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Abstract: Flaviviruses are a group of positive-sense RNA viruses that are primarily transmitted
through arthropod vectors and are capable of causing a broad spectrum of diseases. Many of the
flaviviruses that are pathogenic in humans are transmitted specifically through mosquito vectors.
Over the past century, many mosquito-borne flavivirus infections have emerged and re-emerged,
and are of global importance with hundreds of millions of infections occurring yearly. There is a need
for novel, effective, and accessible vaccines and antivirals capable of inhibiting flavivirus infection
and ameliorating disease. The development of therapeutics targeting viral entry has long been a
goal of antiviral research, but most efforts are hindered by the lack of broad-spectrum potency or
toxicities associated with on-target effects, since many host proteins necessary for viral entry are also
essential for host cell biology. Mosquito-borne flaviviruses generally enter cells by clathrin-mediated
endocytosis (CME), and recent studies suggest that a subset of these viruses can be internalized
through a specialized form of CME that has additional dependencies distinct from canonical CME
pathways, and antivirals targeting this pathway have been discovered. In this review, we discuss the
role and contribution of endocytosis to mosquito-borne flavivirus entry as well as consider past and
future efforts to target endocytosis for therapeutic interventions.

Keywords: flavivirus; mosquito-borne; clathrin-mediated; endocytosis; receptors; RNASEK; LY6E;
entry inhibitor; nanchangmycin

1. Mosquito-Borne Flaviviruses: Replication, Disease, and Epidemiology

Flaviviruses are positive-sense, single-stranded RNA viruses primarily transmitted
by arthropod vectors, most notably mosquitoes and ticks [1,2]. The Flavivirus genus is
generally broken into four subgroups: flaviviruses that are mosquito-borne, those that
are tick-borne, those that infect only insects, and those without a known vector [3]. The
mosquito-borne flavivirus subgroup is home to several transmissible human pathogens,
including dengue virus (DENV), yellow fever virus (YFV), Zika virus (ZIKV), West Nile
virus (WNV), and Japanese encephalitis virus (JEV). The impact of these flaviviruses is
global, and there remains widespread infection and disease [4–9]. Although some vaccines
exist, including for YFV and JEV, vaccine efficacy against DENV is limited, and there is
limited production for these vaccines [10–16]. For other mosquito-borne flaviviruses where
vaccines have not been developed or approved, there remains a large gap in therapeutic
options. Indeed, there are no specific antivirals to treat these flaviviral infections. Though
a variety of small molecules and inhibitors have been described to limit mosquito-borne
flavivirus replication and disease in model systems, none have gone into clinical devel-
opment. Given the global spread of flavivirus infection and the significant public health
threat of emerging viruses, there remains a critical need for further flavivirus research [17].

1.1. Flavivirus Life Cycle

To begin an infection, the virion must attach to the surface of the target cell [18]. There
are two classes of receptors that the virus can interact with: attachment factors that increase
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surface binding, and true receptors that are required for internalization. Attachment factors
can bind to diverse molecules including phosphatidylserine on the viral lipid bilayer or
heparan sulfate and other sugars on the viral glycoprotein E. Next, most flaviviruses
require endocytosis to traffic into a low pH compartment for fusion. In most cases, the
pathway used by flaviviruses is clathrin-dependent uptake. These vesicles are trafficked
into a low pH endosomal compartment where the viral E protein enters into a fusion-active
state, permitting fusion between the endosomal membrane and viral envelope. The fusion
process releases the single-stranded, positive-sense RNA genome into the host cytoplasm,
which is translated by the host into a polyprotein and subsequently cleaved into three
structural and seven non-structural proteins. Following genome replication and immature
virion assembly within virus-induced and endoplasmic reticulum (ER)-derived replication
complexes, viral particles bud into the ER and are trafficked through the trans-Golgi
network, undergoing maturation through proteolytic cleavage events and pH changes.
Upon reaching the cell surface, particles are exocytosed and the infection cycle can begin
anew.

1.2. Dengue Virus (DENV)

Dengue virus (DENV) is the most widespread of the pathogenic flaviviruses, exhibiting
transmission throughout the tropics and sub-tropics [19]. It is estimated that 400 million
DENV infections occur globally every year, with the majority of those being sub-clinical
infections (i.e., asymptomatic or mild) [19]. DENV transmission is largely maintained
through an urban cycle between humans and Aedes mosquitoes, but there remains a
sylvatic cycle with nonhuman primates [20]. Regular descriptions of dengue-like disease
first emerged in the 18th century across numerous continents, though there are scattered
reports dating as far back as 992 CE [21]. In the mid-20th century, initiated by World
War II, urbanization, globalization, and a concurrent lack of vector control permitted the
widespread expansion of DENV [22]. Unsurprisingly, as Aedes vectors spread, so did the
virus [23]. There are four serotypes of DENV (DENV-1, -2, -3, and -4) with each serotype be-
ing genetically distinct, and antigenic variation within serotypes is broad [21,24]. Currently,
all four serotypes are co-circulating globally. Clinically, DENV disease presents along a
continuum, ranging from asymptomatic disease to severe vascular permeability with high
risk of mortality [25]. Infection with one serotype of DENV confers lifelong immunity to
that serotype, but a subsequent, secondary infection by a heterotypic serotype has been
associated with an enhanced risk for severe dengue disease, thought to be mediated by
antibody-dependent enhancement [26–28]. Generally, it is thought that antibodies that bind
but do not neutralize the newly encountered viral serotype can lead to enhancement of
secondary infection through Fc receptor engagement [29]. Secondary infections are largely
responsible for severe dengue in children and adults; however, infants can experience
severe disease from a primary infection potentially as a result of maternally-acquired
enhancing antibodies [30]. Antibody-dependent enhancement is a major risk factor with
serious implications in DENV vaccine design [10–12]. In addition, current DENV control
efforts include vector control programs [31].

1.3. Yellow Fever Virus (YFV)

Yellow fever virus (YFV) causes what many believe to be the original viral hemorrhagic
fever, yellow fever, which manifests as a systemic illness leading to fever, jaundice, hepatic
injury, renal injury, and hemorrhage, with case fatality rates of ~30% [32–34]. Though
YFV is an ancient virus, showing molecular divergence as far as 3000 years ago [35], the
virus entered the Americas 300–400 years ago through the slave trade with Africa [36].
After its introduction into the New World, YFV caused a series of ravaging epidemics
across various seaports prior to the turn of the 20th century [37,38]. During the early- to
mid-20th century, a vaccine (YFV-17D) was developed through continuous passaging of
virus in vitro, ultimately providing a means to prevent yellow fever and leading to a signif-
icant reduction in cases [39]. This is the same vaccine that is used today. Vector eradication
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ultimately blocked the YFV transmission cycle, especially in the Americas, though the
discontinuation of early efforts has permitted the reemergence of vector populations [40,41].
In the modern day, YFV still persists, and its geographical distribution largely resembles
that of its vectors (Aedes, Haemagogus, and Sabethes mosquitoes) [41]. Africa has a YFV
endemic region that spans 15◦ north and south of the Equator [41,42], with heterogeneity in
geographical and temporal disease burden attributed to seasonality as well as differences
in YFV genotypes [43]. Severe cases on the scale of hundreds of thousands are estimated to
occur every year in Africa [44]. Outside of Africa, YFV is endemic to many regions across
South America [42], and recent epidemics in South America have re-highlighted the capac-
ity for YFV to effectively spread and re-establish in previously YFV-free areas [34,45–48].
In endemic regions, vaccination programs can manage case numbers, but global supplies
are often not sufficient [49]. Even with widespread vaccination, YFV could not be eradi-
cated, as the virus is well established in sylvatic transmission cycles between mosquito
vectors and non-human primates [41,48]. Continued surveillance for YFV is essential for
the prevention of future epidemics, especially considering the spread of vector populations
into non-endemic regions [23,48].

1.4. Zika Virus (ZIKV)

Zika virus (ZIKV) was first discovered in the mid-20th century, but the virus did not
garner attention until its emergence on the Micronesian island of Yap in 2007 [50–52]. In the
following decade, ZIKV re-emerged in a series of epidemics, most notably in French Poly-
nesia from 2013 to 2014 [53] and in the Americas from 2015 to 2016 [9,54], which cast a light
on the pathogenesis, clinical manifestations, and outcomes of Zika virus disease. Early find-
ings from French Polynesia indicated that the typical length of Zika-induced disease was
one week, with most symptomatic patients exhibiting rash, fatigue, fever, arthralgia, myal-
gia, or conjunctivitis [51,53]. However, there are a variety of additional and more severe
complications described to be in association with ZIKV infection, including Guillain-Barré
syndrome [55], myelitis [56], meningoencephalitis [57], and thrombocytopenia [58]. ZIKV
has a potential for transmission in the absence of the typical Aedes vector, including both
vertical and sexual transmission. Sexual transmission is well-documented and thought
to be largely driven by the persistence of infectious virus within semen [59–63]. On its
own, sexual transmission does not pose a major threat to populations. Sexual transmission
can, however, contribute to vertical transmission of ZIKV, which bears more serious conse-
quences. Unlike in children and adults, where most ZIKV infections are asymptomatic or
very mild, ZIKV can lead to a plethora of fetal defects and complications associated as a re-
sult of maternal ZIKV infection and subsequent vertical transmission. These manifestations
include microcephaly, cerebral malformations, hydrops fetalis, and fetal demise [64–70]. A
variety of laboratory models substantiated these clinical findings [71–73].

ZIKV has a very high attack rate in populations, leading to rapid acquisition of herd
immunity. Therefore, the prevalence of ZIKV has drastically declined since the epidemic in
2016 in the Americas [74]. However, the virus remains a public health concern, especially
considering the lack of approved therapeutics, the clinical manifestations of disease, and the
likelihood that the virus will re-emerge once population immunity has declined [9,54,75].
Future efforts must be focused towards vaccine deployment in combination with diagnostic
surveillance and identification of key ecological and social risk factors that may promote
virus spread [76].

1.5. West Nile Virus (WNV)

West Nile virus (WNV) was first discovered in the West Nile district of the Ugandan
Northern region in 1937 [77]. Up until the late 20th century, WNV disease was infrequent
and mild, sporadically arising across Africa, Asia, and Europe. However, a series of
European outbreaks in the 1990s changed the outlook of WNV infection [78]. For example,
in 1996, an epidemic of WNV disease occurred in Romania, resulting in hundreds of infected
patients, the majority of which presented with central nervous system symptoms [79]. In
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1999, WNV spread to the US and was first found in New York City when there was a
dramatic increase in dead birds and encephalitis cases [80,81]. Early diagnoses suggested
that St. Louis encephalitis virus (SLEV), another neurotropic flavivirus, was the causative
agent, but the concurrent encephalitic death of avian species housed in the Bronx zoo and
those in the surrounding geographic area led to the discovery of WNV [81,82]. The 1999 US
WNV outbreak was originally traced back to Israel [82–84]. Surprisingly, within a few years,
WNV rapidly expanded across the United States and into several Canadian provinces,
Mexico, the Caribbean islands, and South America, with as many as 3 million estimated
infections by 2010 in the United States alone [85,86]. Since the late 20th century, WNV has
established itself as a new endemic threat in all continents besides Antarctica [6,17,87–90].
In nature, WNV is maintained by an enzootic transmission cycle between Culex mosquitoes
and a variety of birds, with the virus exhibiting broad host range [90]. Most mammals,
including humans, serve as dead-end hosts in the WNV transmission cycle [91,92].

1.6. Japanese Encephalitis Virus (JEV)

Following reports of encephalitis epidemics in Japan throughout the 19th and early
20th centuries, Japanese encephalitis virus (JEV) was isolated in 1935, demonstrating its
differences from the clinically similar Saint Louis encephalitis virus [93]. As with many
flaviviruses, molecular divergence of JEV from its ancestor is estimated to have occurred
more than 3000 years ago [94,95]. Currently, there are five known genotypes of JEV
(I-V), and each genotype is associated with particular geographic locations and climatic
conditions [94,96–100]. JEV has historically remained endemic throughout east and south-
east Asia [101]. However, more recently, the virus underwent geographic expansion, as
evidenced by reports of isolated cases or outbreaks in Pakistan [102], Australasia [103–105],
and even Africa [106]. This highlights JEV as an emerging threat, and as much as half of
the world’s population lives in a JEV endemic country. Moreover, there is concern that
the number of people at risk may grow larger if the virus continues to spread globally,
including to the Americas, similar to WNV [107,108]. Although there exist several effective
and potentially cross-protective vaccine options, underuse, cost, lack of supply, and un-
availability have limited their utility [107,109–112]. As many as 50,000 cases of disease and
15,000 deaths occur on a yearly basis as a result of JEV infection, demonstrating a distinct
need for more widespread protection [113]. Clinically, the majority of JEV infections result
in a mild non-specific or asymptomatic disease [114]. Those with more severe symptoms
can present with convulsions, seizures, flaccid paralysis, meningitis, and encephalitis, with
half of surviving patients having severe neurological sequelae [114,115]. In nature, JEV
transmission is maintained by an enzootic cycle between Culex mosquitoes, wading birds,
and pigs, with humans serving primarily as dead-end hosts [116]. However, recent consid-
erations have suggested that the transmission cycle of JEV is largely context dependent,
partially varying between geographic regions [117].

2. Mosquito-Borne Flavivirus Receptors

Across the mosquito-borne flaviviruses, a wide array of attachment factors and
receptors have been implicated in viral entry. Generally, the purposes of attachment
factors are to increase the binding of the virions to the cell surface and to facilitate interac-
tions with viral receptors, which are required for infection. Attachment factors typically
increase the affinity of the virus for the target cell but are dispensable for infection while
the bone fide receptor is essential for viral infection. The identification of receptors for
mosquito-borne flaviviruses, however, has proven to be difficult, and many candidates
often blur the distinction between attachment factor and host receptor.

The TAM subfamily of receptor tyrosine kinases (RTKs), which consists of three
members, Tyro3, Axl, and Mertk, has been implicated in the attachment of diverse fla-
viviruses [118,119]. Axl was first suggested to be a flaviviral entry factor in the context
of DENV infection, where Axl, along with its cognate ligand, Gas6, was shown to be per-
missive of DENV entry into HEK293 cells through indirect DENV-Gas6-Axl binding [120].
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In contrast, Axl, along with its TAM family member, Mertk, was implicated in protection
from neuroinvasive WNV infection by maintaining blood–brain barrier (BBB) integrity,
a finding that suggests context-specific roles for Axl in flavivirus infection [121]. In the
context of ZIKV infection, initial studies showed that Axl promoted ZIKV internalization
in HEK293T cells, and Axl surface expression positively correlated with ZIKV infection
of A549 lung epithelial and HFF1 fibroblast cell lines [122]. The alternative TAM receptor,
Tyro3, as well as the C-type lectin receptor, DC-SIGN, also promoted ZIKV infection in
HEK293T cells [122]. The role of Axl as a flavivirus entry factor was further supported in
ZIKV infection of diverse cell types, including human endothelial cells [123–125]. Studies
aiming to establish routes of ZIKV infection into fetal brains found that ZIKV was able to
infect iPSC-derived neural progenitor cells (NPCs), resulting in attenuated growth and
cell-cycle dysregulation [126]; high levels of Axl were also observed in brain cell popu-
lations [127,128]. However, subsequent experiments in iPSC-derived NPCs and cerebral
organoids discovered that Axl null mutants remain susceptible to ZIKV [129], and mouse
models deficient for Axl as well as its TAM family relatives, Mertk and Tyro3, remain
susceptible across various anatomical sites, including the brain [130–132]. These results
suggest that Axl does not have a definitive role in ZIKV entry and may play a more sig-
nificant role in other facets of biology, including immune modulation. In diverse studies,
treatment with Axl inhibitors blocked infection, but only in cells that express the receptor,
again suggesting that Axl is a dispensable factor for entry [133–135]. Taken together, Axl
may serve as an attachment factor in certain cell types, but the possibility remains likely
that the TAM receptors primarily impact innate immunity. The downregulation of innate
immune responses by TAM receptors during viral infection has been established [136,137].

Integrins have been implicated in attachment and entry of several flaviviruses, including
JEV [138], WNV [139,140], and ZIKV [141], alongside other transmembrane proteins such
as TIM-1, which has been described to facilitate DENV infection [142]. In addition, a series
of genome-wide CRISPR-Cas9 screens have been performed to identify other host factors
required for flavivirus infection [143–147]. None have defined a definitive receptor. There
are several possibilities to account for this lack of definitive receptor discovery. First, there
may be cell-type-specific entry receptors; indeed, many entry factors are cell-type specific.
Second, there may be multiple receptors and thus single gene efforts would miss other
possible candidates. Therefore, it is important to investigate viral entry in biologically
relevant systems using a variety of approaches with stringent downstream analysis to
validate candidate entry factors.

3. Endocytic Pathways Mediating Mosquito-Borne Flavivirus Internalization
3.1. Clathrin-Mediated Endocytosis

Many flaviviruses are internalized by clathrin-mediated endocytosis (CME). Following
internalization, viruses traffic to an endosomal compartment where the low-pH environ-
ment induces uncoating and fusion of the viral envelope with the endosomal membrane,
ultimately allowing the deposition of viral RNA into the host cytoplasm [18].

The process of CME is highly regulated and exhibits modular behavior, with a series
of steps dependent on specific complexes, which dynamically assemble and disassemble
the clathrin-coated vesicles at distinct time points [148]. This process requires two primary
classes of proteins: adapter and scaffold proteins. The clathrin-adapter proteins (e.g.,
AP2) associate with and bind lipids within the plasma membrane as well as the various
cargo molecules. Scaffold proteins, including clathrin, establish intra- and intermolecular
interactions with themselves as well as with the clathrin-adapter proteins, respectively.
Clathrin proteins consist of three heavy chain polypeptides each in association with a light
chain polypeptide to form what is known as a triskelion [149]. At the amino terminal ‘tip’
of each heavy chain is the terminal domain, which is important for establishing interactions
with various adapter proteins, such as the AP2 complex. These clathrin triskelions assemble
around a membrane invagination as a lattice, which is the final structure of the clathrin coat.
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Upon release of a clathrin-coated vesicle, uncoating is mediated by interactions between
proteins such as Hsc70 and the carboxy terminus of the clathrin heavy chains.

The first step of CME involves initiation of the pit and assembly of a clathrin coat
around a membrane invagination (Figure 1). A group of early proteins known as the
“pioneer module”, which includes the BAR domain proteins FCHO1/2, the AP2 complex,
ESP15, EPS15R, and intersectins, is thought to be the primary initiator of endocytosis in
mammals [148]. FCHO1/2 and AP2, as adapters, bind to the plasma membrane and are
responsible for the recruitment of the scaffold proteins (EPS15, EPS15R, and intersectins).
This protein complex defines the endocytic site, and shortly after its formation, additional
coat-associated proteins, including clathrin, are recruited to the plasma membrane to
expand the coat.
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scaffold proteins associate at the endocytic site, forming a pioneer module. This pioneer module then recruits coat-associated
proteins, including clathrin, to the developing membrane invagination. The coat-associated proteins bind to the cytosolic
regions of cargo complexes to recruit the cargo to the endocytic site. Membrane bending continues, in part due to mechanical
forces from actin, and the clathrin coat expands until the clathrin-coated pit (CCP) is formed. Scission of the CCP is mediated
by dynamin, which releases the clathrin-coated vesicle (CCV). The CCV then uncoats and undergoes trafficking via the
cytoskeleton to the sorting endosome for further processing. Figure created with BioRender.com.

During the second step, the various coat-associated proteins bind to the cytosolic
regions of transmembrane cargo receptors via sequence motifs or covalent modifications
and act as cargo adapters to induce translocation of the cargo complexes to the vesicle-
forming region of the plasma membrane. In association with cargo, the clathrin coat
continues to dynamically expand, which induces membrane bending and results in the
formation of a clathrin-coated pit (CCP). Actin polymerization transiently contributes to
membrane bending, where actin filaments are coupled to the clathrin coat via adapter
proteins in order to exert mechanical force upon the plasma membrane.

Third, after the maturation of the membrane invagination, vesicle scission is mediated
by the GTPase dynamin, ultimately separating the CCP from the donor membrane. The
resulting clathrin-coated vesicles (CCVs) are typically 700–800 Å in diameter, contain about
35–40 triskelions, and enclose a spherical vesicle ~400 Å in diameter, but they can vary
in both diameter and number of clathrin triskelion components [149]. Lastly, the vesicle
coat disassembles, and the components are recycled for additional endocytic events. This
allows the free vesicle to traffic to the early endosome for sorting. From there, vesicles can
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be trafficked to various compartments, initiating different intracellular fates dependent on
protein families such as the Rab proteins [150].

Each endosomal compartment has key characteristics, including luminal pH,
phosphatidylinositol lipids, and association with Rab-family GTPases. The early/sorting
endosome is enriched for PI(3)P and specifically involves the activation of the Rab5 GT-
Pase [150]. From here, cargo can be recycled back to the plasma membrane through the
Rab11-positive recycling endosome, or be trafficked to the PI(3,5)P2-enriched, Rab7-positive
late endosome. Unlike in the early endosomes, where luminal pH is maintained around
6.5, the late endosome has a luminal pH of ~5.5. Some viruses fuse within early endosomes
while others fuse in later compartments, and this is dependent on the pH requirement for
fusion. From the late endosome, cargo can either be sent to the trans-Golgi network for
retrograde trafficking or sorted to the lysosome for degradation.

Although CME has been well-studied over the years, the exact molecular mechanisms
driving vesicle invagination and scission remain unclear [148]. Additionally, the regulatory
complexities of CME are ever-growing, and increasing evidence suggests that cargo-adapter
complexes strongly influence early steps of CME, whether through the identity of the
complex itself or the identities of interacting partners [148,151]. Considering the diversity
of endocytic cargo (e.g., protein ligands versus whole viral particles), it is not surprising
that there is a high level of regulation. Though it has been long known that flaviviruses
undergo CME during host cell infection, recent evidence suggests that entry mechanisms
of flaviviruses depend on a non-canonical, specialized form of CME [152,153].

3.2. Flaviviruses and Clathrin-Mediated Endocytosis

For several decades, it has been known that flaviviruses enter host cells via an en-
docytic route. Early studies investigating electron micrographs of WNV-infected cells
identified endocytosis as the primary WNV entry pathway [154]. These images showed
viral particles within coated invaginations on the plasma membrane and eventually within
coated and uncoated vesicles in the cytosol. Later time points revealed localization of
viral particles within electron-lucent pre-lysosomal vesicles. Key cellular players in en-
docytic WNV entry, including clathrin and EPS15, were identified initially in mosquito
cells through pharmacological inhibitors, blocking antibodies, and dominant negative con-
structs, highlighting similarities in endocytic pathways in vertebrate and vector-derived
cell lines [155,156]. Additional studies also found that many flaviviruses use similar in-
ternalization pathways. For example, electron micrographs of JEV infection into the CNS
showed the involvement of coated endocytic vesicles [157], as did electron micrographs
of YFV 17D [158] and WNV-Kun [159]. Each of these studies found virions in coated,
endocytic vesicles during viral entry. Live-cell imaging and viral tracking revealed a near
exclusive use of CME for viral entry of DENV-2, where as many as 92% of viral particles
were shown to diffuse along the cell surface, colocalize with a pre-existing CCP, undergo in-
ternalization and eventually complete membrane fusion [160]. While some studies suggest
direct fusion of DENV-2 at the plasma membrane [161,162], the vast majority of studies
suggest that CME is required [163–169].

In contrast, some studies have suggested that non-CME endocytic routes can be
used by flaviviruses. In YFV infection of HeLa cells, for example, the vaccine strain 17D
was shown to use a clathrin-independent mode of entry while the wild-type Asibi strain
exhibited the classical dependence on clathrin-mediated endocytosis [170]. DENV-2 NGC
and DENV-3 H87 infection of Vero cells has been previously reported to occur via a clathrin-
independent but dynamin-dependent mechanism [171,172]. In general, ZIKV appears to
be dependent on CME across divergent strains in diverse cell types [173,174], although a
study in neural cells suggested a weak dependence [146]. Similarly, JEV was reported to
infect neuronal cell lineages via a clathrin-independent pathway [175–177] in contrast to the
clathrin-dependent endocytic mechanisms displayed in Vero, C6/36, BHK-21, HeLa and
PK15 cells [178–182]. Whether neurons in general have distinct trafficking requirements
has yet to be established more generally. In addition, the glycosylation of viruses can differ
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with the cell types used to produce virus, which can lead to differences in entry. This is
particularly important when studying arboviruses that are produced in both mosquito and
vertebrate cells in nature. For example, cell type-dependent effects on entry have been
described for DENV-2 grown in primate cells versus mosquito cells [183].

Live cell imaging of DENV-2 also found that after internalization, the majority of
viral particles entered Rab5-positive early endosomes, and the compartment either fused
with an existing Rab7-positive late endosome or matured into a late endosome prior to
viral membrane fusion [160]. Moreover, other studies found that Rab5 but not Rab7 was
important during CME of DENV-2 [184]. Indeed, different strains of DENV may require
different pH thresholds for membrane fusion, leading to different trafficking dependencies
observed between DENV-2 strains [160].

Altogether, while most studies found a role for CME in viral entry of diverse fla-
viviruses, it is likely that there is variability at the level of strain, serotype, and cell type.
Whether these variations translate in vivo is unclear, but these findings suggest that there
may be alternative entry pathways used in vivo. Recent efforts have found new factors
involved in flavivirus entry, offering new mechanistic insights and avenues for antiviral
development.

3.3. Flavivirus Entry: Beyond Traditional Clathrin-Mediated Endocytosis

To identify new players involved in viral entry and infection, many investigators
have performed high-throughput screens. Genetic screens including RNAi, overexpression,
and CRISPR/Cas9 screens have revealed host dependency factors that are necessary for
flaviviral infection in diverse cell types and hosts. Subsequent studies have linked many of
these newly identified genes to entry. A genome-wide siRNA screen in HeLa cells during
WNV infection revealed a role for the E3 ubiquitin ligase, CBLL1, in virus internalization,
with the knockdown phenotype resembling that induced by ablation of AP3S2, a clathrin
adapter necessary for CME [185]. LY6E, a GPI-anchored surface protein, was also identified
in multiple genetic screens as promoting flavivirus infection [185–188]. LY6E is a member
of the Ly6 family of proteins, and the protein has been previously referred to as thymic
shared antigen-1 (TSA-1) or stem cell antigen-2 (SCA-2). Early studies described roles for
LY6E in diverse T cell receptor-mediated processes, such as modulation of apoptosis [189]
and IL-2 production [190,191]. Only recently has its role in viral infection been elucidated.
Initial studies demonstrated that LY6E knockdown does not impact the replication of a
WNV replicon in HEK293T cells [153]. Viral binding and internalization assays with WNV-
Kun specifically implicated LY6E function in virus internalization [153]. Parallel studies
confirmed the infection-enhancing and post-attachment, pre-replication function of LY6E
during YFV infection [192,193]. Interestingly, LY6E was shown to be dispensable for cellular
uptake of canonical CME cargo, such as transferrin (~6 nm diameter), but necessary for
internalization of virions, which are larger (~50 nm diameter) [153]. Indeed, it was shown
that while transferrin was internalized independent of LY6E, transferrin-coated 40-nm
microspheres were dependent on this factor, identifying a size-dependent step in CME [153].
Internalization of these larger cargo, including the microspheres, WNV-Kun, and ZIKV
MR766 virions, induced the relocalization and restructuring of LY6E molecules into tubular
structures, a process dependent upon microtubule function as well as the microtubule
end-binding protein, EB3 [153]. GPI-anchored proteins are capable of regulating and
interacting with components of the cytoskeleton more generally [194,195]. In light of these
findings, LY6E appears to play a key role in a specialized CME pathway, one specifically
intended for the internalization of large cargoes, such as flaviviruses. A role for LY6E in
viral fusion is supported by recent findings implicating LY6E in syncytiotrophoblast layer
formation [196,197]. LY6E may also enhance viral membrane fusion through modulation of
membrane lipids, perhaps altering lipid raft dynamics [188]. Future studies are required in
order to fully elucidate the molecular mechanisms mediating LY6E function in the context
of viral infection.
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Additional genetic screens identified a role for RNASEK, a small membrane-spanning
protein with unclear function, in CME and entry of viruses including flaviviruses [152,198,199].
Initially identified in RNAi screens in both Drosophila cells [200,201] and human HeLa
cells [198], RNASEK depletion was shown to inhibit infection of human rhinovirus (HRV),
DENV2/3/4, YFV 17D, WNV-Kun, Rift Valley fever virus (RVFV), Sindbis virus (SINV),
and influenza A virus (IAV) across various cell types [152,198]. Attachment and inter-
nalization assays defined a role for RNASEK in virus internalization and CME [152,198].
Furthermore, it was found that RNASEK was required to maintain proper V-ATPase func-
tion, possibly through physical association [198]. The V-ATPase is a proton pump respon-
sible for acidifying intracellular compartments and a regulator of clathrin-coated vesicle
formation [199,202,203]. Recent cryo-EM images of the V-ATPase support its physical asso-
ciation with RNASEK, suggesting that RNASEK is a member of this protein complex [204].
There are data that suggest that the V-ATPase is present both on the plasma membrane and
intracellular endosomes [205], and there is support for RNASEK function in both compart-
ments. In addition to attenuation of endocytic uptake, loss of the V-ATPase or RNASEK in
H1-HeLa cells resulted in increased intracellular acidity and an enlargement of clathrin-
coated pit (CCP) size [198]. These enlarged CCPs exhibited a higher incidence of tethering,
suggesting that RNASEK contributes to steps upstream of dynamin-mediated scission [198].
Confocal imaging revealed that RNASEK and V-ATPase subunit protein signals originate
near the inner leaflet of the plasma membrane (i.e., towards the base of the CCP) and sig-
nificantly colocalize with clathrin-adapter proteins [198]. Interestingly, RNASEK appeared
to be necessary for the localization of V-ATPase subunits at the base of the CCP (near
the plasma membrane), offering a role for RNASEK in V-ATPase targeting [198]. Loss of
RNASEK, however, did not reduce colocalization of general CME-associated factors at the
CCP, suggesting that the contribution of RNASEK to membrane localization is specific for
the V-ATPase [198]. These imaging studies argue for a localization of RNASEK and the
V-ATPase either at or in close association with the plasma membrane.

There is some discrepancy on the dependence of classical endocytosis on RNASEK: in
H1-HeLa cells, RNASEK was necessary for canonical CME (i.e., endocytosis of transfer-
rin) [198], but in U2OS cells, RNASEK was only essential for non-canonical cargo uptake
(e.g., virus particles) and was dispensable for smaller cargo, such as transferrin [152].
Follow-up investigations in U2OS cells integrated the role of RNASEK into the LY6E-
mediated size-dependent CME pathway, where the tubularization of LY6E induced by
flavivirus uptake is hindered in the absence of RNASEK [153]. Such a result suggests
that RNASEK may act upstream of LY6E, or at least upstream of LY6E tubularization.
There remain numerous questions regarding the specific function of RNASEK in CME
and how the V-ATPase impacts RNASEK function. It is also not fully clear how the V-
ATPase regulates CME. In a genome-wide siRNA screen for regulators of CCV formation,
knockdown of the V-ATPase resulted in the formation of large and irregular CCPs at the
plasma membrane [199], with the pits being unable to constrict and form CCVs, as with
RNASEK knockdown [198]. This phenotype was attributed to intracellular accumulation
and improper recycling of cholesterol, likely due to alkalization of endosomes, which
could be partially rescued through the addition of exogenous cholesterol [199]. In con-
trast, the importance of cholesterol in CME regulation was not supported in the studies of
RNASEK [198]; therefore, how cholesterol and other lipids impact CME and virus entry
remains incompletely understood.

A specialized size-dependent endocytic uptake pathway distinct from canonical CME
has begun to be characterized for flaviviruses (Figure 2) [152,153]. However, there remain
numerous questions about the complexities and the prevalence of this pathway. How newly
identified players, such as LY6E and RNASEK, interact with canonical CME proteins, in
what contexts they are required, and at what steps they contribute still remains unclear,
necessitating additional studies. The seemingly disparate dependence on RNASEK for
canonical CME may be variable given the cell type. It also remains possible that the con-
tribution of the V-ATPase to CME via endosomal cholesterol trafficking [199] is separable
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from the function of RNASEK and V-ATPase at the plasma membrane [198]. However, the
lack of rescue by exogenous cholesterol in the enlarged CCP phenotype induced by the de-
pletion of RNASEK or V-ATPase in H1-HeLa cells argues for alternative mechanisms [198].
Additionally, whether or not RNASEK and the V-ATPase are in direct association with the
plasma membrane is unsolved. One can imagine a scenario where the endosome is traf-
ficked, possibly through the action of RNASEK, towards the plasma membrane, allowing
for close but not integral association between the plasma membrane and RNASEK and
the V-ATPase. This potential trafficking towards the plasma membrane could be related
to the dependence on microtubules for size-dependent CME [153], which is supported by
the well-known link between endosomal motility and the cytoskeleton [206]. Alternatively,
RNASEK may be in association with a specific isoform of the V-ATPase, one that localizes
within the plasma membrane to exert its function. Focusing future work towards identify-
ing other key molecules within this distinct pathway and subsequently defining how these
factors interact with one another will likely aid in elucidating the molecular mechanisms of
RNASEK, the V-ATPase, and LY6E in size-dependent CME. As our understanding of this
potentially virus-specific CME pathway evolves, we can begin to evaluate the therapeutic
targetability of this pathway as an avenue for antiviral treatments. Further studies may
also be able to tie ‘miscellaneous’ flavivirus entry factors and their roles, if any, into this
specialized CME pathway, including GPCR kinase, GRIK2 [207], and the endoplasmic
reticulum membrane complex (EMC) [143]. Overall, enhanced definition of the molecular
mechanism driving size-dependent entry and its prevalence across cell types and viral
infections will help in the evaluation of its biological and in vivo significance, both in the
context of antiviral therapeutics as well as the fundamental cell biology of CME.
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4. Targeting Endocytic Entry: An Avenue for Flavivirus Antivirals

A broad series of flavivirus antiviral screens have identified diverse candidates, many
of which have unknown targets but appear to impact early stages of viral infection (see
Table 1). Additionally, a variety of FDA-approved drugs have been described to impact
viral endocytosis. Given that CME is essential, drugs that inhibit the pathway can block
infection but are typically toxic. These include inhibitors of clathrin or its adapters, such
as chlorpromazine. Chlorpromazine is an FDA-approved medication historically used as
an antipsychotic to treat a variety of mental illnesses through antagonism of dopamine
D2 receptors (D2Rs) [208], though there is not a consensus among mechanisms of ac-
tion [209]. Subsequent cellular studies found that chlorpromazine additionally blocks
AP-2-plasma membrane binding, inhibiting the process of CME [210]. Therefore, in vitro
chlorpromazine has been routinely used to demonstrate whether a virus is dependent on
CME for entry [156,164,166,168,171,175,211–214]. The antiviral efficacy of chlorpromazine
has been explored and demonstrated across various virus families [215–218], and a drug
repurposing trial has even been proposed for SARS-CoV-2 [219]. Prochlorperazine, a struc-
tural analog of chlorpromazine, is also being considered as an antiviral [220]. Though the
in vitro efficacy of chlorpromazine and prochlorperazine against flaviviral infection may
be a result of their activities in inhibiting CME, there is increasing evidence that dopamine
receptors themselves, and their associated signaling pathways, contribute to neurological
flaviviral infections. Therefore, the antagonism of dopamine receptors may be the more im-
portant on-target effect that is driving antiviral efficacy. In DENV-2 infection, investigators
have demonstrated that both infection of N18 neuroblastoma cells and the antiviral activity
of prochlorperazine were dependent on the expression of D2R [220]. Similar dependencies
were shown in Neuro-2a cells, where a D2R antagonist was capable of limiting DENV-2
infection and growth [221]. Downstream of D2R receptors, dopamine signaling has been
suggested to actively contribute to and enhance infection of flaviviruses. In JEV infection
of BE(2)C neuroblastoma cells, infection initiated dopamine production and release, which
increased the susceptibility of other cells to JEV by increasing surface expression of entry
factors [222]. Alternative dopamine receptors, such as D4R, have also been implicated in
flavivirus infection [223]. Given that many dopamine receptor antagonists are already FDA-
approved, repurposing of these drugs may prove to be an effective strategy for flavivirus
antiviral development.

Table 1. Summary table highlighting antivirals that target or may target viral endocytosis. EC50 and IC50 correspond to the
half-maximal effective and inhibitory concentrations, respectively. Each EC50 or IC50 value is associated with a specific
virus, assay, and reference.

Name Mechanism of Action EC50 IC50 Tested Against Assay References

Amodiaquine
Inhibits endosomal

acidification
Other functions?

n/a 2.28 µM ZIKV Plaque [224]

3.07 ± 0.36 µM n/a
ZIKV

MTT [225]4.40 ± 0.51 µM n/a Plaque

7–11 µM n/a
DENV-2

Replicon

[226]2.69 ± 0.40 µM n/a Plaque

17.67 ± 1.74 µM n/a DENV-4 Replicon8–15 µM n/a WNV

Apilimod * Inhibition of endosomal
trafficking via PI(3)P-5-kinase

n/a 9–136 nM EBOV
ELISA [227]n/a 10–140 nM MARV

n/a 40 nM LASV
Pseudovirus [228]n/a 30 nM EBOV

n/a 50 nM EBOV
Pseudovirus [229]n/a 50 nM SARS-CoV-2

n/a 10 nM SARS-CoV-2 Focus-forming

3–7 nM n/a SARS-CoV-2 Infectivity [230]

Bafilomycin A1
Inhibition of

V-ATPase-mediated
acidification

? ?
DENV-2, JEV,
WNV, YFV,

ZIKV
n/a [155,193,221,231–233]
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Table 1. Cont.

Name Mechanism of Action EC50 IC50 Tested Against Assay References

BP34610 Targets viral envelope
protein 480 ± 60 nM n/a DENV-2 Plaque [234]

Chloroquine Inhibits endosomal
acidification

n/a 1.7–4.2 µM ZIKV qRT-PCR [235]

n/a 10 µM ZIKV IF [236]

4.95 ± 0.47 µM n/a
ZIKV

MTT [225]5.11 ± 0.62 µM n/a Plaque

9.82–14.2 µM n/a ZIKV Cell viability [237]

5–10 µM n/a
ZIKV

MTT [238]5.12 ± 0.66 µM n/a Plaque

Chlorpromazine
Blocks binding of AP-2 to the

plasma membrane, D2R
antagonist

? ? DENV, JEV,
WNV, ZIKV n/a [156,164,166,168,171,

175,211–213]

Dynasore Inhibitor of the GTPase
dynamin ? ? DENV, JEV,

ZIKV n/a [168,171,175,213,239]

Epigallocatechin
gallate ?

n/a 7.0 µM
JEV

Plaque
[240]n/a 7.9 µM Attachment

n/a 9.4 µM Entry

21.4 µM n/a ZIKV Focus-forming [241]

14.8 ± 2.6 µM n/a DENV-1

ELISA [242]18.0 ± 1.0 µM n/a DENV-2
11.2 ± 1.7 µM n/a DENV-3
13.6 ± 0.0 µM n/a DENV-4

Hydroxychloroquine
Activates host innate

immunity, inhibitor of viral
protease

n/a 10–13 µM DENV-2 Fluorescent
intensity [243]

Isoquercitrin ? n/a 10–15 µM ZIKV Plaque [244]

Nanchangmycin ?
n/a 100–400 nM ZIKV Infectivity [133]

n/a 158 nM WNV Infectivity [153]

Niclosamide Prevents endosomal
acidification

n/a 15 µM DENV-1

Infectivity [245]n/a 400 nM DENV-2
n/a 1.6 µM DENV-3
n/a 700 nM ZIKV

n/a 220–280 nM ZIKV Focus-forming [246]

10 µM n/a DENV-2 Plaque [247]

480 ± 60 nM n/a ZIKV

Plaque-reduction [248]
550 ± 50 nM n/a DENV-2

540 ± 170 nM n/a WNV
840 ± 20 nM n/a YFV
1.02 ± 80 µM n/a JEV

5.80 µM n/a JEV Plaque-reduction [249]

Pitstops * Block ligand association with
clathrin terminal domain ? ?

CCHFV,
HCMV, HBV,

HIV
n/a [250–253]

Prochlorperazine
Interferes with clathrin

associated pathways, D2R
antagonist

88 nM n/a
DENV-2 Plaque [220]

137 nM n/a

TK1023 ? 1.55–1.68 µM n/a ZIKV Plaque [254]

Tyrphostin A9 RTK inhibitor, inhibitor of
AP-2 complexes?

n/a 1.4 µM DENV-1

Infectivity [245]
n/a 400 nM DENV-2
n/a 1.2 µM DENV-3
n/a 300 nM YFV
n/a 300 nM ZIKV

* No available data against mosquito-borne flaviviruses.

Additional inhibitors of general CME have been developed and have shown antiviral
properties, including dynasore [255], pitstops [253], and apilimod [256]. Dynasore is a non-
competitive inhibitor of the GTPase dynamin, which is required for scission of CCPs, and
thus leads to the accumulation of U-shaped and O-shaped CCPs that have not yet pinched
off [255]. Dynasore inhibits endocytosis of both canonical cargo, such as transferrin [255],
and non-canonical cargo, such as viruses [168,171,175,213]. The pitstops (pitstop-1 and
pitstop-2) are two small molecules that selectively target the terminal domain of clathrin,
which is important for interactions between clathrin and adapter or accessory proteins
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during CME [253]. Treatment results in an increased lifetime of clathrin coat compo-
nents and reversible inhibition of endocytosis for both canonical [253] and non-canonical
cargo [250,252,253]. Unlike dynasore and pitstops, which target steps in CME prior to
vesicle scission, apilimod is a small molecule that selectively targets the PI(3)P-5-kinase
(PIKfyve), a lipid kinase present on the cytosolic face of endosomal membranes that is
responsible for the generation of PI(3,5)P2 from PI(3)P [257]. PIKfyve is a key regulator
of endosomal trafficking [258,259], and its inhibition by apilimod has been shown to be
sufficient to prevent the entry of several viruses, presumably by limiting trafficking to
the endosomal compartments necessary for viral fusion [227–230]. Apilimod has been
clinically evaluated in the context of other diseases and presented with minor adverse side
effects [260–262], though it was not shown to be an effective therapeutic in these contexts.
Given its newly established role as an antiviral, the small molecule may find clinical use in
the future.

A variety of novel flavivirus antivirals have been recently described and specifically
implicated in post-attachment entry. Several of these small molecules, including several
flavonoid derivatives [244,254,263], stem from natural plant products and were tested
in response to the recent 2015-2016 ZIKV epidemic [264]. Many natural products also
demonstrated antiviral efficacy against other flavivirus members, including DENV and
WNV [265–268]. In addition, niclosamide [245], tyrphostin A9 [245], BP34610 [234], and
nanchangmycin [133] have been shown to have antiviral activities. Niclosamide, an anti-
parasitic drug [247], and tyrphostin A9, an RTK inhibitor [269], were identified as the most
potent broad-spectrum compounds in a screen for Semliki Forest virus (SFV) and DENV-2
antivirals that act at the step of virus entry [245]. Both drugs demonstrated antiviral efficacy
against DENV-1, DENV-3, ZIKV, and YFV 17D as well, and in addition to blocking entry,
they block internalization of transferrin [245]. Tyrphostin A9 may impact cargo-receptor
signaling during endocytosis based on the mechanisms of chemical analogues [270] while
niclosamide appears to impact endosomal acidification [246,247], though these proposed
mechanisms are not definitive [245]. Another DENV screen identified BP34610, a candidate
with antiviral efficacy against DENV-1/2/3/4 as well as JEV [234]. Time-of-addition assays
revealed a role for BP34610 in viral entry, and resistant viruses suggested the compound
likely targets the virion, rather than a host pathway.

A high-throughput screen against ZIKV identified the polyether antibiotic nanchangmycin
as a potent inhibitor of infection for flaviviruses including ZIKV, DENV and WNV across
various cell types [133]. Nanchangmycin blocked an early step during viral endocytosis,
but the small molecule did not demonstrate inhibitory effects on CME of the canonical
cargo transferrin. However, nanchangmycin blocked the CME of transferrin-coated beads
the size of virions [153]. This suggested that nanchangmycin blocks the size-dependent
endocytic internalization pathway required for the uptake of flaviviruses. While the target
of the small molecule remains unknown, there is a connection between nanchangmycin
and RNASEK and LY6E [153]. In human U2OS cells, nanchangmycin exhibited an IC50 of
158 nM against WNV-Kun infection; however, the IC50 dropped substantially to 62 nM
and 7 nM in the presence of siRNAs targeting LY6E and RNASEK, respectively. The
observation that LY6E and RNASEK depletion impacts nanchangmycin potency implies
that nanchangmycin targets the same size-dependent endocytic pathway. Future studies on
nanchangmycin mechanism will not only inform flavivirus biology but will also provide
novel avenues for antiviral targeting of viral entry.

Endosomal acidification is required for entry of flaviviruses, at least in cell culture,
and several drugs target this step in the virus entry pathway. Chloroquine, a lysoso-
motropic FDA-approved anti-malarial agent, has been extensively explored as an antiviral
and detailed as an inhibitor of viral endocytosis [271,272]. Specifically, chloroquine and
its analogs act as a weak base to prevent the acidification of endosomal compartments,
a critical step in many virus life cycles, which explains its demonstrated efficacy in blocking
flavivirus infection [235–238,273–277]. Though endosomal acidification is traditionally
considered in the context of viral envelope fusion, it is likely that treatment with these
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inhibitors can impact additional steps of viral infection [278,279]. Hydroxychloroquine has
also been described to both activate innate immune machinery during DENV infection
and inhibit the ZIKV NS2B-NS3 protease [243,280]. However, it is clear that treatment with
high levels of these drugs can present pathological consequences [281–284], and recent
studies with SARS-CoV-2 highlight the fact that entry in vivo can be distinct from studies
in cancer cell lines [230,285,286]. Chloroquine also showed limited efficacy in clinical
trials for DENV-induced disease, failing to reduce the duration of the disease course and
viremia [287,288]. Alternative structural analogs of chloroquine, such as amodiaquine, may
be more successful down the line [224–226].

Bafilomycin A1, a macrolide antibiotic, has also shown efficacy in preventing acid-
dependent steps of flavivirus endocytosis [155,221,231–233,289,290], albeit through dif-
fering mechanisms. Bafilomycin A1 inhibits the V-ATPase, making it a useful tool [198].
However, inhibiting this complex results in a diverse array of defects and toxicities [291–296].
Isoform selective targeting may bypass some of the toxicities given the possibility that only
particular forms of the complex may be important for early steps of virus-dependent CME.

Given the essential requirement of CME across diverse physiological processes
(e.g., [148,297,298]), it would be transformative to identify antivirals that target a more
selective form of CME. Currently, nanchangmycin is the only small molecule implicated in
targeting this selective form of CME. However, future studies are essential to determine if
indeed this candidate is active in animals.

5. Summary

The development of broad-spectrum antiviral therapeutics is essential to ameliorate
the public health burden of mosquito-borne flavivirus infection. Virus entry has been suc-
cessfully targeted in other viral infections. A common problem in targeting entry, however,
is that mechanisms of entry often exhibit cell type-, virus-, serotype-, or strain-dependent
behavior. An ideal scenario is the identification of a dependence unifying flaviviruses, or
at least subgroups of flaviviruses. Interestingly, recent studies have begun to characterize
a unique, specialized form of clathrin-mediated endocytosis with distinct requirements
from canonical pathways and specific for larger cargo, such as virions. Though many
details remain to be worked out, this pathway mediating virus endocytosis could poten-
tially represent a non-essential host pathway that is necessary for viral infection. Most
notably, the bacterial product nanchangmycin may target size-dependent endocytosis.
If this specialized pathway is truly unique to flavivirus or general viral infection or has
minor roles in normal cell biology, selective targeting of the pathway should minimize
adverse side effects and promote clinical utility. Future studies are required to define this
pathway and characterize this new antiviral. In addition, considering the pan-antiviral
potential of the drug, as evidenced by its broad inhibition of viral infection including that
of SARS-CoV-2 [230], continuing efforts towards development of this class of antivirals is
essential.
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