
RESEARCH ARTICLE

Virome analysis of two sympatric bat species

(Desmodus rotundus and Molossus molossus) in

French Guiana

Arielle Salmier1, Sourakhata Tirera1, Benoit de Thoisy1, Alain Franc2, Edith Darcissac1,

Damien Donato1, Christiane Bouchier3, Vincent Lacoste1, Anne Lavergne1*
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Abstract

Environmental disturbances in the Neotropics (e.g., deforestation, agriculture intensifica-

tion, urbanization) contribute to an increasing risk of cross-species transmission of microor-

ganisms and to disease outbreaks due to changing ecosystems of reservoir hosts. Although

Amazonia encompasses the greatest diversity of reservoir species, the outsized viral popu-

lation diversity (virome) has yet to be investigated. Here, through a metagenomic approach,

we identified 10,991 viral sequences in the saliva and feces of two bat species, Desmodus

rotundus (hematophagous), trapped in two different caves surrounded by primary lowland

forest, and Molossus molossus (insectivorous), trapped in forest and urban habitats. These

sequences are related to 51 viral families known to infect a wide range of hosts (i.e., bacte-

ria, plants, insects and vertebrates). Most viruses detected reflected the diet of bat species,

with a high proportion of plant and insect-related viral families for M. molossus and a high

proportion of vertebrate-related viral families for D. rotundus, highlighting its influence in

shaping the viral diversity of bats. Lastly, we reconstructed the phylogenetic relationships

for five vertebrate-related viral families (Nairoviridae, Circoviridae, Retroviridae, Herpesviri-

dae, Papillomaviridae). The results showed highly supported clustering with other viral

sequences of the same viral family hosted by other bat species, highlighting the potential

association of viral diversity with the host’s diet. These findings provide significant insight

into viral bat diversity in French Guiana belonging to the Amazonian biome and emphasize

that habitats and the host’s dietary ecology may drive the viral diversity in the bat communi-

ties investigated.

Introduction

Bats present a rich viral diversity as compared to other animals and their uniqueness as hosts

of pathogenic viruses has animated debates in recent years [1–3]. Their ability to fly over long

distances and their diverse feeding strategies seem to facilitate the acquisition and dispersal of
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viruses across remote regions, as well as cross-species transmissions [2,4,5]. Likewise, their

wide variety of both social structures and behaviors contribute to viral transmissions and per-

sistence of viruses in bat populations [2,6]. Studies have also highlighted that bats present long

associations with numerous viral families and genera (e.g., Paramyxoviridae, Filoviridae, Lyssa-
virus, Henipavirus), with viruses detected in bats usually being older than those found in

humans or other animals [7]. To date, viral metagenomics in bats has almost exclusively

focused on North American and Eurasian bat communities and many novel mammalian

viruses have been reported, including some that are important to public health [8–17].

Amazonia encompasses a great diversity of bat species. Numerous studies, using conven-

tional methods or high-throughput sequencing, have allowed the identification of a number of

viruses in this region [18–21]. For instance, Drexler et al. detected and identified a diversity of

paramyxoviruses in several New World bat species [22], Tong et al. reported novel influenza A

viruses in Peruvian flat-faced fruit bats (Artibeus planirostris) [23], and Lima et al. proposed a

new genus for two newly characterized polyomaviruses in Tadarida brasiliensis [24].

In French Guiana, an Amazonian region, 106 bat species have been listed [25]. During the

last few decades this region has undergone environmental changes (e.g., urbanization, agricul-

ture intensification, deforestation), which have led to alterations in the composition and

dynamics of bat communities [26,27]. Studies conducted in the Neotropics reported an overall

decrease in species richness and relative abundance correlated with the urban influence,

although species highly tolerant to environmental disturbances, such as insectivorous bats,

tend to persist in large urban environments [28]. Furthermore, the diversity of bat habitats

may influence both microbe transmission and persistence in bat communities. For example,

de Thoisy et al. [29] showed that pristine forest habitats favored the circulation and mainte-

nance of the rabies virus, compared to disturbed areas, and in Southeast Asian rainforests Gay

et al. [30] showed that fragmentation reduces both viral and endoparasite species richness.

The aim of our study was to characterize the virome in the feces and the saliva of two abun-

dant and opportunistic Amazonian bat species: the common vampire bat, Desmodus rotundus
(Phyllostomidae) and Pallas’s mastiff bat, Molossus molossus (Molossidae). Both bat species are

sympatric in the forest areas of French Guiana. They both have high plasticity and tolerance to

perturbations but present distinct diet and social behavior.

D. rotundus bats are hematophagous and live in groups in highly complex social systems,

for which Wilkinson et al. showed a strong association between the mating system and genetic

structure of populations [31,32]. Studies on D. rotundus also highlighted that their diet associ-

ated with social interactions (especially social grooming and food sharing) within colonies

contribute to the transmission and maintenance of viruses such as rabies [29,33]. Furthermore,

a modeling study of rabies transmission in a Desmodus population in Peru identified metapo-

pulation dynamics as a major driver of rabies maintenance [34]. Turmelle and Olival also

pointed out that genetic spatial structure and the host’s ecology and social behavior correlate

with viral richness [35]. We investigated the virome of D. rotundus bats trapped in two caves

(F and M) located in forest areas, for which no exchange of individuals was observed through

a longitudinal mark-recapture study [29].

M. molossus bats are insectivorous and live in stable social groups that practice social forag-

ing over large spatial scales [36]. Studies on Molossidae also highlighted that members of this

family tend to benefit from increased foraging resources in urban areas and persist in large

urban environments for which they present high behavioral flexibility and heterogeneity [28].

We investigated the virome of M. molossus bats trapped in urban and forest areas.

Lastly, focusing on viral families known to infect mammals, we investigated the phyloge-

netic relationships of viral sequences related to five viral families (Circoviridae, Herpesviridae,

Nairoviridae, Papillomaviridae and Retroviridae (genus Spumavirus)), detected in either high

Viral diversity of two sympatric Amazonian bat species

PLOS ONE | https://doi.org/10.1371/journal.pone.0186943 November 8, 2017 2 / 25

Funding: A. Salmier was funded by a grant from

European funds (PO FSE 2007-2013) and

"Investissement d’Avenir" managed by Agence

Nationale de la Recherche (CEBA, Ref. ANR-10-

LABEX-25-01). This study was conducted within

the CAROLIA program supported by European

funds (ERDF/FEDER) and assistance from Région

Guyane and Direction Régionale pour la Recherche

et la Technologie. It also received a European

Commission "REGPOT-CT-2011-285837-

STRonGer" grant within the FP7 and

"Investissement d’Avenir" grants managed by the

Agence Nationale de la Recherche (CEBA,

Ref. ANR-10-LABEX-25-01). The Genomics

Platform is a member of the France Génomique

consortium (ANR10-INBS-09-08). The funders had

no role in the study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0186943


proportion in both species and all habitats or only a distinct bat species and habitat. These

findings allowed identifying novel vertebrate-related viral sequences and emphasize the

importance of studying the role of habitats and dietary ecology in shaping viral diversity for

these two Amazonian bat species.

Materials and methods

Ethics statement

All animals were captured, handled and sampled following ASM guidelines [37] under the

supervision of researchers granted the French animal experimentation level 1 diploma. Bats

are not protected by law in French Guiana. The project was nevertheless submitted to and

approved by the Conseil Scientifique Régional pour le Patrimoine Naturel de la Guyane. Cap-

tures that occurred within protected areas (nature reserves) received approval by the Conseil

Scientifique Régional du Patrimoine Naturel on 26 January 2010 and ad hoc authorizations

(No. 2011–35 dated 05/30/2011, No. 35 and 59 obtained 03/21/2013 and 04/17/2013, respec-

tively, and delivered by the Prefecture of French Guiana).

Study areas

D. rotundus bats were sampled in two caves (F and M) located 25 km apart in pristine primary

lowland forests, presenting differences in physical patterns, cave-inhabiting bat species as well

as population size (Table 1 and S1 Fig). Cave F is cohabited by four bat species (i.e., Anoura
geoffroyi, Carollia perspicillata and Trachops cirrhosus), and the D. rotundus population ranges

from 60 to 100 individuals [29]. Cave M is larger and moister than cave F, suggesting different

roost characteristics and carrying capacity. Cave M is cohabited by at least nine different bat

species (i.e., Anoura geoffroyi, Artibeus spp., Carollia perspicillata, Pteronotus rubiginosus and

P. sp3, Tonatia saurophila, Trachops cirrhosus and Xophostoma sylvicola), and the D. rotundus
population ranges from 120 to 150 individuals [29].

M. molossus bats were sampled in two sites located in primary lowland rainforests and

under the roofs of houses in two sites located in disturbed areas (Table 1 and S1 Fig). M. molos-
sus individuals trapped in forest habitats formed monospecific colonies, whereas individuals

trapped in urban habitats shared artificial roosts with a congener, Molossus coibensis.

Bat sampling

Feces and saliva samples were collected in both dry and rainy seasons during a 2-year period

(April 2012 to April 2014). All animals were trapped with mist nets erected inside roosts or in

Table 1. Characteristics of the sampling sites and number of collected feces and saliva samples for Molossus molossus and Desmodus

rotundus.

Species Habitats Sites GPS coordinates n saliva swabs n feces

Latitude (N) Longitude (W) Per site Total Per site Total

D. rotundus Forest Cave F 4˚ 380 59.144@ 52˚ 170 35.441@ 0 0 75 75

Cave M 4˚ 320 6.82@ 52˚ 90 6.239@ 50 50 66 66

Total 50 Total 141

M. molossus Forest Paracou 5˚ 140 21.282@ 52˚ 550 24.218@ 17 58 4 14

Saut Athanase 4˚ 110 14.706@ 52˚ 190 11.21@ 41 10

Urban Cacao 4˚ 340 33.771@ 52˚ 280 4.926@ 18 30 0 5

La Chaumière 4˚ 530 5.419@ 52˚ 210 4.124@ 12 5

Total 88 Total 19

https://doi.org/10.1371/journal.pone.0186943.t001
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putative foraging courses. Species were identified on site, using external morphology. Prior to

release, 138 saliva swabs were collected from M. molossus and D. rotundus, in cave M only

(Table 1). Samples were preserved on ice with 500 μl of Dulbecco’s modified Eagle Medium

(DMEM, Sigma).

Feces were collected in two ways: M. molossus bats were held in individual sacks secured to

a rope line for at least 10 min, allowing enough time for the excretion of 19 fresh feces of about

100 mg each (n = 5 in urban habitats, n = 14 in forest habitats; Table 1), while clean plastic

sheets were laid down on flat surfaces beneath known roosts for D. rotundus. Then 141 freshly

produced feces of about 150 mg each were collected (n = 75 in cave F, n = 66 in cave M;

Table 1) the following morning and temporarily preserved on ice. All samples were later stored

at −80˚C.

Sample processing

Feces and saliva samples were pooled according to the habitats and the species regardless of

the season and year, corresponding to four pools for M. molossus (urban saliva, urban feces,

forest saliva, forest feces) and three pools for D. rotundus (cave F feces, cave M saliva, cave M

feces) (Table 1).

Samples were processed as previously described by Victoria et al. [38]. Briefly, feces were

vigorously homogenized with 5–10 mL DMEM. Samples were cleared of debris by low-speed

centrifugation (5 min, 10,000 g, 4˚C). Eukaryotic and prokaryotic cell-sized particles were

removed from supernatants through three successive filtrations (0.8 μm, 0.45 μm and

0.22 μm), using cellulose acetate membrane filters (Nalgene). A differential centrifugation pro-

cedure, described by Prescott et al. [39], was used to pellet the viral particles. Briefly, filtrates

were cleared of smaller and less dense components through a 1-h ultracentrifugation (100,000

g, 4˚C) procedure. Then the pellets were resuspended in nuclease-free water and cleared of

persistent high-density particles with a low-speed centrifugation (15 min, 10,000 g, 4˚C).

Lastly, viral particles were pelleted with a 1-h ultracentrifugation step (100,000 g, 4˚C).

For saliva samples, swabs were vigorously resuspended and 200 μL of suspension from each

collecting tube was used to constitute the pools. Samples were cleared of debris by low-speed

centrifugation (5 min, 10,000 g, 4˚C). Eukaryotic and prokaryotic cell-sized particles were

removed from supernatants through two successive filtrations (0.45 μm and 0.22 μm), using

cellulose acetate membrane filters (Nalgene). The filtrates were cleared of persistent high-den-

sity particles with low-speed centrifugation (15 min, 10,000 g, 4˚C), then viral particles were

pelleted with a 1-h ultracentrifugation step (100,000 g, 4˚C). All viral pellets were resuspended

in 40 μL of nuclease-free water.

Nuclease treatment and viral acid nucleic extraction

Resuspended viral pellets from feces were treated with a mixture of DNases (Turbo DNase

from Ambion and Benzonase from Novagen) and RNase One (Promega) to digest nonenve-

loped nucleic acids (i.e., those not in viral capsids) [40]. Resuspended viral pellets from saliva

samples were treated with the mixture of DNases. All viral nucleic acids (RNA and DNA) were

then extracted using the NucliSENS easyMAG1 bio-robot (bioMérieux).

Reverse transcription and amplification

For both feces and saliva samples, the RNA virus-only and DNA virus-only libraries were

respectively constructed using a whole transcriptome (WTA) or a whole genome (WGA)

amplification method previously described by Berthet et al. [41].

Viral diversity of two sympatric Amazonian bat species
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For the RNA virus-only amplification, an aliquot of the extracted viral nucleic acid collected

was treated with Turbo DNase to remove viral DNA. Persistent rRNA was depleted with the

GeneRead™ rRNA depletion kit (Qiagen), following the manufacturer’s recommendations.

Then viral RNA amplification was performed as described in the protocol of the QuantiTect1

Whole Transcriptome Kit (Qiagen) except for the reverse transcription step. cDNA was syn-

thesized using SuperScript1 III Reverse Transcriptase (Invitrogen) and random hexamers

(Roche), following the manufacturers’ recommendations.

For DNA virus-only amplification, an aliquot of the extracted viral nucleic acid collected

was treated with RNase One to remove viral RNA. Then viral DNA amplification was per-

formed as described in the protocol of the QuantiTect1 Whole Genome Kit (Qiagen). To

ensure homogeneity and blunt ends at the end of the strands produced, 10 U of Klenow poly-

merase (Roche) was added to the WTA- and WGA-amplified nucleic acids with 8 μL of ran-

dom hexamers (Roche), incubated 1 h at 37˚C, followed by 10 min at 75˚C. Samples were

assayed with a Qubit1 fluorometric quantitation (Qiagen), using the dsDNA Broad Range

and dsDNA High Sensitivity Qubit1 assay kits, as recommended by the manufacturer.

High-throughput sequencing

For both feces and saliva samples, 1 μg of each viral library was pooled together, whenever pos-

sible, to construct RNA plus DNA viral libraries. High-throughput sequencing was carried out

at the Genomics platform at the Institut Pasteur, Paris. Shotgun libraries were prepared by

standard Illumina protocols using 1 μg of total genomic DNA. Each sample (feces or saliva)

was indexed according to its provenance (species and habitats) using Illumina adaptor-specific

primers. Samples were sequenced on a MiSeq sequencer in 300-base paired-end reads.

Bioinformatic pipeline

The Illumina sequencing reads were grouped according to their adaptor tags and were pro-

cessed individually. Sequence files were stripped of their adapter sequences using Trimmo-

matic v.0.32 [42]. Duplicate sequence reads were removed with FastqMcf v.1.04.676 and reads

were quality-filtered using the fastq_quality_filter program from the Fastx toolkit v.0.0.13

(available at http://hannonlab.cshl.edu/fastx_toolkit/index.html), with a quality threshold of

30 and length criteria of 70%. All cleaned data sets were saved for further analysis. Simulta-

neously, a three-pass digital normalization was run on each sample file using the Khmer soft-

ware library [43,44]. Normalized files were saved for further analysis. Following Baker’s contig

consolidation strategy [45], both normalized and non-normalized reads were de novo assem-

bled using two assembly algorithms: Velvet [46] and SPAdes [47]. Three k-mer sizes (21, 55

and 99) were used for both assemblers. The contigs generated were compared (Fig 1) between

k-mer sizes for each assembler (comparison 1), between assemblers (comparison 2) and

between normalized and non-normalized data sets (comparison 3). A removal of duplicated

contigs and a clustering, using USEARCH v.7.0.1090 (available at http://www.drive5.com/

usearch, [48]) with a 95% threshold identity value, were performed following each comparison.

Clustered contigs from comparison 3 (centroids) were considered as consolidated contig sets

with lengths ranging from 33 to 45,057 bp and low redundancy. Centroids were submitted to

BLASTn comparison with both the NCBI nt and Institut Pasteur de Paris gbvrl databases (in

March 2015), (Fig 1). The best-matched reference sequence was retrieved from both databases

(cutoff value: 10e-5). A length comparison between the results was performed using a bit score

ratio (br = bitscore_blastn_nt/bitscore_blastn_gb_vrl), and only contigs with br> 0.90 were

regarded as suspect-viral sequences and conserved for further analysis. Centroids not identi-

fied as suspect-viral underwent a BLASTx comparison against a custom-made database, which

Viral diversity of two sympatric Amazonian bat species
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Fig 1. Bioinformatic analysis pipeline for the 3,722,219 assembled contigs, based on Baker et al. [45].

(A) Contigs assembled from both normalized and non-normalized sequence reads by two de novo

assemblers (SPAdes and Velvet) were consolidated by sequential comparisons (numbered shadowed areas)

and removal of duplicate sequences (red arrows). (B) Centroids subjected to sequential BLAST comparison

and manually controlled taxonomic classification to identify viral sequences. Proportion of sequences

assembled from feces (red) and saliva swabs (blue) are shown in the stacked chart for each species

Viral diversity of two sympatric Amazonian bat species
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included all protein sequences of the viral kingdom (cutoff value: 10e-3). To reduce the mis-

identification bias of false-positive sequences, identified suspect-viral sequences underwent a

second BLASTx comparison with the NCBI nr database (cutoff value: 10e-3) (Fig 1). Sequences

not retained were discarded. Taxonomic information and the kingdom of each gene id were

retrieved with taxdb.

Phylogenetic analysis

Contigs from five vertebrate-related viral families: Nairoviridae, Circoviridae, Retroviridae,

Herpesviridae and Papillomaviridae were used for phylogenetic analysis. Reference genomes or

nucleotide sequences of previously identified viruses were downloaded from GenBank. The

accession number of viral sequences used to infer the phylogenetic trees are given in the

respective analyses. Nucleotide and protein sequence editing were performed with GENEIOUS

R9 (available at http://www.geneious.com, [49]). Sequences were aligned using the MAFFT

alignment tool [50] included in the software. Nucleotide and protein sequences were trimmed

and gap-stripped prior to phylogenetic analyses. For each analysis, the best-fitted model of

nucleotide or amino acid substitution was selected using jModelTest 2 [51] and ProtTest 3

[52], respectively, under corrected Akaike information criteria (AICc). Bayesian phylogenetic

analyses were performed using MRBAYES 3. The Markov chain Monte Carlo (MCMC) algo-

rithm was run with four chains with 10 million generations each, with trees sampled every 500

generations and a burn-in of 25%. Validation of the inference was assessed based on the stan-

dard deviation of split frequencies, less than the expected threshold value of 0.01 in MRBAYES

and by inspecting the effective sampling size (ESS > 500) criterion in TRACER version 1.6 [53].

Nucleotide sequence accession numbers

All virus sequences reported in this study were deposited in the GenBank nucleotide database

under accession numbers KX812440 to KX812444, KX812446, KX812447, KX821677 and

KX954092. The data from Illumina sequencing were deposited in GenBank Sequence Reads

Archive under accession numbers SAMN05725475−SAMN05725481.

Results

Illumina sequencing and assembly

Overall, we obtained 53,325,594 raw read sequences (Table A in S1 File). For M. molossus,
33,333,557 raw sequences were generated from both feces and saliva samples and 19,992,037

for D. rotundus. Following the data reduction steps, 10,339,752 non-digitally normalized reads

and 4,117,544 digitally normalized reads were used for de novo assembly. SPAdes and Velvet

assemblers generated a comparable number of contigs, even between normalized and non-

normalized data. Between 50.22% and 67.66% of the contigs were saved after comparison 1

(Table B in S1 File). Following comparison 2, between 68.09% and 73.19% of the contigs from

comparison 1 were saved for further analyses (Table C in S1 File). Finally, between 50.61% and

56.30% of the contigs from comparison 2 were saved to generate the centroids (Table D in S1

File). Following our consolidation steps, a total of 3,722,219 contigs were used for the taxo-

nomic assignment. Most of the contigs retained originated from feces (Fig 1). Eukaryota-, Bac-
teria- and Virus-associated contigs accounted for 1.02%, 3.82% and 0.30% of the total of

depending on habitats (caves F and M for D. rotundus and Urban and Forest for M. molossus). (C) Column

charts represent the distribution of contig matches (per pooled samples and overall) and the distribution of

vertebrate-related viral families by bat species and habitats.

https://doi.org/10.1371/journal.pone.0186943.g001
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consolidated contigs, respectively (Table E in S1 File). A total of 10,991 viral-associated

sequences related to 51 known viral families were identified based on their most significant

BLAST matches (Fig 2). The total number of virus-associated contigs ranged from 1,930 for D.

rotundus in cave F to 3,768 for M. molossus in forest areas (Table F in S1 File).

General virome information and phage-related sequences

More than half of the viral-associated contigs matched phage sequences (Fig 1 and Table 2),

accounting for nine phage families belonging to the dsDNA, ssDNA and ssRNA positive-

strand groups. These families were identified in both feces and saliva samples (Fig 2 and

Table 2). Among the nine phage families, the Podoviridae family of the dsDNA order Caudo-
virales accounted for greatest number of phage sequences detected in D. rotundus while the

Microviridae family accounted for most of the phage sequences identified for M. molossus (Fig

2 and Table 2). The eukaryotic viral sequences (insect, plant/protozoan and vertebrate viruses)

accounted for about three-tenths of the total of the viral-associated contigs identified, repre-

senting 42 known viral families. A high proportion of these families reflected the diet of bats,

especially for M. molossus trapped in urban areas where most of the eukaryote-associated

viruses identified belonged to nonmammalian viruses (Fig 1 and Table 2). Contigs matching

unclassified viral sequences accounted for one-tenth of the total of viral contigs (Fig 1 and

Table 2).

Eukaryotic viral sequences

Insect viruses. Fourteen insect-related viral families and a group of unclassified viruses

were identified (Table 2). Positive single-stranded RNA (ssRNA (+)) viruses were predomi-

nant for M. molossus trapped in urban habitats, with most of the viral sequences identified

related to the Dicistroviridae, Nodaviridae and Iflaviridae families. DNA viruses detected in

this sample were related to viruses from the double-stranded DNA (dsDNA) Iridoviridae fam-

ily and the single-stranded DNA (ssDNA) Parvoviridae family. In contrast, ssDNA viruses

(mostly from Parvoviridae) were slightly more numerous for M. molossus trapped in forest

habitats compared to RNA viruses mostly from the Dicistroviridae and Nodaviridae families.

The four viral families (Baculoviridae, Iridoviridae, Nudiviridae and Iflaviridae) detected for

the D. rotundus were likely related to insects flying around feces.

Plant and protozoan viruses. Sixteen plant- and protozoan-related viral families and a

group of unassigned viruses were identified (Table 2). ssRNA viruses, mostly from the unas-

signed group followed by the Luteoviridae, Bromoviridae and Virgaviridae families, were pre-

dominant for M. molossus trapped in urban habitats. In contrast, dsDNA viruses

(Phycodnaviridae) and ssDNA viruses (Geminiviridae) were predominant for M. molossus and

D. rotundus trapped in forest habitats.

Vertebrate viruses. Fourteen vertebrate-related viral families were identified (Fig 1 and

Table 2). The highest viral diversity was found in both feces samples and forest habitats, and

DNA viruses were the most frequently found viruses for both species. The Anelloviridae, Circo-
viridae and Parvoviridae families accounted for the highest proportion of DNA viruses for

both samples of D. rotundus, with variation in number according to the sampling sites.

The Circoviridae and Anelloviridae families were also the most abundant in the sample of

M. molossus trapped in urban habitats, with very few viral sequences detected in saliva. In con-

trast, for M. molossus trapped in forest habitats, viral sequences related to the Herpesviridae,

Papillomaviridae and Circoviridae families were the most numerous, with herpesviruses found

for the most part in the saliva sample.
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Fig 2. Heatmap based on the viral-associated contigs of 51 families of insect, phage, plant/protozoan

and vertebrate viruses in each pooled sample. Location information is provided above each column

(Caves F and M for D. rotundus, Urban and Forest for M. molossus). The names of the viral families are

presented in alphabetical order in the middle. The boxes colored from green to dark red represent the number

of contigs observed. Contigs varied between 1 and 450 for the saliva samples and between 1 and 1465 for

feces. The scales are given for each type of sample.

https://doi.org/10.1371/journal.pone.0186943.g002
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We found viral sequences related to Poxviridae in both species, but only the D. rotundus
trapped in cave M presented mammal-related poxviruses. These sequences presented high

amino acid homology (>90%) with the bovine papular stomatitis virus, suggesting that this

virus came directly from cattle and its presence was related to the dietary habit of D. rotundus
(i.e., D. rotundus feeds off the blood of cattle).

RNA viruses were found in distinct bat species or habitats and belonged to the Astroviridae,

Nairoviridae, Hepeviridae, Picornaviridae and Retroviridae families. Astroviruses were only

found in D. rotundus trapped in cave F but in both habitats for M. molossus. In contrast, nairo-

viruses were only found in D. rotundus trapped in cave F and in M. molossus trapped in forest

habitats. Hepeviruses were only found in M. molossus trapped in urban areas. Picornaviruses

were found in both habitats for M. molossus, but the only sequence detected in forest habitats

was different from those detected in urban habitats.

Viral characterization and phylogenetic relationships of selected viruses

Bat circoviruses. The family Circoviridae is known to infect birds, mammals and insects,

and comprises two genera, Circovirus and Cyclovirus (ICTV 2016). Their transmission occurs

primarily through the fecal–oral route [54]. Here, Circoviridae viruses were detected in both D.

rotundus and M. molossus samples, whatever the environment, with a total of 545 contigs

(Table 2). These viruses were essentially found in the feces, except for D. rotundus in cave M

for which a small proportion of sequences was also detected in saliva. Four complete genomes

of circoviruses (CVs) were obtained for M. molossus (n = 1 in urban habitats and n = 3 in forest

habitats), and one partial sequence corresponding to the complete replication-associated pro-

tein gene for D. rotundus in cave M (n = 1) (Genbank acc. nb.: KX812440−KX812443 and

KX954092). The complete genomes presented the archetypal genome organization of CVs,

with the two inversely arranged ORFs encoding the Rep and Cap proteins (Fig 3). The inter-

genic region was variable in length, depending on the species as well as the habitat. The full-

length REP was used to perform evolutionary analyses. The phylogenetic tree revealed that

CVs (identified in cave M for D. rotundus and forest habitats for M. molossus) formed two dis-

tinct monophyletic clades with other bat circoviruses detected in the gastrointestinal tract and

feces samples of Chinese bat species [55] (Fig 3). In contrast, the CV identified in urban areas

for M. molossus was closely related to CVs detected in birds, with a posterior probability of

0.84.

Bat spumaviruses. Spumavirus (ICTV 2016) constitutes the only genus of the Spumare-
trovirinae subfamily, which belongs to the Retroviridae family. They are highly prevalent in

several animal species (e.g., cats, cows, horses and nonhuman primates) and currently six spe-

cies have been described in the genus. Transmission of spumaviruses between nonhuman pri-

mates and cross-species transmission to humans occurs mainly through saliva (e.g., by licking,

aggressive contacts, bites) [56–58]. Nevertheless, other routes of transmission, such as vertical

transmission, are being studied [59–61]. In this study, a 312-nt-length fragment (Genbank acc.

nb.: KX812444), obtained with two contigs detected in the saliva sample of M. molossus in

urban habitats, showed 54.88% and 48.48% nucleotide and amino acid identity, respectively,

with the pol gene of Rhinolophus affinis foamy virus 1 (Genbank acc. nb.: JQ814855) detected

in the feces of Chinese bats [13]. Phylogenetic analysis revealed that the foamy virus (FV) iden-

tified was close to Rhinolophus affinis foamy virus 1, with a high posterior probability value of

0.91 (Fig 4). Bat FVs seem to share a common origin with equine, bovine and feline FVs. In

addition, this analysis shows that bat FVs are divergent from those infecting nonhuman

primates.
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Fig 3. Circular genome maps of five putative circoviruses directly recovered from metagenomic data

of M. molossus and D. rotundus bat feces and their phylogenetic relationships with other

representative members of the Circoviridae family. (A) The inversely arranged open-reading frames

encoding the putative replication-associated protein (REP) and capsid protein (CAP) are shown in green and

blue boxes, respectively. The genome organization was determined with GENEIOUS R9. (B) The phylogenetic

analysis is based on the REP protein sequences (alignment of 109 amino acids). The blue arrows indicate the

five REP sequences of bat-sourced circoviruses obtained in the present study. The tree was inferred using the

Bayesian method with the blosum62 model. Sequence identifiers include the NCBI accession number and the

isolate name. Posterior probabilities of the Bayesian analysis (>50%) are shown next to each node. The scale

bar indicates amino acid substitutions per site.

https://doi.org/10.1371/journal.pone.0186943.g003
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Bat herpesviruses. Mammalian herpesviruses (HVs) belong to the Herpesviridae family

(order Herpesvirales). HVs are organized in three subfamilies–Alphaherpesvirinae, Betaherpes-
virinae and Gammaherpesvirinae. HVs can infect a wide range of hosts, including humans.

Most HV-related contigs were found in the saliva sample of M. molossus in forest habitats. We

identified a 943-nt-length fragment covering the DNA polymerase gene (Genbank acc. nb.:

KX812446). This fragment displayed from 62.46% to 71.31% and from 68.93% to 80.58%

nucleotide and amino acid identities, respectively, with other bat HVs. The highest percentage

of identity in amino acids was observed with Myotis ricketti herpesvirus 1 (Genbank acc. nb.:

JN692429). Phylogenetic analysis showed that the HV identified belonged to the Gammaher-
pesvirinae subfamily and was related to the Tupaia belangeri gammaherpesvirus 1 and the Myo-
tis ricketti herpesvirus 1, with a posterior probability of 0.68 (Fig 5).

Bat nairoviruses. The Nairoviridae family belongs to the order Bunyavirales (ICTV 2016).

This family encompasses at least nine serogroups, including the Crimean-Congo hemorrhagic

fever serogroup. Nairoviruses (NVs) are primarily tick-borne viruses capable of infecting dif-

ferent vertebrate hosts. Four contigs matching nairoviruses (NVs) were detected in the feces of

M. molossus in urban areas (Table 2). The contigs covered 1 kb of segment L (Genbank acc.

nb: KX821677) and showed a 43% pairwise homology in amino acids with the RNA-depen-

dent RNA polymerase of the previously described Rhinolophus pearsoni bunyavirus (Genbank

acc. nb.: KC154063). Phylogenetic analysis revealed that the NV identified clustered with Rhi-
nolophus pearsoni bunyavirus, with a posterior probability of 0.74 (Fig 6). These NVs share a

Fig 4. Phylogenetic analysis of partial sequences of the pol s region (alignment of 107 amino acids)

directly obtained from the metagenomic data of pooled fecal samples of M. molossus with other

representative members of the Spumavirus genus. The tree was inferred using the Bayesian method with

the WAG + G model. Sequence identifiers include the NCBI accession number and the isolate name. The

blue arrows indicate the sequence of bat-sourced spumavirus obtained in the present study. Posterior

probabilities of the Bayesian analysis (>50%) are shown next to each node. The scale bar indicates amino

acid substitutions per site.

https://doi.org/10.1371/journal.pone.0186943.g004

Viral diversity of two sympatric Amazonian bat species

PLOS ONE | https://doi.org/10.1371/journal.pone.0186943 November 8, 2017 14 / 25

https://doi.org/10.1371/journal.pone.0186943.g004
https://doi.org/10.1371/journal.pone.0186943


common ancestor with mosquito NVs, with whom they clustered with a posterior probability

of 1.

Bat papillomaviruses. Papillomaviridae are nonenveloped dsDNA viruses. Currently, 49

genera have been identified in this family, including the most species-abundant genera Gam-
mapapillomavirus. Papillomaviruses (PVs) are usually asymptomatic and thought to be rarely

transmitted between species. In this study, a total of 235 contigs related to PVs were detected

in M. molossus samples, with most of them identified in the feces collected in forest habitats

(Table 2). The longest contig obtained covered the entire genome of known PVs and was

named MmoPV1 (Genbank acc. nb.: KX812447). The MmoPV1 genome was 7,869 bp in

length with a 40% G+C content. The MmoPV1 genome had the typical organization of PV

ORFs (S2 Fig). The phylogenetic tree indicated that MmoPV1 possessed a basal position of a

cluster of PVs encompassing mupa PVs, kappa PVs, lambda PVs, sigma PVs, nupa PVs and

novel unclassified bat PVs detected in Miniopterus schreibersii [12], Eidolon helvum (Ger-

many), Eptesicus serotinus and Rhinolophus ferrumequinum [62], with a high posterior proba-

bility value of 0.98 (Fig 7).

Discussion

A wide spectrum of viruses capable of infecting a wide range of animals, plants, insects and

bacteria was detected in bats. Since the 1950s, 28 viral families including more than 50 genera

Fig 5. Phylogenetic analysis of partial pol gene sequences (alignment of 951 nucleotides) directly

obtained from the metagenomic data of pooled fecal samples of M. molossus with other

representative members of the Herpesviridae family. The tree was inferred using the Bayesian method

with the GTR + G + I model. Sequence identifiers include the NCBI accession number and the isolate name.

The blue arrows indicate the bat-sourced herpesvirus obtained in the present study. Posterior probabilities of

the Bayesian analysis (>50%) are shown next to each node. The scale bar indicates amino acid substitutions

per site.

https://doi.org/10.1371/journal.pone.0186943.g005
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have been described in bats [18]. With the advent of new-generation technologies, the charac-

terization of bat viromes and the discovery of related variants of known viruses and new bat-

borne viruses continue to increase rapidly. The key purpose of the present work was to explore

the viral composition of feces and saliva samples of Desmodus rotundus and Molossus molossus
bat species, living in sympatry but using distinct microhabitats in French Guiana.

Overall, this study identified 10,991 viral-associated contigs distributed within 51 known

viral families of which 14 are known to infect mammals. New mammalian-related viral

sequences/variants were discovered, adding knowledge on the bat-borne viral population. The

proportion of eukaryote- and prokaryote-related sequences was low (less than 2% and 20%,

respectively). About 0.30% of total contigs were virus-related sequences, with differences in

composition depending on the type of sample, the investigated species, habitats, and fine-scale

ecological heterogeneity (Table E in S1 File). For instance, of the 30 viral families detected in

D. rotundus, only 20 were common to both sampling sites (cave F vs. cave M). Likewise, focus-

ing on vertebrate-related viral families, eight of the 11 viral families detected for this species

Fig 6. Phylogenetic analysis of partial RdRp protein sequences (alignment of 341 amino acids)

directly obtained from the metagenomic data of pooled fecal samples of M. molossus with other

representative members of the Nairoviridae family. The tree was inferred using the Bayesian method with

the WAG + G model. Sequence identifiers include the NCBI accession number and the isolate name. The

blue arrows indicate the bat-sourced nairovirus sequence obtained in the present study. Posterior

probabilities of the Bayesian analysis (>50%) are shown next to each node. The scale bar indicates amino

acid substitutions per site.

https://doi.org/10.1371/journal.pone.0186943.g006
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Fig 7. Phylogenetic analysis of the complete L1 protein sequence (alignment of 459 amino acids)

directly obtained from the metagenomic data of pooled fecal samples of M. molossus with other

representative members of the Papillomaviridae family. The tree was inferred using the Bayesian method

with the WAG + G model. Sequence identifiers include the NCBI accession number. The blue arrows indicate

the bat-sourced papillomavirus sequence obtained in the present study. Posterior probabilities of the
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were shared between the populations sampled in the two caves. For the M. molossus species, of

the 46 viral families detected, 29 were common to both habitats (forest areas vs. urban areas).

Focusing on vertebrate-related viral families, ten of the 12 viral families detected in this species

were common to both habitats. Furthermore, we observed differences in the viral genera and

species detected, depending on the sampling sites for both species. These results suggest that

habitats may play a role in shaping the viral diversity harbored by the bats investigated. This

observation was also supported by Hu et al. [16], who showed that the metagenomic approach

can reflect differences in viral diversity carried by different bats in different regions. However,

a verification of confounding factors (e.g., sampling size, type of sample, capture effort, species,

feeding strategies) will be necessary to confirm these results. Likewise, population structure

analysis at the species level and studies on interactions with other bat species using the same

habitat are needed to determine their respective roles in shaping viral diversity.

Regardless of the bat species and the habitat studied, phage-related sequences represented a

significant proportion of the viral-associated sequences identified (Table 2 and Table F in S1

File). Sequences related to the order Caudovirales and the Microviridae family were the most

frequent. Phage-related sequences detected in the feces accounted for most of this proportion,

as could be expected considering the type of sample. Despite the constant and rapid expansion

of existing databases, sequences lacking counterparts remained the largest part of the data.

These global results are in agreement with previous virome studies conducted on North Amer-

ican and Eurasian bat species [8,9,11,12,14,15] and highlight the need to pursue investigations

and taxonomic assignments on microorganism communities. Therefore, the underestimation

of the total number of bat-borne viruses present in the samples, including highly divergent

viruses, cannot be excluded.

Despite a smaller number of samples for M. molossus, the number of viral-associated con-

tigs detected in these samples was higher than that found in D. rotundus, suggesting a higher

number of viruses passing through this species. However, these viruses are likely related to

nondigested viruses associated with the diet of their prey but not directly to the host. Indeed,

as highlighted in Li et al., insect and plant viruses were mostly represented in the insectivorous

species, while they accounted for less than 5% in the vampire species [9]. The diet of the vam-

pire bat (vertebrate blood) may also be reflected in the high proportion of vertebrate-related

viral sequences found. Likewise, the divergence observed in the distribution of phage-related

viruses might be associated with the diets of the species investigated and/or to their phyloge-

netic position, Molossidae vs. Phyllostomidae. For instance, Podoviridae species were the most

frequent in D. rotundus, whatever the sampling site, while Microviridae species were the most

often found in M. molossus. In bats, former studies highlighted a strong association between

the microbiota, host phylogeny, life history, physiology as well as locality [63,64]. Given that

gut microbiota is known to be highly dependent on diet, these results may reflect differences

between the dietary ecology of D. rotundus and M. molossus species.

We found several novel mammalian-related viral sequences/variants from the Anelloviri-
dae, Nairoviridae, Circoviridae, Hepeviridae, Herpesviridae, Retroviridae and Papillomaviridae
families. These viral sequences were closely related to sequences detected in Old World bat

species [17,62,65–68]. Furthermore, most of the families identified in Old World bat species

were identified here, even for non-mammalian viruses. Moreover, where divergence could be

expected due to geographical isolation, we observed highly supported phylogenetic proximity

between Old and New World bat viruses in their respective continents, revealing the existence

Bayesian analysis (>50%) are shown next to each node. The scale bar indicates amino acid substitutions per

site.

https://doi.org/10.1371/journal.pone.0186943.g007
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of common evolutionary processes and supporting the long evolutionary hypothesis of bats

and their viruses [7]. For example, most of the circovirus (CV) sequences detected in the pres-

ent study shared high sequence identities with bat CVs detected in several bat species trapped

in different Chinese provinces [17,69] and clustered in highly supported monophyletic groups.

The results reported herein suggest that the associated viruses may be hosted by bats. Con-

versely, the highly supported clustering of M. molossus CV (KX812443) with avian CVs may

result from a cross-species jump from birds to bats, as reported by Hu et al. [16] and Lima

et al. [70]. Likewise, foamy virus (FV) sequences, also called spumaviruses, detected in saliva

swab samples of M. molossus showed a high genomic similarity with the FVs detected in pha-

ryngeal and rectal swab samples of Rhinolophus affinis reported by Wu et al. [68], but low simi-

larity with other spumaviruses infecting other hosts (e.g., equines, felines, bovines, nonhuman

primates). Our findings indicate that FVs can indeed infect bats, which could be considered as

potential reservoirs and dispersers of this viral genus.

Several studies reported the detection of herpesviruses (HVs) of the three subfamilies

(Alpha-, Beta- and Gammaherpesvirinae) in feces, anal swabs, digestive tract and saliva samples

of bats [16,17,68,71–77]. These findings suggested that the oral–fecal transmission route may

be important for the transmission of HVs in bats. Furthermore, cases of cross-species trans-

mission of HVs were also reported in bats, but their mode of transmission is still unclear [77].

In this study, we found a high diversity of HVs in the feces and saliva samples of both species

investigated. Moreover, some sequences detected in the saliva samples of M. molossus from

forest habitats were also found in the feces samples, which showed the capacity of these bats to

shed HVs in the environment and supported the hypothesis of a potential oral–fecal transmis-

sion route. Detected HV-related sequences were novel and showed a high sequence similarity

with other bat HVs. Nevertheless, the phylogenetic tree constructed using a Bayesian method

revealed that M. molossus herpesvirus 1 (KX812446) did not cluster in a unique group with

other known bat gamma-HVs. Rather, it shares a common ancestor with Myotis ricketti and

Tupaia belangeri gamma-HVs, stressing the need for further characterization of M. molossus
herpesvirus 1 to confirm its taxonomic assignment.

Nairoviruses (NVs) naturally infecting bats were reported in a few studies, with some capa-

ble of causing intestine and hepatic disorders in other mammals [15,78–80]. Evidence of neu-

tralizing antibodies against Crimean-Congo hemorrhagic fever (CCHF) was reported by

Müller et al. [81], but the role of bats regarding the cycle and dispersal of this virus is not clear.

Here, we found a novel NV-related sequence in the feces of M. molossus sampled in urban

areas. Phylogenetic relationships based on the partial segment L sequence showed a highly

supported clustering with another NV-related sequence detected from the feces of Rhinolophus
pearsoni. This analysis also revealed that the detected NV was related to the genus Phlebovirus,
primarily constituted of tick-, mosquito- and phlebotomine-borne viruses. These findings sug-

gest that this sequence may be related to undigested viruses associated with the bats’ diet rather

than viruses hosted by bats. However, screening of other organs will be necessary to rule out

the role of bats in the virus cycle and dispersal.

Diverse sequences related to papillomaviruses (PVs) were reported in bats

[16,17,62,66,67,82,83]. Here, we detected 235 PV-like sequences related to members of geneti-

cally diverse genera within the Papillomaviridae, indicating that bat species might be associated

with a wide diversity of PVs. We described the complete genome of a novel bat PV, MmoPV1

(KX812447), detected in the feces and saliva samples of M. molossus sampled in forest and

urban habitats. This is the first detection of PV in this species to date. Comparing MmoPV1

with other PVs showed that it contains the typical PV ORFs coding for four putative early pro-

teins (E6, E7, E1, E2) and two putative late capsid proteins (L2 and L1). The putative early pro-

tein E4 –present in other phylogenetically closely-related bat PVs (JQ692938 [67], JX123128
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[83], KC858263, KC858265, KC858266 [84])–was absent in MmoPV1. Furthermore, the phy-

logenetic tree revealed that MmoPV1 may be more ancient than these bat PVs, suggesting that

they may either have undergone a divergent evolution that allowed them to acquire the early

protein or represent different host-specific and area-specific lineages [84].

This study is the very first to explore the virome of fecal and saliva samples obtained from

the two common Amazonian bat species, M. molossus and D. rotundus, with overlapping dis-

tribution but using distinct microhabitats in French Guiana. It provides important insight into

the feces and saliva viromes of the two bat species investigated within contrasting habitats.

However, to fully understand how viral diversity is shaped in D. rotundus and M. molossus,
further characterization of their geographic range, foraging-induced interactions, species dis-

tribution and gregariousness will be necessary. Indeed, larger geographic ranges encompass

greater diversity of ecosystems/habitats, which could lead to a spatial population substructure

[35]. The overlapping distribution of reservoirs and recipient hosts, the social complexity of

bats as well as species-specific evolutionary and life-history traits are known as predictors of

viral richness in wildlife [6,35]. Likewise, the contact and proximity between individuals influ-

ence the presence, abundance and diversity of the pathogens harbored [85]. Consequently,

deciphering the virome of bats should consider the size of the whole community of bats, the

genetic structure of populations in a given habitat and the rates of interactions among them,

all parameters contributing to the viral diversity observed for bat species.

Supporting information

S1 File. Read and contig processing of D. rotundus and M. molossus samples. Read data

reduction steps and de novo assembly of processed reads. Contig and sequential BLAST com-

parisons, with the total number of contigs and viral families identified in D. rotundus and M.

molossus samples.

(DOCX)

S1 Fig. Map of collecting sites of all samples/individuals used across French Guiana. The

total number of collected samples per site is given in parentheses. Pie chart indicates the pro-

portion of feces (orange) and saliva (orange dots) samples collected. Detailed characteristics of

the different collecting sites are given in Table 1.

(TIF)

S2 Fig. Predicted genome organization of the putative papillomavirus sequence directly

recovered from the metagenomic data of M. molossus bat feces. The open-reading frames

encoding the putative late (L1 and L2) and early (E1, E2, E6 and E7) proteins are shown in

green boxes. The genome organization was determined with GENEIOUS R9.

(TIF)
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