early progenitor population based on miR-155’s high levels of
expression in HSPCs.

Another miR-155 target gene, CEBP-β, appears to ensure that
the hyperproliferation under stress is myeloid in nature. CEBP-β is
a transcription factor involved in macrophage activation and the
induction of pro-inflammatory cytokines and acute phase reac-
tants (Gorgoni et al., 2002). In one study, LNA-induced in vivo
silencing of miR-155 in the splenocytes of LPS-treated mice led
to the de-repression of CEBP-β compared to LNA-control LPS-
treated mice. Moreover, antagonism of miR-155 in an AML cell line
was also accompanied by a reduction in the inflammatory cytokine
G-CSF (Worm et al., 2009). These findings suggest that miR-155
overexpression induces GM expansion by targeting CEBP-β. How-
ever, it is unclear whether such a reduction in G-CSF production

is dependent on CEBP-β, SHIP1, or both. We speculate that it is
likely mediated through SHIP1 since SHIP1-deficient mice have
been shown to exhibit increased G-CSF production (Figure 2;
Hazen et al., 2009).

Interestingly, miR-155-mediated hematopoietic malignancies
exhibit longer latencies compared to more aggressive miRNA
leukemia models, such as those induced by miR-125 overexpres-
sion. This raises the possibility that additional mutations are
required for full transformation. Intriguingly, miR-155 targets
mismatch repair genes such as hMLH1, hMSH2, and hMSH6
(Valeri et al., 2010), as well as cell-cycle regulators such as WEE1
(Tili et al., 2011). Thus, miR-155 may increase spontaneous muta-
tion rates in HSPCs, in agreement with observations made in some
solid tumor cell lines (Mantovani et al., 2008; Valeri et al., 2010; Tili
et al., 2011). It would be interesting to investigate this hypothesis
in the context of AML and to determine whehter such mutations
are required for the full manifestation of disease phenotypes.

While the cumulative data indicate that miR-155 can initiate
early events in myeloid leukemogenesis, it is not clear whether
miR-155 is required for leukemic progression or maintenance.
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Knocking down miR-155 in fully transformed AML cells or
reversibly expressing miR-155 in a progressive model of AML
would help address these important questions. If miR-155 can
be shown to regulate disease maintenance or resistance to therapy,
it would be an excellent target in the treatment of AML.

miR-142
miR-142 is located on human chromosome 17. While miR-142
is expressed in all hematopoietic tissues including the bone mar-
row, spleen and thymus, it is not expressed in non-hematopoietic
tissues. Perhaps it is not surprising that the first role ascribed
to miR-142 was in promoting the development of the T-cell and
myeloid lineages (Chen et al., 2004). miR-142’s importance as a
regulator of hematopoiesis was recently underscored by the fact
that it is the only miRNA that is recurrently mutated in AML
(Cancer Genome Atlas Research Network, 2013).

miR-142 IN NORMAL AND MALIGNANT HEMATOPOIESIS
miR-142 regulates normal hematopoiesis as well as the devel-
opment of lymphoid and myeloid leukemias. By enforcing
the expression of miR-142 in Lin− mouse bone marrow cells,
Chen et al. (2004) showed that miR-142 increases the abso-
lute numbers of T-cells, leads to a minimal decrease in B-cell
differentiation (CD19+), and slightly reduces the number of
Mac1+ Gr1− myeloid cells. miR-142 also appears to play a
role in the development of mature lymphoid malignancies, as
the miR-142 locus is 50bp from the breakpoint of t(8;17), a
cytogenetic alteration present in a subset of aggressive mature
B-cell leukemias (Gauwerky et al., 1989). This suggests that
MYC, located on chromosome 8, is translocated and regu-
lated by the upstream miR-142 promoter (Lagos-Quintana et al.,
2002). Interestingly, miR-142-3p is significantly downregulated
in ALL patients expressing the MLL-AF4 fusion gene. Ectopic
expression of miR-142-3p in MLL-AF4+ cell lines supresses
cell proliferation, induces apoptosis, and down-regulates mul-
tiple genes known to regulate self-renewal including MLL-AF4,
HOXA9, HOXA7, and HOXA10. Thus, miR-142-3p likely func-
tions as a tumor suppressor in MLL-AF4+ ALL (Dou et al.,
2013).

In addition to its role in lymphopoiesis and lymphoid malig-
nancies, miR-142 also regulates myeloid differentiation and the
development of AML. It is up-regulated during myeloid differen-
tiation in both normal and leukemic HSPCs. Overexpressing miR-
142 promotes phorbol-12-myristate-13-acetate (PMA)-induced
monocytic and all-trans retinoic acid (ATRA)-induced granu-
locytic differentiation in AML cell lines by directly targeting
the cyclin T2 (CCNT2) and “TGFβ–activated kinase 1/MAP3K7
binding protein 2” (TAB2) transcripts. In addition, miR-142-3p
levels are significantly reduced in CD34+ cells from primary
AML samples. This decrease is associated with the increased
expression of CCNT2 and TAB2, two predicted miR-142 tar-
gets. Conversely, enforced expression of miR-142-3p in HSPCs
from healthy controls and AML patients down-regulates the
expression of CCNT2 and TAB2 and promotes myeloid differ-
entiation (Wang et al., 2012b). Thus, reductions in miR-142-3p
likely result in the differentiation blockade that is characteris-
tic of AML. In support of this model, independent expression

profiling studies revealed that miR-142-3p is down-regulated in
peripheral blood mononuclear cells (PBMCs) from AML patients
(Wang et al., 2012a). Furthermore, higher miR-142 expression
correlates with a better prognosis in patients with intermediate-
risk AML (Wang et al., 2012b; Dahlhaus et al., 2013). Perhaps
the most compelling evidence supporting the role of miR-142-
3p in leukemogenesis comes from RNA-sequencing studies of
AML. Of the samples examined, 7/200 (3.5%) harbored muta-
tions in miRNAs, of which 4/7 (57%) were present in the seed
sequence of miR-142-3p. Other non-recurrent mutations identi-
fied in miRNAs were found in miR-516b1, miR-1267, miR-891a,
and miR-632. Additional studies will be required to elucidate
how miR-142 and other mutated miRNAs contribute to AML
pathogenesis. This is particularly important because the novel
seed sequences generated are predicted to alter target specificity
and it is unclear whether these mutations are loss- and/or gain-
of-function in nature (Cancer Genome Atlas Research Network,
2013).

miR-29
miR-29 family members have been shown to function both as
tumor suppressors and oncogenes in myeloid malignancies. The
miR-29 family consists of three members, miR-29a, miR-29b, and
miR-29c. The miR-29a/miR-29b-1 and miR-29b-2/miR-29c clus-
ters are present on chromosomes 7q32 and 1q23, respectively
(Hwang et al., 2007; Garzon et al., 2009a). In this section, we
describe the role of miR-29 in regulating epigenetic modifiers, cel-
lular proliferation, apoptosis, and hematopoietic differentiation,
and the role of these functional changes in AML pathogenesis.

miR-29 AND EPIGENETIC REGULATION
Myeloid malignancies frequently exhibit epigenetic alterations,
and subsets of patients with MDS, MPN, and AML have been
shown to harbor activating mutations and loss-of-function muta-
tions in master epigenetic regulators such as DNA methyltrans-
ferase 3 (DNMT3) and TET-eleven translocation 2 (TET2);
the combination of these mutations account for 33% of the
somatic mutations identified in AML (Delhommeau et al., 2009;
Langemeijer et al., 2009; Tefferi et al., 2009a,b,c; Patel et al., 2012).
Interestingly, the up-regulation of DNMT transcripts (including
DNMT1, 3A, and 3B) and reductions in TET2 enzymatic activity
have been identified in patients harboring wild-type DNMT and
TET2, suggesting that their activity is regulated by transcriptional
and post-transcriptional regulatory mechanisms (Mizuno et al.,
2001; Ko et al., 2010). In a subset of these patients, IDH mutations
are likely to account for the dysregulation of TET2 activity, while
other unidentified factors also likely alter TET2 activity (Shih et al.,
2012).

The down-regulation of miR-29b is thought to promote DNA
hypermethylation in AML since miR-29b can directly target
DNMT3A, DNMT3B, and Sp1 (a transcriptional regulator of
DNMT1; Figure 3A; Garzon et al., 2009b). This link between miR-
29 expression and methylation status in AML cells prompted the
evaluation of miR-29b as a therapeutic target in AML. Investigators
have shown that miR-29b oligonucleotide mimics recapitulate the
effects of hypomethylating agents, 5-azacytidine and decitabine,
by demethylating the promoters of tumor suppressors estrogen
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FIGURE 3 | miR-29 family members target multiple genes to

mediate their biologic effects. (A) miR-29 directly targets DNA
methyltransferase 3 (DNMT3a) and DNMT3b, and indirectly targets
DNMT1 by down-regulating Sp1, to mediate global DNA hypomethylation
in acute myeloid leukemia (AML) cells. (B) miR-29 targets TET -eleven
translocation (TET) family members, TET1, TET2, and TET 3, which may
or may not mediate global DNA hypermethylation. The down-regulation

of TETs induces aberrant self-renewal and the development of
myeloproliferative neoplasm (MPN’s). (C) miR-29 targets cyclin T2
(CCNT2) and CDK6 to promote myeloid differentiation. (D) miR-29
promotes the down-regulation of c-Kit during normal hematopoiesis.
However, the down-regulation of miR-29 in malignant hematopoiesis
promotes c-kit-driven AML by up-regulating Sp1, which increases c-Kit
expression and suppresses miR-29 expression.

receptor 1 (ESR1) and p15INK4b, and by promoting the re-
expression of these genes in AML cell lines (Garzon et al., 2009b).
These results indicate that miR-29b oligonucleotides may be an
effective therapeutic strategy in the treatment of AML.

In contrast to DNMTs, which methylate CpG islands and
generally mediate transcriptional suppression, TET family mem-
bers (TET1, TET2, and TET3) demethylate DNA by catalyzing
the conversion of 5-methylcytosine (5mC) into intermediates of
DNA methylation, including 5-hydroxymethylcytosine (5hmC),
5-formylcytosine (5fC), and/or 5-carboxylcytosine (5caC; He
et al., 2011; Ito et al., 2011). Cheng et al. (2013) found that over-
expressing any of the three miR-29 family members in mouse
bone marrow cells reduced the level of TET2 as well as its
metabolic by-product, 5hmC (Figure 3B). The reduction in 5hmC
was rescued by ectopically expressing TET2. Of note, however,
reductions in 5hmC levels in the wild-type mice transplanted
with miR-29b-transduced bone marrow cells were attributed to
global DNA hypermethylation, while direct evaluation of the
global DNA methylation (GDM) status of these cells was not
performed. Performing mass spectrometry on miR-29 overex-
pressing cells and evaluating whether the reductions in 5hmC
correlate with increases in GDM are critical, as studies identifying
reduced 5hmC as a surrogate for global DNA hypomethylation
have yielded conflicting results (Ko et al., 2010; Shih et al., 2012).

It would also be interesting to evaluate the levels of the DNMTs,
TETs, and GDM simultaneously upon miR-29 overexpression
in leukemic blasts and normal HSPCs. This would help eluci-
date whether the effect of miR-29 on DNMTs and TETs are cell
context-specific, or whether DNMTs and TETs function to pro-
mote the methylation and demethylation of distinct target genes
simultaneously.

miR-29 AND MYELOID DIFFERENTIATION
Numerous studies have demonstrated that miR-29 family mem-
bers are regulators of myeloid differentiation. Han et al. (2010)
showed that transplanting mice with HSPCs overexpressing miR-
29a results in increased myeloid and reduced lymphoid chimerism
8–12 weeks post-transplant, and is accompanied by splenomegaly
as well as megakaryocytic and granulocytic hyperplasia in the
bone marrow and spleen, consistent with a myeloproliferative
phenotype. Similarly, Wang et al. (2012b) reported that miR-29a
expression increases with PMA-induced monocytic differentia-
tion and ATRA-induced granulocytic differentiation in AML cell
lines. The latter study showed that the increase in miR-29a expres-
sion was associated with reductions in CDK6 levels upon myeloid
differentiation and reductions in CCNT2 upon monocytic dif-
ferentiation. In this study, CCNT2 and CDK6 were shown to be
authentic targets of miR-29a, and their reduced expression was
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necessary and sufficient for enhanced PMA and ATRA-induced
myeloid differentiation. These findings were validated in human
samples, as miR-29a overexpression partially reversed the differ-
entiation arrest phenotype in primary AML blasts. Moreover,
enforced expression of miR-29a in healthy CD34+ cells pro-
moted monocytic and granulocytic differentiation (Wang et al.,
2012b). These findings indicate that miR-29a regulates myeloid
differentiation, at least partially through the targeting of CCNT2
and CDK6 (Figure 3C). Additional studies have shown that
overexpressing another member of the miR-29 family, miR-29b,
promoted partial differentiation of an AML cell line, while both
miR-29b and miR-29c promoted myeloid differentiation in AML
patient CD34+ blasts (Fujimoto et al., 2007; Garzon et al., 2009b;
Cheng et al., 2013; Gong et al., 2014). Furthermore, transplanting
mouse bone marrow cells overexpressing miR-29b led to biased
myeloid differentiation, splenomegaly, and an increased percent-
age of donor-derived monocytes in the bone marrow, inducing a
chronic myelomonocytic leukemia (CMML)-like disease (Cheng
et al., 2013). Given these findings, it would be interesting to deter-
mine whether miR-29 oligonucleotides can act synergistically with
ATRA, arsenic trioxide, or ATRA-arsenic trioxide combinations in
primary AML patient blasts to evaluate the potential therapeutic
efficacy of miR-29 mimics in the treatment of acute promyelo-
cytic leukemia (APL). Combinatorial regimens including miR-29
with cytarabine and/or daunorubicin could also help elucidate its
therapeutic efficacy as a stimulant of myeloid differentiation in
non-APL myeloid leukemias.

miR-29 IN CELLULAR PROLIFERATION AND APOPTOSIS
In addition to their roles in epigenetic regulation and differen-
tiation, miR-29a and miR-29b have been shown to regulate a
number of cellular processes. A transcriptomal analysis of human
leukemia cell lines transfected with synthetic miR-29b revealed
the enrichment of genes that regulate apoptosis, cell cycle pro-
gression, and cellular proliferation. Altered expression of some of
these genes (e.g., MCL-1 and CDK6) was confirmed in primary
AML blasts following transfection with miR-29b mimics (Garzon
et al., 2009a). These changes were also accompanied by a reduc-
tion in phosphorylated Rb (pRb) due to the miR-29 targeting of
CDK6 and CCNT2. Similar findings were generated by Gong et al.
(2014), who showed that overexpressing miR-29 family members
in AML cell lines stimulates apoptosis and inhibits the G1 to S
phase cell cycle transition, phenotypes attributed to the miR-29
targeting of CCND2 and AKT2 (Gong et al., 2014; Figure 3D). In
contrast, Han et al. (2010) found that overexpressing miR-29a in
293T cells enhanced cell cycle entry without altering apoptosis.
In addition, mice overexpressing miR-29a demonstrated a devel-
opmental stage-specific increase in proliferation, as multipotent
progenitors (MPPs) showed increased numbers of cycling cells
while more committed GMP and CMPs did not (Han et al., 2010).
These findings suggest that the cellular consequences of miR-29
overexpression are cell-type specific and may depend on the state
of differentiation and/or transformation.

miR-29 AS AN ONCOGENE AND TUMOR SUPPRESSOR
While overexpression studies in leukemic cell lines have shown that
miR-29 family members are able to regulate leukemic cell growth

and survival, other studies have revealed the leukemogenic poten-
tial of the miR-29 family. Han et al. (2010) showed that CMPs
and GMPs from mice overexpressing miR-29a establish long-
term, differentiating grafts in transplantation studies, suggesting
that miR-29a overexpression is sufficient to induce aberrant
self-renewal in CMPs and GMPs, but not a fully transformed phe-
notype. Mice serially transplanted with bulk splenocytes or bone
marrow cells from these miR-29a overexpressing mice developed
organomegaly and increased myeloid blasts in the bone marrow
and spleen, consistent with transformation into AML. Similarly,
Cheng et al. (2013) showed that mice transplanted with bone
marrow cells overexpressing miR-29b developed splenomegaly
and an increase in myeloid bias index, which are accompanied
by reductions in 5hmC levels. Interestingly, the authors found
that expression of TET2 partially rescued this malignant pheno-
type. It remains unclear whether overexpression of TET1, TET2,
and TET3 together could completely rescue the phenotype. All
of the TET family members regulate DNA methylation and are
bona fide targets of miR-29b, making this a possibility. Nev-
ertheless, these studies indicate that the enforced expression of
miR-29a in immature hematopoietic cells drives leukemic trans-
formation, and that this phenotype can be attributed, at least in
part, to the targeting of TET2. Moreover, the Han et al. (2010)
study emphasizes the need to investigate the function of poten-
tial leukemia-modifying genes in a cell-specific manner since the
functional consequences can vary dramatically based on cell con-
text. This point is well-illustrated by the finding that miR-29a
is up-regulated in patient LSC-enriched fractions and not in
non-LSC fractions, which in contrast to other studies that have
shown reduced miR-29a levels in whole PBMNC’s and BM CD34+
leukemic blasts (Wang et al., 2012b; Gong et al., 2014). Thus, the
down-regulation of miR-29’s observed in previous studies may be
due to the inclusion and dominance of non-LSC’s in the evaluated
cells.

Consistent with miR-29’s role in promoting leukemogenesis,
it appears that inhibiting miR-29 in established blasts may be a
promising therapeutic strategy. Injection of precursor miR-29b
oligonucleotides in mice engrafted with K562 tumors signifi-
cantly reduce their size (Garzon et al., 2009a). Subsequent studies
showed that a transferrin-conjugated nanoparticle delivery system
for synthetic miR-29b (Tf-NP-miR-29b) suppressed AML growth,
impaired colony formation, and reduced cell viability in AML
patient samples. Tf-NP-miR-29b also reduced spleen weight and
increased overall survival in NSG mice transplanted with AML
cell lines (Huang et al., 2013). Similarly, intravenous injections
of NOD/SCID mice engrafted with AML with viral particles
expressing miR-29a, -29b, and -29c reduced the number of CD33+
leukemic cells in the bone marrow and spleen by inhibiting pro-
liferation and stimulating apoptosis (Gong et al., 2014). While
the mechanism of leukemic blast clearance was not examined in
these studies, others have suggested that the therapeutic effect of
miR-29b may be mediated through its regulation of c-Kit through a
feedback-loop (Liu et al., 2010). This is not surprising considering
that increased c-Kit activation, either through stimulation by its
ligand or secondary gain-of-function mutations, has been shown
to drive leukemogenesis. In this study, c-Kit was shown to acti-
vate the transcription factor, MYC, which subsequently binds to,
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and inhibits, the miR-29b promoter (Liu et al., 2010). The reduc-
tion in miR-29b expression was shown to positively regulate Sp1
levels, thus allowing the formation of the Sp1/NF-kB complex,
which binds regulatory sequences to increase c-Kit expression. It
was also shown to positively regulate the formation of a com-
plex with HDAC1, which further suppresses miR-29b expression.
In support of this model, pharmacologic inhibition of c-Kit with
bortezomib in NOD/SCID mice transplanted with c-Kit mutant
AML cells (FDC-P1/KITmut ) abrogated c-Kit mRNA levels and
increased miR-29b expression. In addition, FDC-P1/KITmut cells
exhibited reduced tumor size, tumor weight, and engraftment effi-
ciency upon transfection with synthetic miR-29b. These findings
demonstrate the therapeutic potential of miR-29 oligonucleotides
and suggest that the down-regulation of miR-29b is particu-
larly critical to leukemogenesis in c-Kit-driven AML (Liu et al.,
2010).

CONCLUSION AND FUTURE DIRECTIONS
Although numerous miRNAs are dysregulated in AML, only
a few have been shown to play functional roles in myeloid
leukemogenesis (Table 2). Collectively, the data indicate that
these miRNAs induce hematopoietic malignancies by exerting
their biologic effects in developmental stage-specific manners.
A summary of the predicted stage at which each of these miR-
NAs exerts its leukemogenic function is indicated in Figure 4.
It is also worth mentioning that miRNAs may act in non-
hematopoietic cell-intrinsic manners to promote leukemogenesis,
as demonstrated by Raaijmakers et al. (2010), who showed that
deleting the miRNA processing enzyme, DICER1, in mouse
osteoprogenitors induces MDS which progresses to AML. These
studies suggest that the absence of one or more miRNAs in
bone marrow stromal cells may increase the predisposition
towards developing myeloid malignancies (Raaijmakers et al.,
2010).

miRNAs with leukemogenic roles have been identified pre-
dominantly through high-throughput gene expression analyses.
Despite the high number of miRNAs exhibiting altered expression
in AML, sequencing of patient samples has revealed that somatic
mutations in miRNAs are relatively rare events in human AML
(Cancer Genome Atlas Research Network, 2013). Thus, miRNA
deregulation in AML patients is largely due to alterations in
transcriptional and/or post-transcriptional regulation. Further-
more, miRNAs are normally processed post-transcriptionally in a
multi-step process involving DROSHA and DICER, each of which
is regulated by several signaling molecules and RNA-binding
proteins (Obernosterer et al., 2006; Thomson et al., 2006; Winter
et al., 2009; Saj and Lai, 2011). Thus, understanding the complex
regulation of the miRNAs that have been implicated in AML may
provide novel avenues for therapeutic development. Moreover,
many miRNAs are organized in clusters throughout the genome,
and are expressed in a concerted manner. Paradoxically, however,
individual members of a cluster can function in different or even
opposite manners. For example, while miR-125 can serve as an
oncogene in the context of breast cancer (Iorio et al., 2005; Scott
et al., 2007), its cluster partner, let-7, functions as a tumor sup-
pressor in the same context (Lee and Dutta, 2007). These results
suggest that miRNAs residing in clusters undergo different modes

of post-transcriptional regulation. Thus, differing modes of post-
transcriptional regulation of miRNAs within the same cluster
might explain how such miRNAs serve opposing roles.

Although few miRNAs are mutated in human AML, many are
known to be located in the proximity of breakpoints in chromo-
somal translocations/deletions (Calin et al., 2004). These observa-
tions suggest that miRNAs may contribute to disease pathogenesis,
while the presence of additional genes in the deleted/translocated
regions implies a potential cooperativity with miRNAs in leuke-
mogenesis. In line with this idea, it is known that AML is a
multi-step process, the understanding of which requires functional
analyses of co-occurring disease alleles (Jan et al., 2012; Chen et al.,
2014). This raises the possibility that genetic interaction stud-
ies between miRNAs and concurrently dysregulated or mutated
genes might provide more accurate models to study disease. For
instance, miR-146a is located in the del(5q) region observed in
some MDS patients along with about 40 other genes, including
the ribosomal protein RPS14 (Ebert et al., 2008). While miR-146a
studies have provided precious insight into our understanding of
MDS biology, they only partially recapitulate features of MDS.
Thus, experiments employing approaches that evaluate loss-of-
function del(5q) genes in combination with miR-146a loss might
provide a more nuanced understanding of MDS pathogenesis.

Identification of target genes through which the pathogenic
miRNAs in AML exert their effects is critical to understanding dis-
ease biology. A limited number of targets have been validated for
each of these miRNAs and thus identification of bona fide target
genes remains a major challenge in the field. Whereas some miR-
NAs mediate their function through a limited number of key target
genes, others exert their action through many. To identify target
genes mediating the effect of individual miRNAs, advanced tar-
get identification methods such as whole proteomics approaches
and biochemical analyses of miRNA:mRNA interactions will be
required. These techniques include RISC complex pull-down, RIP-
Seq, HITS-CLIP and PAR-CLIP, which have been summarized in
other reviews (Carroll et al., 2014). Furthermore, selective gener-
ation of knockin mouse models with mutations in the miRNA
binding sites in the 3′-UTR of potential target genes (Jan et al.,
2012) would assist the identification of relevant miRNA targets.
Finding such target genes may provide additional promising ther-
apeutic targets that have not yet been described (Garzon et al.,
2010).

There are documented examples of the successful delivery of
miRNA oligonucleotides to target tissues in vivo including the
lung (Trang et al., 2011) and liver (Kota et al., 2009). Given the
critical role of miRNAs in leukemogenesis, investigators have eval-
uated whether they might be effective therapeutic targets in AML.
The potential use of miRNAs as therapeutic agents or targets in
AML is underscored by their ability to regulate multiple signaling
pathways that contribute to leukemogenesis (Li et al., 2007; Croce,
2008).

Two strategies may be employed to modulate miRNA activ-
ity: (i) enhancing the function of tumor supressor miRNAs using
miRNA mimics, and (ii) inhibiting the function of oncogenic miR-
NAs by limiting their ability to bind to gene targets using antisense
oligos or miRNA sponges (Garzon et al., 2010). For such therapies
to find their way into the clinic, efficient and safe delivery of
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Table 2 | Summary of miRNAs with validated functional relevance in the pathogenesis of myeloid malignancies.

miRNA Location Expression In vitro phenotype In vivo phenotype Bona fide

targets
Human Mouse

miR-125 Chr 19,

21, 11

Chr 17,

16, 9

• Highly expressed in HSCs

• Reduced with differentiation

• Increases HSC self-

renewal, decreases apoptosis,

confers aberrant self-renewal

in FL megakaryocyte erythroid

progenitors (MEPs) and

megakaryocytic progenitors

(MPs)

• Enhances long-term reconstitution,

reduces apoptosis in HSCs and progenitors,

increases myeloid output at the expense of

B cells. can lead to ALL at high doses as well

as MPN/AML at very high doses

Klf13, Bmf,

Bak1, Dicer,

ST18, ABTB1,

CBFB

miR-142 Chr 17 Chr 11 • Most highly expressed in

lymphoid and myeloid

progenitors

• Downregulated in AML

patient samples

• Ectopic expression in

MLL-AF4+ cell lines

suppressed cell proliferation,

induced apoptosis, and

downregulated multiple genes

known to regulate

self-renewal

• Ectopic expression in in

acute myeloid leukemia (AML)

cell lines increases PMA– and

ATRA-induced differentiation

Not investigated Cyclin T2,

TAB2

miR-146 Chr 5 Chr 11 • Expressed at relatively low

levels in stem and progenitors

and upregulated upon

differentiation

• Highly expressed in

macrophages and T cells

• Low expression in

megakaryocytic progenitors

(MPs)

• Overexpression leads to

decreased megakaryopoiesis

in human CD34+ HSPCs

• miR-146-null mice display hypersensitivity

to LPS challenge, increased

megakaryopoiesis. They also display

pancytopenia and GM expansion with aging

• miR-146 KD in murine HSPCs followed by

transplantation results in increased

megakaryopoiesis, and an MDS phenotype

with thrombocytosis and neutropenia

TRAF6, IRAK1

miR-155 Chr 21 Chr 16 • Relatively higher basal

expression in HSPCs

compared to more mature

populations, such as erythroid

progenitors

• Induced in innate immune

cells upon inflammatory

stimuli as well as activated B

and T cells

• Ectopic expression of

miR-155 in K562 cells leads to

a decreased CD41+
megakaryocytic differentiation

• Enforced expression in HSCs leads to

development of a MPN/MPD with abnormal

GM morphology, along with a reduction in

erythroid progenitors in the bone marrow

SHIP1, Cebpβ

miR-29 Chr 7, 1 Chr 6, 1 • Highest levels of expression

in HSCs and MPPs, followed

by LSCs, CMPs, MEPs, and

GMPs; levels decrease with

differentiation

• Increased in patient LSCs,

but not in non-LSCs

• Ectopic miR-29 expression

in AML cell lines leads to

global DNA hypomethylation

and reduces 5hmC levels;

• Positively regulates myeloid

differentiation, proliferation,

and apoptosis

• Ectopic expression reduces the size of

K562-laden tumors, via inhibiting proliferation

and stimulating apoptosis and increases OS

of mice with AML

• Ectopic expression in early hematopoietic

cells leads to induction of aberrant GMP

self-renewal and the development of MPD

with progression to AML

DNMT3A,

DNMT3B, Sp1,

TET family,

CDK6, CCNT2,

AKT2, HBP1
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FIGURE 4 | Summary of proposed developmental stages at which

microRNAs (miRNAs) functionally contribute in leukemogenesis. The
stages at which each of the five miRNAs described in this review exert their
effect in hematopoiesis and leukemogensis are depicted. miR-125 is a
positive regulator of HSC self-renewal, and depending on its level of
expression, can lead to biased myeloid or lymphoid differentiation. miR-146a
regulates HSC maintenance as well as megakaryocytic differentiation.

miR-155 is a positive regulator of GM differentiation and a negative regulator
of erythroid differentiation. miR-29 is a positive regulator of myeloid
differentiation, and overexpression can induce aberrant self-renewal of
GMP’s. HSC, hematopoietic stem cell; CMP, common myeloid progenitor;
MEP, megakaryocyte erythroid progenitor; RBC, red blood cell; GMP,
granulocyte macrophage progenitor; CLP, common lymphoid progenitor; ETP,
early thymic progenitor; NK, Natural Killer cell.

the targeting agents are required. Several groups have developed
different delivery systems for miRNA targeting treatments (van
Rooij and Kauppinen, 2014), including: (i) non-viral oligonu-
cleotides; (ii) viral constructs overexpressing the miRNA or its
antagomir (anti-sense oligo); and (iii) small-molecule delivery
systems, where miRNA oligonucleotides are conjugated to small-
molecules to ensure more efficient delivery (Ibrahim et al., 2011;
Pramanik et al., 2011). Validating the optimal method of delivery
will represent a significant challenge for miRNA-directed therapy
in the future.

Among the leukemogenic miRNAs discussed in this review,
miR-155 and miR-29 have been extensively studied as thera-
peutic targets in other contexts. Successful delivery of miR-155
oligonucleotides to the bone marrow has been confirmed, with
the inhibition of miR-155 using a LNA (Takeshita et al., 2010)
antagomir that was shown to alleviate symptoms of graft-versus-
host disease (Ranganathan et al., 2012). In addition, systemically
administered LNA antagonists against miR-155 in a mouse inflam-
mation model inhibited miR-155’s inflammatory effects in mouse
splenocytes (Worm et al., 2009). In the context of AML, miR-29b
oligonucleotide mimics appear to be promising therapies based on
their effects on AML patient samples in vitro (Garzon et al., 2009b)
and in K562-driven tumors in vivo (Garzon et al., 2009a). While

miR-29b directed treatments show promise, these studies have not
been performed using systemically delivered miRNA mimics. We
expect to see such studies in the future aimed at identifying and
validating more efficient and specific in vivo delivery systems for
the treatment of AML.

ACKNOWLEDGMENTS
Alec W. Stranahan is supported by NIH T32 training grant
GM008539. Montreh Tavakkoli is a Howard Hughes Medical
Institute Medical Research Fellow.

REFERENCES
Aguilo, F., Avagyan, S., Labar, A., Sevilla, A., Lee, D. F., Kumar, P., et al. (2011).

Prdm16 is a physiologic regulator of hematopoietic stem cells. Blood 117, 5057–
5066. doi: 10.1182/blood-2010-08-300145

Arvey, A., Larsson, E., Sander, C., Leslie, C. S., and Marks, D. S. (2010). Target
mRNA abundance dilutes microRNA and siRNA activity. Mol. Syst. Biol. 6:363.
doi: 10.1038/msb.2010.24

Avecilla, S. T., Hattori, K., Heissig, B., Tejada, R., Liao, F., Shido, K., et al. (2004).
Chemokine-mediated interaction of hematopoietic progenitors with the bone
marrow vascular niche is required for thrombopoiesis. Nat. Med. 10, 64–71. doi:
10.1038/nm973

Boldin, M. P., Taganov, K. D., Rao, D. S., Yang, L., Zhao, J. L., Kalwani, M., et al.
(2011). miR-146a is a significant brake on autoimmunity, myeloproliferation,
and cancer in mice. J. Exp. Med. 208, 1189–1201. doi: 10.1084/jem.20101823

Frontiers in Genetics | Non-Coding RNA November 2014 | Volume 5 | Article 361 | 14

http://www.frontiersin.org/Non-Coding_RNA/
http://www.frontiersin.org/Non-Coding_RNA/archive


Khalaj et al. microRNA’s in AML/MDS

Bousquet, M., Harris, M. H., Zhou, B., and Lodish, H. F. (2010). MicroRNA
miR-125b causes leukemia. Proc. Natl. Acad. Sci. U.S.A. 107, 21558–21563. doi:
10.1073/pnas.1016611107

Bousquet, M., Nguyen, D., Chen, C., Shields, L., and Lodish, H. F.
(2012). MicroRNA-125b transforms myeloid cell lines by repressing mul-
tiple mRNA. Haematologica 97, 1713–1721. doi: 10.3324/haematol.2011.
061515

Bousquet, M., Quelen, C., Rosati, R., Mansat-De Mas, V., La Starza,
R., Bastard, C., et al. (2008). Myeloid cell differentiation arrest by miR-
125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the
t(2;11)(p21;q23) translocation. J. Exp. Med. 205, 2499–2506. doi: 10.1084/jem.
20080285

Bradley, J. R., and Pober, J. S. (2001). Tumor necrosis factor receptor-associated
factors (TRAFs). Oncogene 20, 6482–6491. doi: 10.1038/sj.onc.1204788

Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S.,
et al. (2004). Human microRNA genes are frequently located at fragile sites and
genomic regions involved in cancers. Proc. Natl. Acad. Sci. U.S.A. 101, 2999–3004.
doi: 10.1073/pnas.0307323101

Cameron, J. E., Yin, Q., Fewell, C., Lacey, M., McBride, J., Wang, X., et al. (2008).
Epstein-Barr virus latent membrane protein 1 induces cellular MicroRNA miR-
146a, a modulator of lymphocyte signaling pathways. J Virol. 82, 1946–1958. doi:
10.1128/JVI.02136-07

Cancer Genome Atlas Research Network. (2013). Genomic and epigenomic land-
scapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074.
doi: 10.1056/NEJMoa1301689

Carroll, A. P., Goodall, G. J., and Liu, B. (2014). Understanding principles of miRNA
target recognition and function through integrated biological and bioinformatics
approaches. Wiley Interdiscip. Rev. RNA 5, 361–379. doi: 10.1002/wrna.1217

Chaudhuri, A. A., So, A. Y., Mehta, A., Minisandram, A., Sinha, N., Jonsson,
V. D., et al. (2012). Oncomir miR-125b regulates hematopoiesis by target-
ing the gene Lin28A. Proc. Natl. Acad. Sci. U.S.A. 109, 4233–4238. doi:
10.1073/pnas.1200677109

Chen, C. Z., Li, L., Lodish, H. F., and Bartel, D. P. (2004). MicroRNAs modulate
hematopoietic lineage differentiation. Science 303, 83–86. doi: 10.1126/sci-
ence.1091903

Chen, C., Liu, Y., Rappaport, A. R., Kitzing, T., Schultz, N., Zhao, Z., et al. (2014).
MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia.
Cancer Cell 25, 652–665. doi: 10.1016/j.ccr.2014.03.016

Cheng, J., Guo, S., Chen, S., Mastriano, S. J., Liu, C., D’Alessio, A. C., et al.
(2013). An extensive network of TET2-targeting MicroRNAs regulates malignant
hematopoiesis. Cell Rep. 5, 471–481. doi: 10.1016/j.celrep.2013.08.050

Chu, S. H., Heiser, D., Li, L., Kaplan, I., Collector, M., Huso, D., et al. (2012).
FLT3-ITD knockin impairs hematopoietic stem cell quiescence/homeostasis,
leading to myeloproliferative neoplasm. Cell Stem Cell 11, 346–358. doi:
10.1016/j.stem.2012.05.027

Chung, S. S., Hu, W., and Park, C. Y. (2011). The role of micrornas in hematopoietic
stem cell and leukemic stem cell function. Ther. Adv. Hematol. 23, 17–334. doi:
10.1177/2040620711410772

Croce, C. M. (2008). Oncogenes and cancer. N. Engl. J. Med. 358, 502–511. doi:
10.1056/NEJMra072367

Dahlhaus, M., Roolf, C., Ruck, S., Lange, S., Freund, M., and Junghanss, C. (2013).
Expression and prognostic significance of hsa-miR-142-3p in acute leukemias.
Neoplasma 60, 432–438. doi: 10.4149/neo_2013_056

Damen, J. E., Liu, L., Rosten, P., Humphries, R. K., Jefferson, A. B., Majerus,
P. W., et al. (1996). The 145-kDa protein induced to associate with Shc by
multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-
triphosphate 5-phosphatase. Proc. Natl. Acad. Sci. U.S.A. 93, 1689–1693. doi:
10.1073/pnas.93.4.1689

Delhommeau, F., Dupont, S., Della Valle, V., James, C., Trannoy, S., Massé, A., et al.
(2009). Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360, 2289–2301.
doi: 10.1056/NEJMoa0810069

Deneault, E., Cellot, S., Faubert, A., Laverdure, J. P., Fréchette, M., Chagraoui, J.,
et al. (2009). A functional screen to identify novel effectors of hematopoietic stem
cell activity. Cell 137, 369–379. doi: 10.1016/j.cell.2009.03.026

Dixon-McIver, A., East, P., Mein, C. A., Cazier, J. B., Molloy, G., Chaplin, T.,
et al. (2008). Distinctive patterns of microRNA expression associated with kary-
otype in acute myeloid leukaemia. PLoS ONE 3:e2141. doi: 10.1371/journal.pone.
0002141

Dou, L., Li, J., Zheng, D., Li, Y., Gao, X., Xu, C., et al. (2013). MicroRNA-142-3p
inhibits cell proliferation in human acute lymphoblastic leukemia by targeting
the MLL-AF4 oncogene. Mol. Biol. Rep. 40, 6811–6819. doi: 10.1007/s11033-013-
2798-6

Ebert, B. L., Pretz, J., Bosco, J., Chang, C. Y., Tamayo, P., Galili, N., et al. (2008). Iden-
tification of RPS14 as a 5q-syndrome gene by RNA interference screen. Nature
451, 335–339. doi: 10.1038/nature06494

Ebert, M. S., and Sharp, P. A. (2010). MicroRNA sponges: progress and possibilities.
RNA 16, 2043–2050. doi: 10.1261/rna.2414110

Eis, P. S., Tam, W., Sun, L., Chadburn, A., Li, Z., Gomez, M. F., et al.
(2005). Accumulation of miR-155 and BIC RNA in human B cell lym-
phomas. Proc. Natl. Acad. Sci. U.S.A. 102, 3627–3632. doi: 10.1073/pnas.
0500613102

Elmen, J., Thonberg, H., Ljungberg, K., Frieden, M., Westergaard, M., Xu, Y., et al.
(2005). Locked nucleic acid (LNA) mediated improvements in siRNA stability
and functionality. Nucleic Acids Res. 33, 439–447. doi: 10.1093/nar/gki193

Enomoto, Y., Kitaura, J., Shimanuki, M., Kato, N., Nishimura, K., Takahashi, M.,
et al. (2012). MicroRNA-125b-1 accelerates a C-terminal mutant of C/EBPalpha
(C/EBPalpha-C(m))-induced myeloid leukemia. Int. J. Hematol. 96, 334–341.
doi: 10.1007/s12185-012-1143-5

Etzrodt, M., Cortez-Retamozo, V., Newton, A., Zhao, J., Ng, A., Wildgruber, M.,
et al. (2012). Regulation of monocyte functional heterogeneity by miR-146a and
Relb. Cell Rep. 1, 317–324. doi: 10.1016/j.celrep.2012.02.009

Fazi, F., Rosa, A., Fatica, A., Gelmetti, V., De Marchis, M. L., Nervi, C., et al.
(2005). A minicircuitry comprised of microRNA-223 and transcription factors
NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123, 819–831. doi:
10.1016/j.cell.2005.09.023

Felli, N., Fontana, L., Pelosi, E., Botta, R., Bonci, D., Facchiano, F., et al. (2005).
MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell
growth via kit receptor down-modulation. Proc. Natl. Acad. Sci. U.S.A. 102,
18081–18086. doi: 10.1073/pnas.0506216102

Fujimoto, T., Anderson, K., Jacobsen, S. E., Nishikawa, S. I., and Nerlov, C.
(2007). Cdk6 blocks myeloid differentiation by interfering with Runx1 DNA
binding and Runx1-C/EBPalpha interaction. EMBO J. 26, 2361–2370. doi:
10.1038/sj.emboj.7601675

Garzon, R., Volinia, S., Liu, C. G., Fernandez-Cymering, C., Palumbo, T., Pichiorri,
F., et al. (2008a). MicroRNA signatures associated with cytogenetics and prognosis
in acute myeloid leukemia. Blood 111, 3183–3189. doi: 10.1182/blood-2007-07-
098749

Garzon, R., Garofalo, M., Martelli, M. P., Briesewitz, R., Wang, L., Fernandez-
Cymering, C., et al. (2008b). Distinctive microRNA signature of acute myeloid
leukemia bearing cytoplasmic mutated nucleophosmin. Proc. Natl. Acad. Sci.
U.S.A. 105, 3945–3950. doi: 10.1073/pnas.0800135105

Garzon, R., Heaphy, C. E., Havelange, V., Fabbri, M., Volinia, S., Tsao, T., et al.
(2009a). MicroRNA 29b functions in acute myeloid leukemia. Blood 114, 5331–
5341. doi: 10.1182/blood-2009-03-211938

Garzon, R., Liu, S., Fabbri, M., Liu, Z., Heaphy, C. E., Callegari, E., et al. (2009b).
MicroRNA-29b induces global DNA hypomethylation and tumor suppressor
gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and
3B and indirectly DNMT. Blood 113, 6411–6418. doi: 10.1182/blood-2008-07-
170589

Garzon, R., Marcucci, G., and Croce, C. M. (2010). Targeting microRNAs in can-
cer: rationale, strategies and challenges. Nat. Rev. Drug Discov. 9, 775–789. doi:
10.1038/nrd3179

Gauwerky, C. E., Huebner, K., Isobe, M., Nowell, P. C., and Croce, C. M.
(1989). Activation of MYC in a masked t(8;17) translocation results in an
aggressive B-cell leukemia. Proc. Natl. Acad. Sci. U.S.A. 86, 8867–8871. doi:
10.1073/pnas.86.22.8867

Georgantas, R. W. III., Hildreth, R., Morisot, S., Alder, J., Liu, C. G., Heimfeld, S.,
et al. (2007). CD34+ hematopoietic stem-progenitor cell microRNA expression
and function: a circuit diagram of differentiation control. Proc. Natl. Acad. Sci.
U.S.A. 104, 2750–2755. doi: 10.1073/pnas.0610983104

Gerrits, A., Walasek, M. A., Olthof, S., Weersing, E., Ritsema, M., Zwart, E., et al.
(2012). Genetic screen identifies microRNA cluster 99b/let-7e/125a as a regulator
of primitive hematopoietic cells. Blood 119, 377–387. doi: 10.1182/blood-2011-
01-331686

Ghani, S., Riemke, P., Schönheit, J., Lenze, D., Stumm, J., Hoogenkamp, M.,
et al. (2011). Macrophage development from HSCs requires PU.1-coordinated

www.frontiersin.org November 2014 | Volume 5 | Article 361 | 15

http://www.frontiersin.org/
http://www.frontiersin.org/Non-Coding_RNA/archive


Khalaj et al. microRNA’s in AML/MDS

microRNA expression. Blood 118, 2275–2284. doi: 10.1182/blood-2011-02-
335141

Gong, J. N., Yu, J., Lin, H. S., Zhang, X. H., Yin, X. L., Xiao, Z., et al. (2014).
The role, mechanism and potentially therapeutic application of microRNA-
29 family in acute myeloid leukemia. Cell Death Differ. 21, 100–112. doi:
10.1038/cdd.2013.133

Gorgoni, B., Maritano, D., Marthyn, P., Righi, M., and Poli, V. (2002). C/EBP
beta gene inactivation causes both impaired and enhanced gene expression and
inverse regulation of IL-12 p40 and p35 mRNAs in macrophages. J. Immunol.
168, 4055–4062. doi: 10.4049/jimmunol.168.8.4055

Guo, S., Lu, J., Schlanger, R., Zhang, H., Wang, J. Y., Fox, M. C., et al. (2010).
MicroRNA miR-125a controls hematopoietic stem cell number. Proc. Natl. Acad.
Sci. U.S.A. 107, 14229–14234. doi: 10.1073/pnas.0913574107

Han, Y. C., Park, C. Y., Bhagat, G., Zhang, J., Wang, Y., Fan, J. B., et al. (2010).
microRNA-29a induces aberrant self-renewal capacity in hematopoietic progen-
itors, biased myeloid development, and acute myeloid leukemia. J. Exp. Med. 207,
475–489. doi: 10.1084/jem.20090831

Hasle, H. (2001). Pattern of malignant disorders in individuals with Down’s
syndrome. Lancet Oncol. 2, 429–436. doi: 10.1016/S1470-2045(00)00435-6

Havelange, V., Garzon, R., and Croce, C. M. (2009). MicroRNAs: new players in
acute myeloid leukaemia. Br. J. Cancer 101, 743–748. doi: 10.1038/sj.bjc.6605232

Hayden, M. S., and Ghosh, S. (2008). Shared principles in NF-kappaB signaling.
Cell 132, 344–362. doi: 10.1016/j.cell.2008.01.020

Hazen, A. L., Smith, M. J., Desponts, C., Winter, O., Moser, K., Kerr, W. G. (2009).
SHIP is required for a functional hematopoietic stem cell niche. Blood 113, 2924–
2933. doi: 10.1182/blood-2008-02-138008

He, Y. F., Li, B. Z., Li, Z., Liu, P., Wang, Y., Tang, Q., et al. (2011). Tet-mediated
formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA.
Science 333, 1303–1307. doi: 10.1126/science.1210944

Helgason, C. D., Kalberer, C. P., Damen, J. E., Chappel, S. M., Pineault, N., Krystal,
G., et al. (2000). A dual role for Src homology 2 domain-containing inositol-
5-phosphatase (SHIP) in immunity: aberrant development and enhanced
function of b lymphocytes in ship −/− mice. J. Exp. Med. 191, 781–794. doi:
10.1084/jem.191.5.781

Hope, K. J., Cellot, S., Ting, S. B., MacRae, T., Mayotte, N., Iscove, N. N., et al.
(2010). An RNAi screen identifies Msi2 and Prox1 as having opposite roles in
the regulation of hematopoietic stem cell activity. Cell Stem Cell 7, 101–113. doi:
10.1016/j.stem.2010.06.007

Huang, X., Schwind, S., Yu, B., Santhanam, R., Wang, H., Hoellerbauer, P.,
et al. (2013). Targeted delivery of microRNA-29b by transferrin-conjugated
anionic lipopolyplex nanoparticles: a novel therapeutic strategy in acute myeloid
leukemia. Clin. Cancer Res. 19, 2355–2367. doi: 10.1158/1078-0432.CCR-
12-3191

Hwang, H. W., Wentzel, E. A., and Mendell, J. T. (2007). A hexanucleotide
element directs microRNA nuclear import. Science 315, 97–100. doi: 10.1126/sci-
ence.1136235

Ibrahim, A. F., Weirauch, U., Thomas, M., Grünweller, A., Hartmann, R. K., and
Aigner, A. (2011). MicroRNA replacement therapy for miR-145 and miR-33a
is efficacious in a model of colon carcinoma. Cancer Res. 71, 5214–5224. doi:
10.1158/0008-5472.CAN-10-4645

Iorio, M. V., Ferracin, M., Liu, C. G., Veronese, A., Spizzo, R., Sabbioni, S., et al.
(2005). MicroRNA gene expression deregulation in human breast cancer. Cancer
Res. 65, 7065–7070. doi: 10.1158/0008-5472.CAN-05-1783

Ito, S., Shen, L., Dai, Q., Wu, S. C., Collins, L. B., Swenberg, J. A., et al. (2011). Tet pro-
teins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.
Science 333, 1300–1303. doi: 10.1126/science.1210597

Jan, M., Snyder, T. M., Corces-Zimmerman, M. R., Vyas, P., Weissman, I. L., Quake,
S. R., et al. (2012). Clonal evolution of preleukemic hematopoietic stem cells
precedes human acute myeloid leukemia. Sci. Transl. Med. 4:149ra118. doi:
10.1126/scitranslmed.3004315

Jongen-Lavrencic, M., Sun, S. M., Dijkstra, M. K., Valk, P. J., and Löwenberg, B.
(2008). MicroRNA expression profiling in relation to the genetic heterogeneity
of acute myeloid leukemia . Blood 111, 5078–5085. doi: 10.1182/blood-2008-01-
133355

Jurkin, J., Schichl, Y. M., Koeffel, R., Bauer, T., Richter, S., Konradi, S., et al. (2010).
miR-146a is differentially expressed by myeloid dendritic cell subsets and desen-
sitizes cells to TLR2-dependent activation. J. Immunol. 184, 4955–4965. doi:
10.4049/jimmunol.0903021

Kalesnikoff, J., Sly, L. M., Hughes, M. R., Büchse, T., Rauh, M. J., Cao, L. P., et al.
(2003). The role of SHIP in cytokine-induced signaling. Rev. Physiol. Biochem.
Pharmacol. 149, 87–103. doi: 10.1007/s10254-003-0016-y

Kishimoto, T. (2005). Interleukin-6: from basic science to medicine–40 years in
immunology. Annu. Rev. Immunol. 23, 1–21. doi: 10.1146/annurev.immunol.23.
021704.115806

Kluiver, J., Kroesen, B. J., Poppema, S., and van den Berg, A. (2006). The role of
microRNAs in normal hematopoiesis and hematopoietic malignancies. Leukemia
20, 1931–1936. doi: 10.1038/sj.leu.2404387

Kluiver, J., Poppema, S., de Jong, D., Blokzijl, T., Harms, G., Jacobs, S., et al.
(2005). BIC and miR-155 are highly expressed in Hodgkin, primary mediasti-
nal and diffuse large B cell lymphomas. J. Pathol. 207, 243–249. doi: 10.1002/
path.1825

Kluiver, J., van den Berg, A., de Jong, D., Blokzijl, T., Harms, G., Bouwman, E., et al.
(2007). Regulation of pri-microRNA BIC transcription and processing in Burkitt
lymphoma. Oncogene 26, 3769–3776. doi: 10.1038/sj.onc.1210147

Klusmann, J. H., Li, Z., Böhmer, K., Maroz, A., Koch, M. L., Emmrich, S.,
et al. (2010). miR-125b-2 is a potential oncomiR on human chromosome 21 in
megakaryoblastic leukemia. Genes Dev. 24, 478–490. doi: 10.1101/gad.1856210

Ko, M., Huang, Y., Jankowska, A. M., Pape, U. J., Tahiliani, M., Bandukwala, H.
S., et al. (2010). Impaired hydroxylation of 5-methylcytosine in myeloid cancers
with mutant TET2. Nature 468, 839–843. doi: 10.1038/nature09586

Kondo, M., Wagers, A. J., Manz, M. G., Prohaska, S. S., Scherer, D. C., Beilhack,
G. F., et al. (2003). Biology of hematopoietic stem cells and progenitors:
implications for clinical application. Annu. Rev. Immunol. 21, 759–806. doi:
10.1146/annurev.immunol.21.120601.141007

Kota, J., Chivukula, R. R., O’Donnell, K. A., Wentzel, E. A., Montgomery, C.
L., Hwang, H. W., et al. (2009). Therapeutic microRNA delivery suppresses
tumorigenesis in a murine liver cancer model. Cell 137, 1005–1017. doi:
10.1016/j.cell.2009.04.021

Labbaye, C., Quaranta, M. T., Pagliuca, A., Militi, S., Licht, J. D., Testa, U.,
et al. (2002). PLZF induces megakaryocytic development, activates Tpo recep-
tor expression and interacts with GATA1 protein. Oncogene 21, 6669–6679. doi:
10.1038/sj.onc.1205884

Labbaye, C., Spinello, I., Quaranta, M. T., Pelosi, E., Pasquini, L., Petrucci, E.,
et al. (2008). A three-step pathway comprising PLZF/miR-146a/CXCR4 controls
megakaryopoiesis. Nat. Cell Biol. 10, 788–801. doi: 10.1038/ncb1741

Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., and Tuschl, T.
(2002). Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12,
735–739. doi: 10.1016/S0960-9822(02)00809-6

Langemeijer, S. M., Kuiper, R. P., Berends, M., Knops, R., Aslanyan, M. G., Massop,
M., et al. (2009). Acquired mutations in TET2 are common in myelodysplastic
syndromes. Nat. Genet. 41, 838–842. doi: 10.1038/ng.391

Lee, Y. S., and Dutta, A. (2007). The tumor suppressor microRNA let-7 represses the
HMGA2 oncogene. Genes Dev. 21, 1025–1030. doi: 10.1101/gad.1540407

Lepelley, P., Campergue, L., Grardel, N., Preudhomme, C., Cosson, A., and Fenaux,
P. (1996). Is apoptosis a massive process in myelodysplastic syndromes? Br. J.
Haematol. 95, 368–371. doi: 10.1046/j.1365-2141.1996.d01-1915.x

Leung, W. H., Tarasenko, T., and Bolland, S. (2009). Differential roles for the inositol
phosphatase SHIP in the regulation of macrophages and lymphocytes. Immunol.
Res. 43, 243–251. doi: 10.1007/s12026-008-8078-1

Li, Q. J., Chau, J., Ebert, P. J., Sylvester, G., Min, H., Liu, G., et al. (2007). miR-181a is
an intrinsic modulator of T cell sensitivity and selection. Cell 129, 147–161. doi:
10.1016/j.cell.2007.03.008

Lin, K. Y., Zhang, X. J., Feng, D. D., Zhang, H., Zeng, C. W., Han, B. W., et al. (2011).
miR-125b, a target of CDX2, regulates cell differentiation through repression
of the core binding factor in hematopoietic malignancies. J. Biol. Chem. 286,
38253–38263. doi: 10.1074/jbc.M111.269670

Lindsten, T., Golden, J. A., Zong, W. X., Minarcik, J., Harris, M. H., Thompson, C.
B., et al. (2003). The proapoptotic activities of Bax and Bak limit the size of the
neural stem cell pool. J. Neurosci. 23, 11112–11119.

Lindsten, T., Ross, A. J., King, A., Zong, W. X., Rathmell, J. C., Shiels, H. A.,
et al. (2000). The combined functions of proapoptotic Bcl-2 family members bak
and bax are essential for normal development of multiple tissues. Mol. Cell 6,
1389–1399. doi: 10.1016/S1097-2765(00)00136-2

Liu, S., Wu, L. C., Pang, J., Santhanam, R., Schwind, S., Wu, Y. Z., et al. (2010).
Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid
leukemia. Cancer Cell 17, 333–347. doi: 10.1016/j.ccr.2010.03.008

Frontiers in Genetics | Non-Coding RNA November 2014 | Volume 5 | Article 361 | 16

http://www.frontiersin.org/Non-Coding_RNA/
http://www.frontiersin.org/Non-Coding_RNA/archive


Khalaj et al. microRNA’s in AML/MDS

Luo, J. M.,Yoshida, H., Komura, S., Ohishi, N., Pan, L., Shigeno, K., et al. (2003). Pos-
sible dominant-negative mutation of the SHIP gene in acute myeloid leukemia.
Leukemia 1, 71–78.

Mantovani, A., Allavena, P., Sica, A., and Balkwill, F. (2008). Cancer-related
inflammation. Nature 454, 436–444. doi: 10.1038/nature07205

Masaki, S., Ohtsuka, R., Abe, Y., Muta, K., and Umemura, T. (2007). Expres-
sion patterns of microRNAs 155 and 451 during normal human erythropoiesis.
Biochem. Biophys. Res. Commun. 364, 509–514. doi: 10.1016/j.bbrc.2007.
10.077

Miyamoto, K., Araki, K. Y., Naka, K., Arai, F., Takubo, K., Yamazaki, S., et al. (2007).
Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem
Cell 1, 101–112. doi: 10.1016/j.stem.2007.02.001

Mizuno, S., Chijiwa, T., Okamura, T., Akashi, K., Fukumaki, Y., Niho, Y., et al.
(2001). Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal
hematopoiesis and in acute and chronic myelogenous leukemia. Blood 97, 1172–
1179. doi: 10.1182/blood.V97.5.1172

Nimer, S. D. (2008). Myelodysplastic syndromes. Blood 111, 4841–4851. doi:
10.1182/blood-2007-08-078139

Obernosterer, G., Leuschner, P. J., Alenius, M., and Martinez, J. (2006). Post-
transcriptional regulation of microRNA expression. RNA 12, 1161–1167. doi:
10.1261/rna.2322506

O’Connell, R. M., Chaudhuri, A. A., Rao, D. S., and Baltimore, D. (2009). Inositol
phosphatase SHIP1 is a primary target of miR-155. Proc. Natl. Acad. Sci. U.S.A.
106, 7113–7118. doi: 10.1073/pnas.0902636106

O’Connell, R. M., Chaudhuri, A. A., Rao, D. S., Gibson, W. S., Balazs, A. B., and
Baltimore, D. (2010). MicroRNAs enriched in hematopoietic stem cells differen-
tially regulate long-term hematopoietic output. Proc. Natl. Acad. Sci. U.S.A. 107,
14235–14240. doi: 10.1073/pnas.1009798107

O’Connell, R. M., Rao, D. S., Chaudhuri, A. A., Boldin, M. P., Taganov, K. D.,
Nicoll, J., et al. (2008). Sustained expression of microRNA-155 in hematopoietic
stem cells causes a myeloproliferative disorder. J. Exp. Med. 205, 585–594. doi:
10.1084/jem.20072108

Ono, M., Bolland, S., Tempst, P., and Ravetch, J. V. (1996). Role of the inositol
phosphatase SHIP in negative regulation of the immune system by the receptor
Fc(gamma)RIIB. Nature 383, 263–266. doi: 10.1038/383263a0

Ooi, A. G., Sahoo, D., Adorno, M., Wang, Y., Weissman, I. L., and Park, C. Y.
(2010). MicroRNA-125b expands hematopoietic stem cells and enriches for the
lymphoid-balanced and lymphoid-biased subsets. Proc. Natl. Acad. Sci. U.S.A.
107, 21505–21510. doi: 10.1073/pnas.1016218107

Opalinska, J. B., Bersenev, A., Zhang, Z., Schmaier, A. A., Choi, J., Yao, Y., et al.
(2010). MicroRNA expression in maturing murine megakaryocytes. Blood 116,
e128–e138. doi: 10.1182/blood-2010-06-292920

Park, I. K., Qian, D., Kiel, M., Becker, M. W., Pihalja, M., Weissman, I. L., et al.
(2003). Bmi-1 is required for maintenance of adult self-renewing haematopoietic
stem cells. Nature 423, 302–305. doi: 10.1038/nature01587

Patel, J. P., Gönen, M., Figueroa, M. E., Fernandez, H., Sun, Z., Racevskis,
J., et al. (2012). Prognostic relevance of integrated genetic profiling in acute
myeloid leukemia. N. Engl. J. Med. 366, 1079–1089. doi: 10.1056/NEJMoa
1112304

Pramanik, D., Campbell, N. R., Karikari, C., Chivukula, R., Kent, O. A., Mendell,
J. T., et al. (2011). Restitution of tumor suppressor microRNAs using a systemic
nanovector inhibits pancreatic cancer growth in mice. Mol. Cancer Ther. 10,
1470–1480. doi: 10.1158/1535-7163.MCT-11-0152

Raaijmakers, M. H., Mukherjee, S., Guo, S., Zhang, S., Kobayashi, T., Schoon-
maker, J. A., et al. (2010). Bone progenitor dysfunction induces myelodysplasia
and secondary leukaemia. Nature 464, 852–857. doi: 10.1038/nature08851

Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C., and Melton, D. A.
(2002). “Stemness”: transcriptional profiling of embryonic and adult stem cells.
Science 298, 597–600. doi: 10.1126/science.1072530

Ranganathan, P., Heaphy, C. E., Costinean, S., Stauffer, N., Na, C., Hamadani, M.,
et al. (2012). Regulation of acute graft-versus-host disease by microRNA-155.
Blood 119, 4786–4797. doi: 10.1182/blood-2011-10-387522

Rodriguez, A., Vigorito, E., Clare, S., Warren, M. V., Couttet, P., Soond, D. R., et al.
(2007). Requirement of bic/microRNA-155 for normal immune function. Science
316, 608–611. doi: 10.1126/science.1139253

Saj, A., and Lai, E. C. (2011). Control of microRNA biogenesis and transcrip-
tion by cell signaling pathways. Curr. Opin. Genet. Dev. 21, 504–510. doi:
10.1016/j.gde.2011.04.010

Scott, G. K., Goga, A., Bhaumik, D., Berger, C. E., Sullivan, C. S., and Benz, C.
C. (2007). Coordinate suppression of ERBB2 and ERBB3 by enforced expres-
sion of micro-RNA miR-125a or miR-125b. J. Biol. Chem. 282, 1479–1486. doi:
10.1074/jbc.M609383200

Shi, X. B., Xue, L., Yang, J., Ma, A. H., Zhao, J., Xu, M., et al. (2007). An androgen-
regulated miRNA suppresses Bak1 expression and induces androgen-independent
growth of prostate cancer cells. Proc. Natl. Acad. Sci. U.S.A. 104, 19983–19988.
doi: 10.1073/pnas.0706641104

Shih, A. H., Abdel-Wahab, O., Patel, J. P., and Levine, R. L. (2012). The role of
mutations in epigenetic regulators in myeloid malignancies. Nat. Rev. Cancer 12,
599–612. doi: 10.1038/nrc3343

Silverman, N., and Maniatis, T. (2001). NF-kappaB signaling pathways in
mammalian and insect innate immunity. Genes Dev. 15, 2321–2342. doi:
10.1101/gad.909001

Sonoki, T., Iwanaga, E., Mitsuya, H., and Asou, N. (2005). Insertion of microRNA-
125b-1, a human homologue of lin-4, into a rearranged immunoglobulin heavy
chain gene locus in a patient with precursor B-cell acute lymphoblastic leukemia.
Leukemia 19, 2009–2010. doi: 10.1038/sj.leu.2403938

Starczynowski, D. T., Kuchenbauer, F., Argiropoulos, B., Sung, S., Morin, R.,
Muranyi, A., et al. (2010). Identification of miR-145 and miR-146a as mediators
of the 5q- syndrome phenotype. Nat. Med. 16, 49–58. doi: 10.1038/nm.2054

Starczynowski, D. T., Kuchenbauer, F., Wegrzyn, J., Rouhi, A., Petriv, O., Hansen,
C. L., et al. (2011). MicroRNA-146a disrupts hematopoietic differentiation and
survival. Exp. Hematol. 39, 167–178.e4. doi: 10.1016/j.exphem.2010.09.011

Taganov, K. D., Boldin, M. P., and Baltimore, D. (2007). MicroRNAs and immu-
nity: tiny players in a big field. Immunity 26, 133–137. doi: 10.1016/j.immuni.
2007.02.005

Taganov, K. D., Boldin, M. P., Chang, K. J., and Baltimore, D. (2006). NF-kappaB-
dependent induction of microRNA miR-146, an inhibitor targeted to signaling
proteins of innate immune responses. Proc. Natl. Acad. Sci. U.S.A. 103, 12481–
12486. doi: 10.1073/pnas.0605298103

Takeshita, F., Patrawala, L., Osaki, M., Takahashi, R. U., Yamamoto, Y., Kosaka, N.,
et al. (2010). Systemic delivery of synthetic microRNA-16 inhibits the growth of
metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol.
Ther. 18, 181–187. doi: 10.1038/mt.2009.207

Tam, W. (2001). Identification and characterization of human BIC, a gene on
chromosome 21 that encodes a noncoding RNA. Gene 274, 157–167. doi:
10.1016/S0378-1119(01)00612-6

Tam, W., and Dahlberg, J. E. (2006). miR-155/BIC as an oncogenic microRNA.
Genes Chromosomes Cancer 45, 211–212. doi: 10.1002/gcc.20282

Tam, W., Ben-Yehuda, D., and Hayward, W. S. (1997). bic, a novel gene activated
by proviral insertions in avian leukosis virus-induced lymphomas, is likely to
function through its noncoding RNA. Mol. Cell Biol. 17, 1490–1502.

Tefferi, A., Levine, R. L., Lim, K. H., Abdel-Wahab, O., Lasho, T. L., Patel, J., et al.
(2009a). Frequent TET2 mutations in systemic mastocytosis: clinical, KITD816V
and FIP1L1-PDGFRA correlates. Leukemia 23, 900–904. doi: 10.1038/leu.2009.37

Tefferi, A., Lim, K. H., Abdel-Wahab, O., Lasho, T. L., Patel, J., Patnaik, M. M.,
et al. (2009b). Detection of mutant TET2 in myeloid malignancies other than
myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia
23, 1343–1345. doi: 10.1038/leu.2009.59

Tefferi, A., Pardanani, A., Lim, K. H., Abdel-Wahab, O., Lasho, T. L., Patel, J.,
et al. (2009c). TET2 mutations and their clinical correlates in polycythemia
vera, essential thrombocythemia and myelofibrosis. Leukemia 23, 905–911. doi:
10.1038/leu.2009.47

Thomson, J. M., Newman, M., Parker, J. S., Morin-Kensicki, E. M., Wright,
T., and Hammond, S. M. (2006). Extensive post-transcriptional regulation of
microRNAs and its implications for cancer. Genes Dev. 20, 2202–2207. doi:
10.1101/gad.1444406

Tili, E., Michaille, J. J., Wernicke, D., Alder, H., Costinean, S., Volinia, S.,
et al. (2011). Mutator activity induced by microRNA-155 (miR-155) links
inflammation and cancer. Proc. Natl. Acad. Sci. U.S.A. 108, 4908–4913. doi:
10.1073/pnas.1101795108

Ting, S. B., Deneault, E., Hope, K., Cellot, S., Chagraoui, J., Mayotte, N., et al. (2012).
Asymmetric segregation and self-renewal of hematopoietic stem and progenitor
cells with endocytic Ap2a2. Blood 119, 2510–2522. doi: 10.1182/blood-2011-11-
393272

Trang, P., Wiggins, J. F., Daige, C. L., Cho, C., Omotola, M., Brown, D., et al.
(2011). Systemic delivery of tumor suppressor microRNA mimics using a neutral

www.frontiersin.org November 2014 | Volume 5 | Article 361 | 17

http://www.frontiersin.org/
http://www.frontiersin.org/Non-Coding_RNA/archive


Khalaj et al. microRNA’s in AML/MDS

lipid emulsion inhibits lung tumors in mice. Mol. Ther. 19, 1116–1122. doi:
10.1038/mt.2011.48

Valeri, N., Gasparini, P., Fabbri, M., Braconi, C., Veronese, A., Lovat, F., et al. (2010).
Modulation of mismatch repair and genomic stability by miR-155. Proc. Natl.
Acad. Sci. U.S.A. 107, 6982–6987. doi: 10.1073/pnas.1002472107

van den Berg, A., Kroesen, B. J., Kooistra, K., de Jong, D., Briggs, J., Blokzijl,
T., et al. (2003). High expression of B-cell receptor inducible gene BIC in all
subtypes of Hodgkin lymphoma. Genes Chromosomes Cancer 37, 20–28. doi:
10.1002/gcc.10186

van Rooij, E., and Kauppinen, S. (2014). Development of microRNA therapeutics is
coming of age. EMBO Mol. Med. 6, 851–864. doi: 10.15252/emmm.201100899

Vasilatou, D., Papageorgiou, S., Pappa, V., Papageorgiou, E., and Dervenoulas, J.
(2010). The role of microRNAs in normal and malignant hematopoiesis. Eur. J.
Haematol. 84, 1–16. doi: 10.1111/j.1600-0609.2009.01348.x

Wang, F., Wang, X. S., Yang, G. H., Zhai, P. F., Xiao, Z., Xia, L. Y., et al. (2012a).
miR-29a and miR-142-3p downregulation and diagnostic implication in human
acute myeloid leukemia. Mol. Biol. Rep. 39, 2713–2722. doi: 10.1007/s11033-011-
1026-5

Wang, X. S., Gong, J. N., Yu, J., Wang, F., Zhang, X. H., Yin, X. L., et al. (2012b).
MicroRNA-29a and microRNA-142-3p are regulators of myeloid differentiation
and acute myeloid leukemia. Blood 119, 4992–5004. doi: 10.1182/blood-2011-10-
385716

Weissman, I. L. (2000). Stem cells: units of development, units of regeneration, and
units in evolution. Cell 100, 157–168. doi: 10.1016/S0092-8674(00)81692-X

Winter, J., Jung, S., Keller, S., Gregory, R. I., and Diederichs, S. (2009). Many roads
to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol.
11, 228–234. doi: 10.1038/ncb0309-228

Worm, J., Stenvang, J., Petri, A., Frederiksen, K. S., Obad, S., Elmén, J., et al. (2009).
Silencing of microRNA-155 in mice during acute inflammatory response leads to
derepression of c/ebp Beta and down-regulation of G-CSF. Nucleic Acids Res. 37,
5784–5792. doi: 10.1093/nar/gkp577

Yang, L., Boldin, M. P., Yu, Y., Liu, C. S., Ea, C. K., Ramakrishnan, P., et al. (2012).
miR-146a controls the resolution of T cell responses in mice. J. Exp. Med. 209,
1655–1670. doi: 10.1084/jem.20112218

Yang, W. L., Wang, J., Chan, C. H., Lee, S. W., Campos, A. D., Lamothe, B., et al.
(2009). The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science
325, 1134–1138. doi: 10.1126/science.1175065

Zhang, J., Grindley, J. C., Yin, T., Jayasinghe, S., He, X. C., Ross, J. T.,
et al. (2006). PTEN maintains haematopoietic stem cells and acts in lineage
choice and leukaemia prevention. Nature 441, 518–522. doi: 10.1038/nature
04747

Zhao, J. L., and Starczynowski, D. T. (2014). Role of microRNA-146a in nor-
mal and malignant hematopoietic stem cell function. Front. Genet. 5:219. doi:
10.3389/fgene.2014.00219

Zhao, J. L., Rao, D. S., Boldin, M. P., Taganov, K. D., O’Connell, R. M., and Baltimore,
D. (2011). NF-kappaB dysregulation in microRNA-146a-deficient mice drives
the development of myeloid malignancies. Proc. Natl. Acad. Sci. U.S.A. 108,
9184–9189. doi: 10.1073/pnas.1105398108

Zhao, J. L., Rao, D. S., O’Connell, R. M., Garcia-Flores, Y., and Baltimore,
D. (2013). MicroRNA-146a acts as a guardian of the quality and longevity
of hematopoietic stem cells in mice. Elife 2:e00537. doi: 10.7554/eLife.
00537

Zhou, B., Wang, S., Mayr, C., Bartel, D. P., and Lodish, H. F. (2007). miR-150, a
microRNA expressed in mature B and T cells, blocks early B cell development
when expressed prematurely. Proc. Natl. Acad. Sci. U.S.A. 104, 7080–7085. doi:
10.1073/pnas.0702409104

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 22 July 2014; accepted: 27 September 2014; published online: 19 November
2014.
Citation: Khalaj M, Tavakkoli M, Stranahan AW and Park CY (2014) Pathogenic
microRNA’s in myeloid malignancies. Front. Genet. 5:361. doi: 10.3389/fgene.2014.
00361
This article was submitted to Non-Coding RNA, a section of the journal Frontiers in
Genetics.
Copyright © 2014 Khalaj, Tavakkoli, Stranahan and Park. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal is cited,
in accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Genetics | Non-Coding RNA November 2014 | Volume 5 | Article 361 | 18

http://dx.doi.org/10.3389/fgene.2014.00361
http://dx.doi.org/10.3389/fgene.2014.00361
htt3p://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Non-Coding_RNA/
http://www.frontiersin.org/Non-Coding_RNA/archive

	Pathogenic microrna's in myeloid malignancies
	Introduction
	miR-125
	miR-125 in hsc self-renewal and survival
	miR-125 in hematopoiesis and leukemia
	miR-146
	miR-146 and innate immunity
	miR-146a and normal hematopoiesis
	miR-146a and myeloid malignancies
	miR-155
	miR-155 in normal and malignant myelopoiesis
	Mechanism of action of miR-155
	miR-142
	miR-142 in normal and malignant hematopoiesis
	miR-29
	miR-29 and epigenetic regulation
	miR-29 and myeloid differentiation
	miR-29 in cellular proliferation and apoptosis
	miR-29 as an oncogene and tumor suppressor
	Conclusion and future directions
	Acknowledgments
	References


