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Background. Cardiovascular disease (CVD) is the combination of coronary heart disease, myocardial infarction, rheumatic heart
disease, and peripheral vascular disease of the heart and blood vessels. It is one of the leading deadly diseases that causes one-third
of the deaths yearly in the globe. Additionally, the risk factors associated with it make the situation more complex for
cardiovascular patients, which lead them towards mortality, but the genetic association between CVD and its risk factors is not
clearly explored in the global literature. We addressed this issue and explored the linkage between CVD and its risk factors.
Methods. We developed an analytical approach to reveal the risk factors and their linkages with CVD. We used GEO
microarray datasets for the CVD and other risk factors in this study. We performed several analyses including gene expression
analysis, diseasome analysis, protein-protein interaction (PPI) analysis, and pathway analysis for discovering the relationship
between CVD and its risk factors. We also examined the validation of our study using gold benchmark databases OMIM,
dbGAP, and DisGeNET. Results. We observed that the number of 32, 17, 53, 70, and 89 differentially expressed genes (DEGs)
is overlapped between CVD and its risk factors of hypertension (HTN), type 2 diabetes (T2D), hypercholesterolemia (HCL),
obesity, and aging, respectively. We identified 10 major hub proteins (FPR2, TNF, CXCL8, CXCL1, IL1B, VEGFA, CYBB,
PTGS2, ITGAX, and CCR5), 12 significant functional pathways, and 11 gene ontological pathways that are associated with
CVD. We also found the connection of CVD with its risk factors in the gold benchmark databases. Our experimental
outcomes indicate a strong association of CVD with its risk factors of HTN, T2D, HCL, obesity, and aging. Conclusions. Our
computational approach explored the genetic association of CVD with its risk factors by identifying the significant DEGs, hub
proteins, and signaling and ontological pathways. The outcomes of this study may be further used in the lab-based analysis for
developing the effective treatment strategies of CVD.

1. Introduction mated that approximately 23. 6 million people will die of

CVD [1]. According to the World Health Organization, four
Cardiovascular disease is a leading cause of death in both  out of five CVD patients die from a heart attack or myocar-
developing as well as developed countries; by 2030, it is esti-  dial infarction every year. Cardiovascular disease has now
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become one of the leading causes of death and disability
around the world. Moreover, the situation of cardiovascular
disease is rapidly deteriorating because the risk factors of it
are making the issue more complicated.

A number of research studies have been done for finding
out the risk factors of CVD. Winkleby et al. found that
smoking, systolic and diastolic blood pressures, and high-
density lipoprotein cholesterol are risk factors for CVD [2].
Chiazor et al. observed that T2D, HTN, dyslipidemia, and
smoking are responsible for CVD [3]. Smoking, diabetes
mellitus, HTN, dyslipidemia, and HIV infection are reported
by Friis-Mgller et al. as risk factors [4]. Mozaffarian et al.
said that T2D, HTN, and dyslipidemia are well-established
predictors of cardiovascular disease [5]. Aging, HTN, HCL,
obesity, T2D, smoking, and many other conditions are
investigated as risk factors by Al Rawahi et al. [6]. Studies
also show how these risk factors drive CVD patients towards
mortality. T2D increases the glucose level in the blood,
which reduces the blood vessels elasticity and, as a result,
impedes blood flow [7]. Similarly, HCL narrows the blood
vessels and blocks blood flow that is the main cause of
CVD [8]. HTN is also known as a risk factor for atheroscle-
rosis development which results in coronary heart disease
[9]. Atherosclerosis includes atrial enlargement link obesity
to CVD [10]. Furthermore, aging is an independent risk fac-
tor for cardiovascular diseases [11].

Several transcriptomic and genetic studies were con-
ducted using gene expression profiling, which revealed sev-
eral genes that are differentially expressed in CVD, but the
majority of these studies were constrained at the transcript
level since there were no general considerations about func-
tional associations between gene products and the effects of
influencing factors. Many of the molecular mechanisms,
gene functions, cell physiological interactions, and genetic
profile of CVD are not fully explored yet. Therefore, we
developed a computational approach to identify the poten-
tial biomarkers and biomolecules of CVD using gene expres-
sion microarray technology.

At present, gene expression analysis has become a popu-
lar tool for researchers to discover and investigate biomole-
cules, their mechanisms, and gene expression levels using
microarray [12]. It is a technique that tells us which genes
in a particular cell or tissue are turned on or off by determin-
ing the activity of thousands of genes [13]. By measuring its
relative amounts of mRNA, gene expression profiling can
also be used to determine the transcriptional level pattern
in the genes expressed by a cell [14]. Again, microarray tech-
nology helps to detect gene expression by comparing disease
and healthy mRNA samples [15]. In our research, we used
publicly available microarray datasets for the gene expres-
sion profiling to detect the genetic risk factors of CVD.

In this study, we first identified the DEGs of CVD and
our selected risk factors. After that, we did cross-
comparative analysis, PPI analysis, pathways analysis, and
gene ontological analysis. We identified significant hub pro-
teins, functional and ontological pathways using the shared
DEGs of CVD, and its risk factors. We further applied a
network-based analysis to understand the gene activity rela-
tionships between CVD and its risk factors at the molecular
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level. Finally, we validated our research work through gold
benchmark databases that indicates that our identified risk
factors may be the potential risk factors of CVD.

2. Materials and Methodology

2.1. Brief Description of the Analytical Approach. In our ana-
Iytical approach, we first identified the DEGs of CVD and its
risk factors employing the gene expression microarray data.
After that, we did cross-comparative analysis to find the
shared DEGs between CVD and its risk factors. We then
identified significant hub proteins and functional and onto-
logical pathways using those shared DEGs. We further
applied a network-based analysis to understand the gene-
disease association ship of CVD and its risk factors at the
molecular level. Finally, we validated our study through the
gold benchmark databases and found our selected four risk
factors as the potential risk factor of CVD. The pictorial rep-
resentation of our analytical approach is shown in Figure 1.

2.2. Dataset Description. We surveyed globally published lit-
erature and found some links among CVD and HTN, T2D,
HCL, obesity, and aging from clinical studies. Then, we col-
lected Gene Expression Omnibus (GEO) datasets from
National Centre for Biotechnology Information (NCBI)
(https://www.ncbi.nlm.nih.gov/geo/), a publicly available
repository. We examined a number of available microarray
datasets, but most of them were discarded because of low
number of samples or absence of cases, controls, and gene
symbols. Also, we did not consider the datasets that were
not generated from human organisms. After considering
all the criteria, we collected 7 microarray datasets for CVD,
HTN, T2D, HCL, obesity, and aging where for cardiovascu-
lar disease, we considered coronary artery disease and myo-
cardial infarction datasets. Accession numbers for HTN,
T2D, HCL, obesity, aging, coronary artery disease, and myo-
cardial infarction are GSE703, GSE26168, GSE6054,
GSE60403, GSE13712, GSE98583, and GSE66360, respec-
tively. The microarray dataset of HTN is derived from
peripheral white blood cells of 6 healthy individuals and 14
individuals with pulmonary arterial hypertension [16].
T2D dataset is a gene expression array that was generated
from the blood samples of 8 healthy people and 16 patients
using the Illumina technology [17]. The HCL dataset was
derived by comparing 13 controls and 10 familial hypercho-
lesterolemia participants using monocyte cells from their
blood which is also a microarray dataset used Affymetrix
technology [18]. The microarray dataset of obesity was
developed using Affymetrix technology from the blood of
human umbilical cord; there were 8 obese and 8 leans indi-
viduals [19]. The microarray dataset of aging was extracted
from the human umbilical vein of 6 young and 6 senescent
people using the Affymetrix platform [20]. Both cardiovas-
cular microarray datasets were extracted from human blood
samples where coronary artery disease dataset was produced
by comparing 6 healthy with 12 case samples [21], while the
myocardial infarction dataset was developed using 50
healthy people and 49 infected subjects [22] using the same
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FIGURE 1: Block diagram of the applied analytical approach.

Aftfymetrix technology. A brief description of the datasets is
given in Table 1.

2.3. Analysis Methods. Gene expression data analysis is a
worldwide popular and effective technique for exploring
the genetic profile at the molecular level [23]. We applied
the gene expression analysis technique on the CVD and its
risk factors to investigate the biological profile and their
associations at the genomic level. As our selected mRNA
expression data are produced from different technologies
and experimental setups, we minimized the complications
by normalizing the original datasets using Z-score transfor-
mation (Zij) for each of the risk factor and their main mal-

ady CVD as follows:

Z, =0 = (1)

where ¢ denotes the standard deviation, x denotes the
mean, and x;; denotes the gene expression value i in j sam-

ple. As a result of this Z transformation, different disease
stages can be appropriately compared with each other in
terms of gene expression. For detecting differentially
expressed genes, we applied the unpaired Student’s t-test
statistic along with the threshold p value < 0.05 and [logFC
| > 1 to each malady control dataset, which identified signif-
icantly dysregulated genes (up- and downregulated genes).
To achieve gene-disease interaction and correlation, we
constructed a gene-disease network or bipartite graph using
neighborhood-based benchmark and multilayer topological
strategies for the gene-disease associations, where the nodes
of the network are either gene or disease. The main condi-
tion for diseases to participate in the gene-disease network

is that the diseases must share one or more significant dys-
regulated genes among them. Let D be the set of diseases
and G is be the set of dysregulated genes, and gene-disease
affiliations are determined by whether gene g € G is associ-
ated with disease d € D. If the set of significant dysregulated
genes G; and G; is linked with diseases D; and D, respec-
tively, after that, the equation of the number of dysregulated
genes (nigj), shared by both diseases D; and D), can be
expressed as follows [24, 25]:

;=N (G;nG;). (2)

The Jaccard coefficient method is used to select the com-
mon neighbors by measuring the edge prediction score for
the node pair according to their similarity as follows [26, 27]:

N (G,NnG;
E(ij) = ﬁ (3)
i=

where G and E represent the set of nodes and set of all
edges, respectively.

For the protein-protein interaction analysis, STRING [28]
database is utilized, which is an online tool for the retrieval of
interacting genes or proteins. Besides, we utilized a network
visualization tool named Cytoscape [29] for the visualization
of the network where nodes denote proteins and edges denote
the connections between the nodes. Additionally, closely
linked nodes, ie., hub proteins, are identified applying the
degree metrics by the cytoHubba [30] plugin of Cytoscape.

For a deeper understanding of biological functions and
pathways, a web-based gene-enrichment analysis platform
EnrichR [31] is used to analyze the pathways and gene
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TaBLE 1: Descriptions of selected datasets with GEO accession number, platform, tissues, and number of samples.

Disease GEO number Platform Tissues Control samples Case samples

Coronary artery disease GSE98583 Affymetrix Coronary artery cells 6 12

Myocardial infarction GSE66360 Affymetrix Endothelial cells 50 49

HTN GSE703 Affymetrix Peripheral blood cells 6 14

T2D GSE26168 Ilumina Blood cells 23 37

HCL GSE6054 Affymetrix Circulating monocytes 13 10

Obesity GSE60403 Affymetrix Umbilical cord blood cells

Aging GSE13712 Affymetrix Endothelial cells

ontologies for the common DEGs of CVD and its risk fac-
tors. For pathway enrichment analysis, Kyoto Encyclopedia
of Genes and Genomes [32], Reactome [33], and WikiPath-
ways [34] human databases were used to obtain the signifi-
cant enrichment outcomes. Similarly, GO biological
process [35], GO molecular function [35], and GO cellular
component [35] databases were used for ontological analysis
where the threshold of selecting both pathways and ontol-
ogies was p value < 0.05.

To verify the relationship of CVD with its risk factors
and to evaluate the utility of the network-based approach,
three standard gold benchmark databases OMIM [36],
dbGAP [37], and DisGeNET [38] were used. We collected
diseases with its associated genes from the above-
mentioned databases using DEGs of CVD. After applying
several statistical analyses, we shortlisted the collected dis-
eases and found our selected four risk factors in the list.

Step-by-step instructions for the analytical approach are
as follows:

(1) Search datasets in the public repositories by consid-
ering necessary standards

(2) Datasets, i=1,2, ---, N, were obtained using the fol-
low steps

(a) Load dataset

(b) Make column names

(c) Group all samples

(d) Apply log2 transformation

(e) Apply normalization to the data

(f) Assign patient’s samples to case and healthy
people’s samples to the control group

(g) Set up case vs. control design matrix
(h) Apply precision weights

(i) Fit linear model

(j) Recalculate coefficient

(k) Generate statistics and table with Benjamini and
Hochberg

(1) Download the data table and delete empty gene
rows

(3) For differentially expressed genes
(a) Apply p value and logFC value

(b) Apply false discovery rate (FDR)
(c) List identified DEGs

(4) Contrast of two distinct diseases of DEGs for

(a) overlapping upregulated genes

(b) overlapping downregulated genes

(5) Utilizing common up- and downregulated DEGs for

(a) construction of gene-disease association network
(b) protein-protein interaction analysis

(c) hub protein identification

(d) signaling pathway enrichment analysis

(e) ontological pathway enrichment analysis

(6) Validation of the work using gold benchmark
databases

3. Results

3.1. Differentially Expressed Gene Identification. For the
investigation on risk factors and the genomics of CVD pro-
gression, we examined GEO microarray datasets from
National Center for Biotechnology Information (NCBI).
We employed limma [39], umap [40], and GEOquery [41]
R packages of GEO2R [42] tool to obtain gene expression
scores by comparing disease and normal samples. We iden-
tified DEGs consisting of up- and downregulated genes
where upregulated genes are selected using the threshold p
value < 0.05 and logFC > 1 and downregulated genes using
p value < 0.05 and logFC < —1. We detected a total number
of 201 DEGs for HTN where the number of up- and down-
regulated genes are 122 and 79. In T2D, 233 up- and 339
downregulated genes are identified where total DEGs are
572. 1195 DEGs were identified for HCL including 538 up-
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and 657 downregulated genes. For obesity, 816 up- and 561
downregulated genes were found, and the total numbers of
DEGs are 1377. A total of 2693 DEGs were determined for
aging, which consisted of 1046 up- and 1647 downregulated
genes. We identified 534 and 951 DEGs for coronary artery
disease and myocardial infarction, respectively, where up-
and downregulated genes in coronary artery disease are 87
and 477, and for myocardial infarction, the numbers are
718 and 233. The summary of the identified DEGs is shown
in Table 2.

There must be several DEGs in the two diseases for them
to be associated [43]. Therefore, we performed a cross-
comparison analysis on the identified DEGs among the
CVD and the risk factors. We found that the shared DEGs
of CVD with HTN, T2D, HCL, obesity, and aging are 32
(25 up and 7 down), 17 (10 up and 7 down), 53 (14 up
and 39 down), 70 (47 up and 23 down), and 89 (39 up and
50 down), respectively. To exert the significant affinity,
gene-disease association networks were constructed and pre-
sented in Figures 2 and 3, where common up- and downreg-
ulated genes were used between the risk factors and CVD.
Our research also revealed that few genes are shared in
CVD and more than one risk factor. Among them, the
upregulated gene BCL2A1 is common in CVD, HTN, obe-
sity, and aging; RNF144B and PTGIS are common in HCL,
obesity, aging, and CVD; G0S2, CXCL1, ACKR3, and
PTPRD are found in HTN, aging, and CVD; TGFB2,
CA12, and MSRI1 are familiar in obesity, aging, and CVD.
Accordingly, S1PR3, IQCG, and TF are common in HCL,
aging, and CVD; ACSL1, THBD, and HNF4A are repeated
in HTN, obesity, and CVD. Similarly, CCL20 and PLAU
are common in T2D, aging, and CVD, and UTY is in T2D,
HCL, and CVD. Again, 3 upregulated genes ADPRH,
PADI2, and QKI are shared in T2D, obesity, and CVD.
The study also identified 3 additional genes CLEC7A,
MSRB3, and PEX5L that are common among HCL, obesity,
and CVD. In order to detect a significant correlation
between CVD and risk factors, a biological network was con-
structed using the common DEGs of CVD, and its maladies
are shown in Figures 2 and 3.

3.2.  Protein-Protein Interactions and Hub Protein
Identification. Biochemical and biological functions of the
proteins in a cell is known as protein-protein interaction.
To understand cell physiology, drug design, and disease
association, the investigation of protein-protein interaction
contributes significantly in the field of biology and bioinfor-
matics. Therefore, a PPI network is constructed utilizing the
commonly identified 118 DEGs from a total of 213 DEGs
among CVD and the selected five risk factors as shown in
Figure 4. The nodes in PPI network denote proteins, and
the undirected edges indicate the association between pro-
teins. In addition, the network is divided into 5 clusters for
the representation of protein’s interactions of the risk factors
and CVD. “PTGIS” belongs to the greatest number of clus-
ters (3 clusters) that interact with other proteins of the other
clusters. As a gene, it is also frequently identified in CVD,
HTN, HCL and obesity. Besides, proteins including QKI,
PADI2, CCL20, PLAU, THBD, CLEC7A, TF, S1PR3,

CXCL1, and ACKR3 are all part of two clusters, each of
which interacts with others in this network.

Hubs are nodes that possess a large number of links in a
complex network, and hub proteins are proteins that have a
significant number of interactions. Hub proteins are essen-
tial for the physiological interactions and drug design [44,
45]. We identified 10 major significant hub proteins (FPR2,
TNF, CXCL8, CXCL1, IL1B, VEGFA, CYBB, PTGS2,
ITGAX, and CCR5) from the PPI network using the cyto-
Hubba plugin where 6 hub proteins are dysregulated for
HTN, three for aging, and one for obesity. No hub proteins
were found for the dysregulation of T2D and HCL. Detailed
summaries of the hub proteins along with descriptions are
given in Table 3, and the PPI network of hub proteins is
depicted in Figure 5.

3.3. Identified Functional and Ontological Pathways. In order
to understand the insights and how the diseases interact at
the molecular level, it is essential to observe pathway-based
analysis. A pathway also reveals internal changes in an
organism as well as it may activate or disable genes. In this
study, we performed functional pathway analysis to investi-
gate molecular pathways among CVD and its risk factors by
utilizing KEGG, Reactome, and WikiPathways databases of
Enrichr. Based on the statistical significance (p value <
0.05) and the global published literature, we identified
important pathways which have direct or indirect relation-
ships with CVD and the risk factors. We found “fluid shear
stress and atherosclerosis” (ID: hsa05418), “cardiac muscle
contraction” (ID: hsa04260), “rheumatoid arthritis” (ID:
hsa05323), “cytokine-cytokine receptor interaction” (ID:
hsa04060), “TNF signaling pathway” (ID:hsa04668), “IL-17
signaling pathway” (ID:hsa04657), “chemokine signaling
pathway” (ID: hsa04062), “TGF-beta signaling pathway”

(ID:  hsa04350), “MAPK signaling pathway” (ID:
hsa04010), “NF-kappa B signaling pathway” (ID:
hsa04064), “AGE-RAGE signaling pathway” (ID:
hsa04933), and “PI3K-Akt signaling pathway” (ID:

hsa04151) as effective pathways associated with CVD.
Table 4 summarizes the most significant identified pathways.

Gene ontologies represent biological information such as
gene functions, gene relationships, and gene attributes of
gene products across all species of organisms in terms of
molecular function, cellular component, and biological pro-
cess. We analyzed gene ontological pathways in a similar
way as functional pathway analysis using shared DEGs of
CVD and risk factors. For the selection of gene ontologies,
we utilized GO biological process, GO molecular function,
and GO cellular component databases of Enrichr and did
some statistical analysis as well as literature-driven analysis.
We identified vasoconstriction (GO:0042310), vascular
smooth muscle contraction (GO:0014829), positive regula-
tion of blood coagulation (GO:0030194), positive regulation
of heart contraction (GO:0045823), cardiomyocyte differen-
tiation (GO:0035051), cholesterol import (GO:0070508),
inflammatory response (GO:0006954), regulation of angio-
genesis (GO:0045765), leukocyte aggregation
(G0:0070486), positive regulation of chemokine production
(G0O:0032722), and positive regulation of MAPK cascade
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TaBLE 2: Number of identified DEGs for CVD and its risk factors.

Disease name GSE number ~ Raw genes  Differentially expressed genes ~ Upregulated genes ~ Downregulated genes
Coronary artery disease GSE98583 21154 534 87 447
Myocardial infarction GSE66360 45118 951 718 233

HTN GSE703 6434 201 122 79

T2D GSE26168 10457 572 233 339

HCL GSE6054 45118 1195 538 657

Obesity GSE60403 45118 1377 816 561

Aging GSE13712 45118 2693 1046 1647

F1GURE 2: Diseasome network of the upregulated genes that are common between CVD and HTN, T2D, HCL, obesity, and aging. Circular
sky blue-colored nodes represent shared upregulated genes, and octagon-shaped nodes represent CVD and its risk factors.

(GO:0043410) as the most significant ontological pathways
of CVD as shown in Table 5.

3.4. Validation. In order to validate our results, we utilized
Enrichr’s gold benchmark databases OMIM, dbGAP, and
DisGeNET using the shared DEGs of CVD, HTN, T2D,
HCL, obesity, and aging. For cross-checking the validity,
we collected a list of diseases and associated genes employing
the common DEGs of CVD and selected risk factors from
the above-mentioned databases. After doing a few steps of
statistical analysis on the collected data, we got some mala-
dies and we found that our selected risk factors were present

there as shown in Table 6. In this way, we validated the
genetic relationships of CVD and its risk factors.

4. Discussion

In this study, we developed a bioinformatics and system bio-
logical pipeline to investigate the association of CVD with its
risk factors at the molecular level. We conducted gene
expression analysis, PPI analysis, and functional and onto-
logical pathway analysis and achieved some novel insights
and relationships utilizing our pipeline. We identified



Cardiovascular Therapeutics

Fi1Gure 3: Diseasome network of the downregulated genes that are common between CVD and HTN, T2D, HCL, obesity, and aging.
Circular green-colored nodes represent shared downregulated genes, and octagon-shaped nodes represent CVD and its risk factors.

significant genes, hub proteins, and important pathways that
may accelerate CVD research in the future.

From gene expression analysis, we were able to detect a
significant number of DEGs where 32 DEGs are shared
between CVD and HTN, 17 DEGs between CVD and
T2D, 53 DEGs between CVD and HCL, 70 DEGs in CVD
and obesity, and 89 DEGs are common between CVD and
aging. In addition, we observed that some DEGs are shared
among multiple risk factors and CVD. The commonly dys-
regulated genes (both upregulated and downregulated) in
CVD and the risk factors indicate that they are intercon-
nected with each other.

After doing PPI and topological analysis, we got 10
highly connected hub proteins as biomarkers. We searched
in the global published research work and found that our
identified hub proteins are involved in CVD progression.
We got an association between formyl peptide receptors
(FPRs) and cardiovascular pathologies [46]. Again, formyl
peptide receptor’s (FPR) subtype FPR2 is involved in athero-
sclerosis as well as the stimulation of proinflammatory and

proresolution responses, and atherosclerosis is linked with
inflammatory responses [47-49]. Tumor necrosis factor
(TNF) is known as tumor necrosis factor-alpha (TNF-«)
which is a small cytokine protein that is involved in the
development of coronary heart disease through inflamma-
tory response, plaques, and coronary heart disease acute
myocardial infarction [50]. The quantity and duration of
TNF-a expression are considerable factors for the effect of
TNF-a on the cardiac system [51]. Short-term TNF-«
expression may respond to stress in the heart, but long-
term expression can cause heart decompensation [52].
Excessive concentrations of TNF-« in the bloodstream will
lead to left ventricular dysfunction [53], cardiomyopathy,
and heart failure [54]. Chemokine ligand 8 (CXCL8) belongs
to the CXC chemokine family and is an important mediator
of inflammation that is associated with cardiovascular injury
[55]. An overexpression of this proinflammatory protein
may contribute to coronary artery disease and endothelial
dysfunction [55]. Cardiac-associated chemokine C-X-C
motif ligand-1 (CXCL1) expressed in neutrophils,
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FIGURE 4: Protein-protein interaction (PPI) network of overlapping DEGs of CVD and its risk factors. The clusters indicate the proteins of
the risk factors of CVD (elliptical shape clusters 1, 2, 3, 4, and 5 represent proteins of T2D, obesity, HCL, HTN, and aging, respectively)
where some proteins are overlapped in more than one cluster.

TaBLE 3: The 10 most significant hub proteins.

Protein

Description

Associated risk factor

FPR2
TNF
CXCL8
CXCL1
IL1B
VEGFA
CYBB
PTGS2
ITGAX
CCR5

Formyl peptide receptor 2
Tumor necrosis factor
C-X-C motif chemokine ligand 8
C-X-C motif chemokine ligand 1
Interleukin 1 beta
Vascular endothelial growth factor A
Cytochrome B-245 beta chain
Prostaglandin-endoperoxide synthase 2

Integrin subunit alpha X

C-C motif chemokine receptor 5

Upregulated for HTN
Upregulated for HTN
Upregulated for aging
Upregulated for HTN
Upregulated for HTN
Upregulated for obesity
Upregulated for aging
Upregulated for HTN
Upregulated for aging
Downregulated for HTN
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FIGURE 5: An illustration of the simplified PPI network and the hub proteins. Ten most significant hub proteins are marked as red, orange,
and yellow color, respectively. Red color indicates highly connected nodes, orange color indicates moderately connected nodes, and yellow

color indicates poorly connected nodes.

macrophages, and epithelial cells is a valid proinflammatory
factor that performs a role in mediating the infiltration of
neutrophils and monocytes/macrophages. CXCL1 may pro-
mote cardiac remodeling and fibrosis, as well as be a thera-
peutic target for the treatment of cardiac fibrosis in
cardiovascular disease [56]. Interleukin-1 (IL-1) is an apical
proinflammatory mediator in acute and chronic inflamma-
tion and a powerful inducer of the innate immune response
that assesses in coronary artery disease [57]. IL-1 proteins
bind to IL-1 receptors, and polymorphisms in IL-1f genes
have been linked to atherosclerosis and acute myocardial
infarction [58]. Vascular endothelial growth factor-A
(VEGEF-A) is one of the polypeptide proteins and the most
established factor in the VEGF family as well as prognostic
biomarker in coronary heart disease patients [59]. VEGF-A
influences vascular proliferation and permeability, allowing
the body to compensate for hypoxia and speed up inflamma-
tory processes [60]. Cytochrome b-245 beta chain gene is
part of cytochrome b-245, which is essential for microbicidal
oxidase development in phagocytic cells that plays critical
roles in the pathogenesis of coronary artery disease [61]; it

is also associated with ventricular hypertrophy and arrhyth-
mia [62]. Prostaglandin-endoperoxide synthase (PTGS) is
the key enzyme in prostaglandin biosynthesis, and the
adverse effects of PTGS inhibitors on the cardiovascular sys-
tem have been identified [63]. Integrin subunit alpha X
(ITGAX) is a heterodimeric integral membrane protein
composed of an alpha chain. It is associated with atheroscle-
rosis and leading to cerebrovascular disease [64, 65]. As a
consequence of multiple myocardial stressors, it is likely to
cause cardiac myocyte (CM) cell loss [66]. C-C motif che-
mokine receptor 5 (CCR5) and its ligands CCL3 (MIP-1«),
CCL4 (MIP-1f), and CCL5 (RANTES) also associate and
contribute to the initiation and progression of atherosclero-
sis and related cardiovascular diseases [67].

We identified some statistically significant molecular
pathways using gene set enrichment analysis that proves
strong associations with the mentioned risk factors and
CVD. Among them, the “fluid shear stress and atherosclero-
sis” pathway is linked to the frictional force that flows blood
exerted on the endothelial surface of the vessel wall, which
acts a central role in atherosclerosis development [68]. The
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TaBLE 4: Significant functional pathways of CVD are also associated in its risk factors.
ID Pathway Genes in pathway Risk factors  p value
hsa0s41g |1uid shear stress and THBD, FOS, MAP2K5, VEGFA, IL1B, TNF, and ICAM1 Obesity, HTN 1.43E-03
atherosclerosis
hsaoaze0 ~ Cardiac muscle ATP1A2, SLC8A1 HCL 1.95E-02
contraction
. " TGFB2, FOS, VEGFA, TGFB2, CXCL8, CCL20, CXCL1, IL1B, CXCL1, Obesity, HTN,
hsa05323 Rheumatoid arthritis TNE, TLR4, and ICAM1 and aging 4E-03
hsa04060 Cytokine-cytokine IL1RN, CCL20, TNFRSF21, IL1B, ACKR3, CXCL1, CCRS5, IL6ST, TNF, T2D, HTN, 1.83E-03
receptor interaction CCL13, TGFB2, CXCLS8, CCL20, ACKR3, and CXCL1 aging ’
hsa04668 TNpFatS}‘lgV‘;:;mg NFKBIA, ILIB, CXCL1, PTGS2, TNF, and ICAM1 HTN  2.86E-08
hsa04657 IL';Ztﬁr:}mg CXCL8, CCL20, CXCL1, NFKBIA, ILIB, CXCLI, PTGS2, and TNF ~ Aging, HIN ~ 4.88E-07
hsa04062 Chem‘l’)l;‘tr}‘fvzgnalmg CCL13, CXCL8, CCL20, CXCL1, NFKBIA, CXCLI, and CCR5 Aging, HTN  4.06E-03
hsa04350 | OF-beta signaling TGFB2, THBS1 Obesity ~ 3.96E-02
pathway
hsa04010 MAI;I;ﬁf:;h“g TGEB2, FOS, VEGFA, DUSP1, and AREG Obesity, aging 3.51E-02
NF-kappa B signaling CCL13, CXCL8, BCL2A1, PLAU, NFKBIA, BCL2A1, IL1B, PTGS2, TNF, .
hsa04064 pathway TLR4, and ICAM1 Aging, HTN  1.05E-03
hsa04933 AGE'RIQSEV :;gnahng THBD, TGFB2, COL3A1, VEGFA, THBD, IL1B, TNF, and ICAMI ~ Obesity, HTN 4.19E-04
hsa04151 ' D K'p‘:lt‘}twsv‘ag;ah“g LAMAA4, TL2RA, MDM2, THBSI, and VEGFA Obesity ~ 7.98E-03
TaBLE 5: Significant ontological pathways of CVD are also associated in its risk factors.
GO ID Pathway Genes in pathway Risk factors p value
GO:0042310 Vasoconstriction ADRAI1A, SLC8A1 HCL, HTN 2.02E-02
GO:0014g29 ¥ Ascular smooth muscle SLC8A1 HCL 1.9-02
contraction
GO:0030194  FOsitive regulation of THBD, TLR4, and THBSI Obesity, HTN  4.71E-04
blood coagulation
GO0045823  Dositive regulation of ADM, ADRAIA, and TGFB2 HIN, aging, and 7,
heart contraction obesity
GO0:0035051 Cardiomyocyte TGFB2, NRG1 Aging 1.64E-03
differentiation
GO:0070508 Cholesterol import APOA1 Aging 2.78E-02
. CCL20, NFAM1, TNFRSF21, MMP25, IL2RA, PTGER3, FOS, = T2D, obesity, and
G0:0006954  Inflammatory response LYZ, THBSI, IL1B, CXCL1, FPR2, TNF, and TLR4 HTN 6-30E-05
. Regulation of TGFB2, PTGIS, THBS1, GTF2I, VEGFA, PTGIS, PRKD1, PML, Obesity, HCL,
GO:0045765 angiogenesis IL1B, and CYP1B1 HTN, and obesity 3.90E-04
GO0:0070486  Leukocyte aggregation IL1B HTN 1.18E-02
GO0032722  Positive regulation of IL1B, TNF, and TLR4 HTN 2.59E-05
chemokine production
GO:0043410  Positive regulation of ~ CCL13, TGFB2, CCL20, ACKR3, S100A12, ACKR3, FPR2, TNF, HTN, aging 122E-03

MAPK cascade

and ADRA1A

pathway “cardiac muscle contraction” is a complex process
that is connected to cardiac myocytes as well as acts as a
key pathway in congenital heart disease [69, 70]. The path-
way “rheumatoid arthritis” involves high levels of inflamma-

tion, and inflammation accelerates the progression of
atherosclerosis and heart disease [71]. According to recent
research, the molecular pathway “cytokine-cytokine receptor
interaction” directly impacts the myocardium and may serve
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TaBLE 6: Validation of the association of CVD with 5 risk factors employing gold benchmark databases.

Risk

factors Genes p value
HTN HNF4A, THBD, ACSL1, NFKBIA, FPR2, TNF, ADRA1A, and SCN5A 3.18E-02
T2D MCTP1, PDE4B, PRKCB, and NLRP1 4.01E-02
HCL RNF144B, PTGIS, KLK2, ADAMTS6, CFTR, PRKD1, SHB, NOL4, NKAIN2, PSD3, SRGAP3, SLIT2, SAMD12, 1.44E-02

TRPM3, and TBC1D16 o

Obesity TGFB2, HNF4A, RNF144A, ACSL1, QKI, PADI4, VEGFA, COBLL1, SP4, KCNQ3, BLZFI1, and CD44 5.34E-03
Aging RNF144B, VNN1, TGFB2, ANPEP, KYNU, MED12, TF, CXCL8, PHACTR2, DIP2A, HMCN1, and SAMDI12  3.51E-03

as a biological mediator of cardiovascular disease [72].
“TNF-a-activated signal transduction pathways” in the car-
diovascular system may contribute to vascular dysfunction,
development, and progression of atherosclerosis and adverse
cardiac remodeling following myocardial infarction and
heart failure [73]. According to evidence, the “IL-17 signal-
ing pathway” influences the development of atherosclerosis
[74]. The “chemokine signaling pathway” performs a critical
role in the early stages of cardiovascular disease like athero-
sclerosis or acute ischemia [55]. Cardiac fibrosis describes
the inappropriate proliferation of cardiac fibroblasts (CFs),
and clinical and experimental evidence suggested that the
transformation of CFs could be regulated by the “transform-
ing growth factor-beta (TGF-pf) signaling pathways” [75].
Researchers have suggested the intracellular “mitogen-
activated protein kinase (MAPK) signaling” pathway con-
tributes greatly to the pathogenesis of cardiac vascular dis-
ease [76]. The pathway “NF-kappa B signaling” functions
as dimers and is involved in the development and progres-
sion of both inflammation and cardiac and vascular damage
and cell survival [77, 78]. In chronic kidney disease, the
“AGE-RAGE signaling pathway” may promote CVD [79],
and cellular stimuli activate the “PI3K-Akt signaling path-
way” that regulates fundamental cellular functions. More-
over, PI3K/AKT pathway participates in heart failure,
cardiomyopathy, cardiac hypertrophy, toxin-induced car-
diac injury, myocardial injury, myocardial ischemia, and
myocardial infarction [80].

After doing gene ontological enrichment analysis, we
identified major gene ontological pathways relevant to
CVD and the risk factors utilizing the databases of Enrichr.
Identified ontological pathways’ associations and influences
on the cardiovascular disease are emphasized here. One of
our gene ontologies, “vasoconstriction,” can cause high
blood pressure, which increases the risk of heart disease
and stroke [81]. “Smooth muscle contractions” may regulate
blood vessel size and contribute to hypertension [82] as well
as plays a major role in vascular diseases [83]. In atheroscle-
rosis, the “positive regulation of blood coagulation” is
involved [84], and atherosclerosis is the predominant etiol-
ogy of CVD. The “positive regulation of heart contraction”
influences heart function as well as transcriptional (prolifer-
ative) responses and thus associated with cardiovascular dis-
ease [85]. At cardiac myocyte level, heart failure is associated
with “cardiac myocyte differentiation” [86]. “Cholesterol
import” exerts a major impact on the development of ath-
erosclerosis [87]. A central role is assumed by the “inflam-

matory response” in the pathogenesis of heart failure [88].
According to experimental evidence, the “regulation of
angiogenesis” is involved in plaque formation [89] and
may cause many diseases such as cardiovascular disease
and diabetic microvascular complications [90]. Research
consistently showed that regardless of disease severity, “leu-
kocyte aggregation” is an independent indicator of future
cardiovascular outcomes, and it has been investigated exten-
sively as a biomarker in cardiovascular diseases [91, 92].
Chemokines are small chemotactic cytokines that trigger
integrin activation to induce firm arrest of leukocytes on
activated endothelium, thus “positive regulation of chemo-
kine production” contributing to the development of athero-
sclerosis [93]. Furthermore, “positive regulation of MAPK
cascade” is a significant factor in the pathogenesis of cardiac
and vascular disease [76].

The above discussion suggests that the identified DEGs,
hub proteins, and pathways have a significant association
as well as influence on CVD. Therefore, it is clear that the
selected risk factors (HTN, T2D, HCL, obesity, and aging)
have a meaningful correlation in the progression of CVD.
The only limitation of our study is that the whole study
has been done using different computational tools, so further
wet lab (in vitro and in vivo) experiments are required to
verify our findings.

5. Conclusions

Using computational and bioinformatics approaches, we
examined the GEO dataset for CVD, HTN, T2D, HCL, obe-
sity, and aging to identify the genetic association, clarify the
relationships, and illustrate our potential finding of CVD
and its risk factors. In this research, we identified DEGs,
potential biomarkers from PPI analysis, pathways, and ontol-
ogy mechanisms that demonstrate the associations between
CVD and HTN, T2D, HCL, obesity, and aging, as well as pro-
vide insights into the pathogenic characteristics. We also
checked the validity of our outcomes by utilizing the three gold
benchmark databases (OMIM, dbGAP, and DisGeNET). We
suggest that our potential biomarkers and results may assist
in treatment strategies, drug targets, and diagnostic activities
that could reduce the threats of CVD to human health.

Data Availability

The Gene Expression Omnibus (GEO) datasets of this study
were collected from the National Center for Biotechnology
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