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Properly quantifying environmental heat stress (HS) is still a major challenge in livestock
breeding programs, especially as adverse climatic events become more common. The
definition of critical periods and climatic variables to be used as the environmental gradient
is a key step for genetically evaluating heat tolerance (HTol). Therefore, the main objectives
of this study were to define the best critical periods and environmental variables (ENV) to
evaluate HT and estimate variance components for HT in Large White pigs. The traits
included in this study were ultrasound backfat thickness (BFT), ultrasound muscle depth
(MDP), piglet weaning weight (WW), off-test weight (OTW), interval between farrowing
(IBF), total number of piglets born (TNB), number of piglets born alive (NBA), number of
piglets born dead (NBD), number of piglets weaned (WN), and weaning to estrus interval
(IWE). Seven climatic variables based on public weather station data were compared
based on three criteria, including the following: (1) strongest G×E estimate as measured by
the slope term, (2) ENV yielding the highest theoretical accuracy of the genomic estimated
breeding values (GEBV), and (3) variable yielding the highest distribution of GEBV per ENV.
Relative humidity (for BFT, MDP, NBD, WN, and WW) and maximum temperature (for
OTW, TNB, NBA, IBF, and IWE) are the recommended ENV based on the analyzed criteria.
The acute HS (average of 30 days before the measurement date) is the critical period
recommended for OTW, BFT, and MDP in the studied population. For WN, WW, IBF, and
IWE, a period ranging from 34 days prior to farrowing up to weaning is recommended. For
TNB, NBA, and NBD, the critical period from 20 days prior to breeding up to 30 days into
gestation is recommended. The genetic correlation values indicate that the traits were
largely (WN, WW, IBF, and IWE), moderately (OTW, TNB, and NBA), or weakly (MDP, BFT,
and NBD) affected by G×E interactions. This study provides relevant recommendations of
critical periods and climatic gradients for several traits in order to evaluate HS in Large
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White pigs. These observations demonstrate that HT in Large White pigs is heritable, and
genetic progress can be achieved through genetic and genomic selection.

Keywords: heat stress, heat susceptible, genotype-by-environment interaction, resilience, maternal-pig line

INTRODUCTION

The incidence and severity of adverse climatic conditions is
increasing as a result of climate change, and this has the
potential to negatively impact livestock production (Vilas Boas
Ribeiro et al., 2018; Bernabucci, 2019). Specifically, climate
change-induced heat stress (HS) is considered a major welfare
and production issue in the swine industry, especially as advances
in genetic selection, nutrition, and management have increased
pig performance (Kemp et al., 2018) and subsequently metabolic
heat production (Stinn and Xin, 2014; Cabezón et al., 2016).
Therefore, improving measures of swine performance and
welfare under HS conditions is a primary objective of the
global swine industry.

Improved climatic resilience can be achieved by crossbreeding
thermally sensitive animals with more heat-tolerant (HT) breeds.
Despite the favorable adaptation to HS, a result of these crosses is
relatively low production (in comparison to the more productive
breeds), which is not profitable under intensive production
systems (Berman, 2011; Misztal, 2017). The losses in the swine
industry associated with HS are mainly explained by reduced and
inconsistent growth, decreased carcass quality, lower feed
efficiency, poor sow performance, and increased mortality and
morbidity (Renaudeau et al., 2012; Baumgard and Rhoads, 2013;
Mayorga et al., 2018). Due to these negative effects and inherent
differences in climate, nutrition, and management between
nucleus and commercial swine farms, the consideration of
genotype-by-environment (G×E) interaction is important for
the identification of HT animals. Thereafter, HT animals can
be used in reproduction schemes to improve the phenotypic
performance of economically important traits (i.e., reproductive,
growth, and body composition traits).

The genetic variability for HTol in livestock species has been
previously reported (e.g., Carabaño et al., 2017; Misztal, 2017;
Ansari-Mahyari et al., 2019; Zhang et al., 2019; Tiezzi et al., 2020).
In general, the genetic analyses of HS in pigs are based on heat-
load function for live or carcass weight in growing/finishing pigs
and are usually emphasized in the sire lines (Zumbach et al., 2008;
Fragomeni et al., 2016). Random regression models, more
specifically linear reaction norm models (RNM), are
commonly used to study G×E interactions (Rauw and Gomez-
Raya, 2015), as they allow to better account for variations in HS
(Fragomeni et al., 2016). With the use of RNM, the phenotypic
values of each animal are randomly regressed on the
environmental gradient. This approach generates a regression
intercept and slope for each animal, allowing the study of across-
environment genetic merit of individuals as well as their potential
responsiveness to the environmental changes (Rauw and Gomez-
Raya, 2015). Therefore, breeding values and genetic parameters
can change gradually along the environmental gradient, and traits
may have different means and (co)variances at different

environments (Song et al., 2020). These models are applicable
when there is a continuous environmental variable that can be
used to explore the G×E interaction [e.g., contemporary group
effect (CGe), temperature, relative humidity (RH), and
temperature–humidity index (THI)].

A genetic or genomic evaluation that accounts for HS requires
each record to be associated with some easy-to-measure
environmental variables (ENV). Several studies have focused
on alternative environmental gradients, such as estimated
average performance of CGe (Li and Hermesch, 2016; Song
et al., 2020; Chen et al., 2021) and climatic variables
(Fragomeni et al., 2016; Tiezzi et al., 2020; Usala et al., 2021).
However, the best environmental metrics and critical periods to
be used when evaluating HTol in maternal-line pigs need to be
comprehensively evaluated to generate accurate estimations of
breeding values. In this regard, the main objectives of this study
were to (1) define the best environmental descriptors based on
public weather station information and critical periods to
evaluate HTol and (2) estimate variance components for HTol
for populations of Large White pigs (one of the main maternal-
line breeds in the world).

MATERIALS AND METHODS

Animal welfare and ethics committee approval was not needed
for this study, as all the datasets used were provided by
commercial breeding operations.

Phenotypic Records
All datasets were provided by the Smithfield Premium Genetics
company (Rose Hill, North Carolina, US). Phenotypic nucleus-
herd records were obtained from January 2004 to December 2019
for Large White animals distributed among 33 farms located
across North America. The farm latitudes range from 34° to 42°

north, and the longitudes range from -77° to -113°. Different
management strategies have been used across farms, such as
equipment to alleviate heat stress. However, these practices
changed over time, and this information was not recorded.
Moreover, the systematic effects included in the statistical
models (e.g., contemporary group–CG) are assumed to
account for these effects. The traits analyzed were related to
body composition [ultrasound backfat thickness (BFT; mm) and
ultrasound muscle depth (MDP; mm)], growth [weaning weight
of the piglets (WW; kg) and off-test weight (OTW; kg;
approximately measured at around 5.5 months of age)], and
reproduction [interval between farrow (IBF; days), total number
of piglets born (TNB), number of piglets born alive (NBA),
number of piglets born dead (NBD), number of piglets
weaned (WN), and weaning to estrus interval (IWE; days)].
Contemporary groups (CG) were defined by the concatenation
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of farrowing year, farrowing season, and farrowing farm for
the reproductive traits and of birth year, birth season, and
birth farm for the growth and body composition traits,
respectively. The phenotypic datasets were edited
independently for each trait by removing records deviating
±3.5 SD from the mean. In addition, CG with less than 10
records were removed from further analyses. The descriptive
statistics and the number of animals for each studied trait are
presented in Table 2.

Pedigree and Genotypes
A total of 265,943 animals were included in the pedigree, which
represented more than 10 generations. A total of 8,992 animals
were genotyped using the PorcineSNP10K (8,652 SNPs for 886
animals), PorcineSNP50K (50,549 SNPs for 5,706 animals),
PorcineSNP60K (57,019 SNPs for 865 animals), and
PorcineSNP80K (64,577 SNPs for 1,535 animals) Bead Chips
(Illumina, San Diego, CA, United States). In each SNP panel,
animals with genotype call rate smaller than 0.90 were removed.
Genotype imputation was performed using the FImpute v3
software (Sargolzaei et al., 2014). The missing genotypes were
imputed first from the 10K to the 50K panel and then from the
50K or 60K to the 80K panel. The detailed imputation process was
described in Chen et al. (2021). Quality control (QC) of genotype
data consisted of removing SNPs with call rate below 0.90, minor
allele frequency lower than 0.01, and difference between observed
and expected heterozygous frequencies lower than 0.15. The
genomic QC was implemented in the BLUPF90 family
software (Misztal et al., 2018). In the end, 55,375 SNPs for
8,686 animals (7,017 female and 1,669 male) were included in
the subsequent analyses.

Weather Records, ENV Variables, and
Critical Periods
Public weather station records for all farms were obtained from
the Local Climatological Data at the National Oceanic and
Atmosphere Administration (www.ncdc.noaa.gov/cdo-web/

datatools/lcd?prior%2520�%2520N). Based on the location of
the farms, climatic information was collected from the nearest
airports. The average distance between an airport and the farm
was 30 km (ranging from 7 to 64 km). Seven ENVwere evaluated,
including the average of mean temperature (MeanT), average of
maximum temperature (MaxT), average of minimum
temperature (MinT), dew point (DewP), average relative
humidity (RH), average discomfort index (DI; Thom, 1959),
and average THI calculated as in the Guide to Environmental
Research on Animals (NRC, 1971). The average of the raw ENV
was used as the environmental covariate. Supplementary Table
S1 shows the description of the ENV range for TNB.

The critical periods evaluated in this study were chosen
based on physiological knowledge (Johnson et al., 2015;
Gonzalez-Rivas et al., 2020; Johnson et al., 2020) of heat
stress and were trait dependent. The specific critical periods
are shown in Table 1. Both chronic (i.e., HS during the entire
grow-finish period; average of 120 days prior to measurement
date) and acute (i.e., HS in the last 30 days prior to harvest) HS
might have great impact in carcass-related traits, such as
OTW, MDP, and BFT and, therefore, were evaluated for the
mentioned traits. In addition, pigs exposed to in utero HS have
been reported to develop a variety of postnatal phenotypes that
prevent profitable production and compromised health and
welfare in commercial production systems (Johnson et al.,
2020; Maskal et al., 2020). These responses to HS are related to
alteration of postnatal response, that is, change of core body
temperature. With more intense HS, lactating sows have
increased intestinal epithelial hyperpermeability and
reduced reproduction (Mayorga et al., 2020). In utero heat
stress can also impact long-term growth performance and
decrease postnatal growth rates (Johnson et al., 2020;
Maskal et al., 2020). Heat-stressed lactating sows also
reduce feed intake as a mechanism to minimize metabolic
heat production (Renaudeau et al., 2012; Williams et al., 2013;
Cabezón et al., 2016). As such, in this study, two different
critical periods were evaluated for IBF, IWE, WW, and WN:
the first, a period ranging from the last stage of gestation
(around day 80) until the farrowing date, and the second, a
critical period ranging from the last stage of gestation
throughout lactation until the weaning date. Regarding
TNB, NBA, and NBD, only one critical period was
evaluated. Early studies showed that the first weeks of
gestation have a greater impact in the number of viable
embryos (Edwards et al., 1968; Omtvedt et al., 1971; Wildt
et al., 1975). Therefore, for TNB, NBA, and NBD, the average
ENV ranging from 20 days before breeding to 30 days into
gestation was considered.

Chen et al. (2021), using data from the same population,
performed an evaluation of G×E interaction based on CGe. In
brief, they estimated variance components and individual
breeding values for seven traits (OTW, MDP, BFT, TNB,
NBA, WN, and WW), regressing their phenotype on the
average effect of CG (Chen et al., 2021). The results obtained
in the current study will be compared to the previous results
based on the following comparison criteria: theoretical accuracy
of genomic estimated breeding values (GEBV) and rank

TABLE 1 | Description of the critical periods evaluated for each trait to be used for
the genetic and genomic evaluation of heat stress in pigs.

Trait Critical period

OTW (1) 30 days prior to measurement date
(2) 120 days prior to measurement dateMDP

BFT

WW (1) 34 days prior to farrowing date
(2) 34 days prior to farrowing date to weaning dateWN

TNB 20 days prior to breeding to 30 days into gestation
NBA
NBD

IWE 34 days prior to farrowing to weaning date
IBF

MDP, ultrasound muscle depth (mm); BFT, ultrasound backfat thickness (mm); WW,
weaning weight (kg); OTW, off-test weight (kg); TNB, total number of piglets born; NBA,
number of piglets born alive; NBD, number of piglets born dead; WN, number of piglets
weaned; IWE, interval between wean to estrus (days); IBF, interval between farrows (days).
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correlation between the GEBV of individuals regressed on the
recommended ENV and CGe.

Statistical Analyses
The best statistical model to describe each trait was defined in two
steps: (1) the systematic (fixed) effects were defined based on the
backwards elimination procedure using the lm function available
in the software R (R Core Team, 2020) and (2) the random effects
for each trait were defined using the BLUPF90 software (Masuda,
2018; Misztal et al., 2018) by comparing models, including a
different combination of random effects [i.e., animal genetic
effect, animal permanent environmental effect, and common
environment (litter) effect]. Model comparisons were made,
and the significant random effects were defined based on the
Akaike Information Criterion (Akaike, 1973). Specific and
detailed information regarding the definition of the models
can be found in Chen et al. (2021). The final effects for each
trait are shown in Table 2.

After the definition of the significant effects to be included in
the statistical model, RNM, using the single-step GBLUP
approach, was implemented to obtain the reaction norm (RN)
for each animal considering each ENV individually. Legendre
orthogonal polynomials (order � 1; Kirkpatrick et al., 1990) were
used to model the trajectory of phenotypic traits across
environmental conditions. Variance components for all “trait
× ENV” combinations were estimated using single-trait RNM
and Bayesian inference, under a Markov chain Monte Carlo
framework, using the THRGIBBS1F90 software (Misztal et al.,
2002). Considering the corresponding effects for each trait
(Table 2), the following model was used:

yik � α + xi′β + ωφ̂k +∑(n0i + n1iφ̂k) + eik ,

where yi is the phenotypic observation of animal i, α is the
intercept, x’i is the row incidence vector for ββ, β is the vector of
systematic effects described in Table 2, ω is the systematic

regression coefficient of yi on the ENV, φ̂k is the ENV vector
(expressed as first-order Legendre polynomial) at the value k, n0i
and n1i are the RN intercept and slope of animal i regressed on φ̂k
for the random effect n n ∈ {a, pe, ce}(n ∈ {a, pe, ce}, a being the
animal genetic effect, pe the animal permanent environmental
effect, and ce the common environment effect, as described in
Table 2 for each trait), and eik is the random residual for the
animal i. The assumptions regarding the random effects are as
follows:

[ a0
a1
] ∼ N(0, H⊗[ σ2a0 σa0a1

σa0a1 σ2a1
]),

and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
pe0
pe1
ce0
ce1
e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∼ N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝0, I⊗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ2pe0 σpe0pe1 0 0 0

σpe0pe1 σ2pe1 0 0 0
0 0 σ2ce1 σce0ce1 0
0 0 σce0ce1 σ2ce1 0
0 0 0 0 σ2e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

where σ2n0 , σ
2
n1 , and σn0n1 are the variance of coefficient n0i,

variance of coefficient n1i, and covariance between n0i and n1i,
respectively, where n represents the random effects described
above (i.e., a, pe, and ce), e is the residual variance, A is the
pedigree-based relationship matrix, and I is an identity matrix. A
chain containing a total of 600,000 iterations, with thin and burn-
in of 60 and 300,000, respectively, was used for all traits except
IBF. For IBF, a chain containing 900,000 iterations with thin and
burn-in of 60 and 600,000 was used. These parameters allowed
the model convergence for all traits analyzed in this study. The
convergence was verified based on both graphical analyses and
Raftery and Lewis criterion (Raftery and Lewis, 1992), both
available in the Bayesian Output Analysis (Smith, 2007)
package of the R software (R Core Team, 2020).

The same single-trait RNM previously mentioned in this study
was used to perform ssGBLUP analyses by replacing the A by the

TABLE 2 | Descriptive statistics of phenotypes and effects used for each trait.

Traits Descriptive statistics Effects

N of
records

N of
animals with

records

SD N of CG Systematic Random

OTW 101,541 101,541 25.63 256 Sex, BP, CG_G, WA (4) a, ce
MDP 17,085 17,085 6.37 86 Sex, BP, CG_G, WA (4) a, ce
BFT 17,086 17,086 4.1 87 Sex, BP, CG_G, WA (5) a, ce
WW 24,280 24,280 1.88 74 Sex, BP, CG_G, WA (5) a, ce
WN 6,059 2,665 2.79 97 FP, CG_R, FA (11) a
TNB 172,984 71,151 3.41 476 FP, CG_R, FA (11) a, pe, ce
NBA 172,418 71,016 3.2 476 FP, CG_R, FA (11) a, pe, ce
NBD 171,062 69,586 0.37 422 FP, CG_R, FA (11) a, pe, ce
IWE 128,675 52,544 4.52 450 FP, CG_R, FA (11) a, pe, ce
IBF 104,917 45,780 10.08 411 FP, CG_R, FA (7) a, pe

MDP, ultrasound muscle depth (mm); BFT, ultrasound backfat thickness (mm); WW, weaning weight (kg); OTW, off-test weight (kg); TNB, total number of piglets born; NBA, number of
piglets born alive; NBD, number of piglets born dead; WN, number of piglets weaned; IWE, interval between wean to estrus (days); IBF, interval between farrows (days); N, number; SD,
standard deviation; FP, farrowing parity; BP, birth parity; CG_R, reproduction contemporary group (defined by the concatenation of farrowing year, farrowing season, and farrowing farm);
CG_G, growth contemporary group (defined by the concatenation of birth year, birth season, and birth farm); WA, weaning age divided in classes (number of classes inside parentheses);
FA, farrowing age divided in classes (number of classes within parentheses); a, animal additive effect; pe, animal permanent environmental effect across parities; ce, litter effect.
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H matrix (Misztal et al., 2009; Aguilar et al., 2010; Christensen
and Lund, 2010). As the direct estimation of H is
computationally demanding, H−1 was calculated directly as in
Aguilar et al. (2010):

H−1 � A−1 + [ 0 0
0 τ(αG − βA22)−1 − ωA−1

22
],

where A−1 is the inverse of the numerator relationship matrix A,
A−1
22 is the inverse of the subset of A related to the genotyped

animals, andG−1 is the inverse of the genomic relationship matrix
G [calculated using the first method proposed by VanRaden
(2008)]. For the construction of H, the default parameters from
the BLUPF90 software (Masuda, 2018; Misztal et al., 2018) were
used (i.e., τ � 1, ω � 1, α � 0.95, and β � 0.05). The parameters
used for the comparison of the results are described in Section 2.3
and Section 2.5.

Environmental Variable Selection
Three criteria were used to select the optimal ENV to analyze
HTol based on the studied traits: (1) the ENV yielding the
strongest G×E estimate as measured by the parameter σ2a1σ2a1 ,
(2) the ENV yielding the highest accuracy of GEBV for the slope,
and (3) the ENV yielding the highest deviation of GEBV per ENV
(i.e., allowing to more easily differentiate tolerant and susceptible
individuals). Weights of 0.5, 0.3, and 0.2 were given to each
criterion (1, 2, and 3, respectively) to facilitate the ENV selection.
The climatic variable resulting in the highest final value was
selected as the best indicator to evaluate HTol in Large
White pigs.

Heritability Estimates and Accuracy of
GEBV
After obtaining the RN components, a genetic (co)variance
matrix Γn among values of ENV was calculated for each n
random effect (described above) as in Tiezzi et al. (2020):

Γn � VGnV′,

where Gn is the estimated (co)variance matrix between the
intercept and slope terms for the corresponding n effect and
V is a matrix of the number of rows equal to the number of
unique values of the ENV and two columns (a vector of “1” and
the standardized ENV). The heritability of a trait at each single
value k of ENV (h2k) was calculated as follows:

h2
k �

Γakk

Σ(Γnkk) + σ2e
,

where Γakk is the additive genetic variance for the ENV k and Γnkk
is the variance for the n effects (i.e., a, pe, and ce) for the ENV k.

The theoretical accuracy of GEBV predicted for the slope and
intercept of the trait in consideration of the animal i was
calculated as follows:

Accit �

������������
1 − ŜD

2

it

(1 + Fi)σ̂2at

√√
,

where ŜDi is the posterior standard deviation of GEBV for animal
i for the RN of t, being t the intercept or slope terms, Fi is the
inbreeding coefficient, and σ̂2a is the estimated variance of animal
additive effect for the intercept or slope (Aguilar et al., 2020).

Genetic Correlations Among Environments
and Approximated Weighted Genetic
Correlations Between Traits
Genotype-by-environment interaction can be confirmed, among
other factors, by a genetic correlation lower than 0.70 across the
range of ENV (Mulder and Bijma, 2007). The following equation
was used to calculate the genetic correlation between the range
of ENV:

rkk′ � σ̂ukk′������
σ̂2uk σ̂

2
uk ′

√ ,

where the covariance of additive genetic effects between ENV k
and k′ is σ̂ukk′ � σ̂2a0 + σ̂a0a1φk + σ̂a0a1φk′ + σ̂2a1φkφk′.

The approximated weighted genetic correlation between the
studied traits was assessed based on the correlation between the
GEBV. Animals with a GEBV theoretical accuracy for the
intercept and slope terms lower than 0.30 were removed from
the calculations. The following approach was used (Almeida-de-
Macedo et al., 2013):

r̂g(xy) �
∑wi(xi − �x)(yi − �y)/∑wi������������������∑wi(xi−�x)2∑wi

× ∑wi(yi−�y)2∑wi

√ ,

where �x � ∑wixi∑wi
and �y � ∑wiyi∑wi

, wi is the reliability-based

weighting of animal i and calculated as (Relxi ×
Relyi)/

����������
Relxi × Relyi

√
(Rel � Acc2)(Rel � Acc2), and xi and yi

are the GEBV of trait x and y, respectively. The standard
errors of the approximated genetic correlations were estimated as:

SE �
������������������(1 − r̂2g(xy))/(n − 2)

√
,

where n is the number of animals with GEBV theoretical accuracy
(for intercept and slope terms) greater than 0.30. The genetic
correlations estimated between ENV and the approximated
genetic correlation between traits were only calculated for the
selected optimal ENV for each trait (chosen according to the three
criteria previously mentioned). Genotype-by-environment
interactions were considered large, moderate, or weak if the
genetic correlations between environments were lower than
0.50, between 0.50 and 0.80, and higher than 0.80, respectively.

RESULTS

Descriptive Statistics
The descriptive statistics after the QC are shown in Table 2. The
number of observations ranged from 6,059 forWN to 172,984 for
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TNB. Systematic and random effects for each trait were defined
and are described in Table 2. In summary, the effect of sex, birth
parity, contemporary group (growth), and weaning age divided
into different classes was used for MDP (four classes), BFT (five
classes), WW (five classes), and OTW (four classes); farrow
parity, contemporary group (reproductive), and farrowing age
divided into 11 different classes were used for TNB, NBA, NBD,
WN, and IWE; and seven classes were used for IBF. Among the
random effects, animal additive genetic effects were considered
for all traits, animal permanent environmental effects for TNB,
NBA, NBD, and IWE, and common environment effects for
MDP, BFT, WW, OTW, TNB, NBA, NBD, and IWE.

Selection of Environmental Descriptor
Slope of Reaction Norm Model
Table 3 presents the descriptive statistics for the ENV selected for
each trait and the variance component estimated for the additive
genetic slope term (σ2a1) using RNM. For completeness,
Supplementary Table S3 presents the variance components
estimated for all “ENV × critical period × trait” studied.
Among the selected ENV, RH was selected for five out of the
10 studied traits (MDP, BFT, NBD, WN, and WW). For the
remaining traits (OTW, TNB, NBA, IBF, and IWE), MaxT was
considered as the best ENV descriptor. The variance component
estimates were partially consistent within trait, except for OTW
considering a critical period average of 30 days (OTW_30), where
the σ2a1 for RH and DewP were 94.28 and 89.05% lower than the
higher σ2a (THI), respectively. For OTW_30, MaxT and THI
resulted in a similar σ2a1 (52.351 and 53.123 kg2). Meanwhile,
when considering a critical period of, on average, 120 days for
OTW (OTW_120) and despite the fact that MaxT also gave the
highest σ2a1 (32.890 kg2), it was lower than in OTW_30, suggesting
that a period of, on average, 30 days would be better to evaluate
HTol for OTW. The same trend from OTW was observed for
MDP and BFT, where the average of 30 days (MDP_30 and
BFT_30, respectively) resulted in higher σ2a1 estimates. However,
as opposed to OTW, higher σ2a1 was observed when considering
RH as the climatic gradient for both MDP_30 and BFT_30 (1.230
and 1.025 mm2, respectively). A similar trend was observed

between IBF and IWE when considering MaxT, resulting in
the largest estimate of σ2a1 (4.505 and 0.9816 days2,
respectively), and RH, resulting in the lowest σ2a1 (1.663 and
0.446 days2, respectively).

Considering the traits TNB, NBA, NBD, WN, and WW, RH
had the highest σ2a1 estimates for all three of them. For TNB,
MaxT had the highest σ2a1 estimate (0.2095) and RH the lowest
(0.1042). MaxT was the highest for NBA (0.2727) and DI the
lowest (0.0364). The trait NBD had the lowest σ2a1 estimates
compared to all the other studied traits, being RH the ENV with
the highest σ2a1 (0.0122) and MaxT the lowest (0.0022), showing
an opposite trend than TNB. Two critical time periods were
evaluated for WN and WW considering 34 days prior to the
farrow date (abbreviated as WN_fd and WW_fd, respectively)
and 34 days prior to farrowing until weaning date (abbreviated as
WN_wd and WW_wd, respectively), resulting in the largest
estimates of σ2a1 considering the critical period until weaning
date. For WN_fd and WN_wd, RH had the largest σ2a1 estimate
(1.291 and 1.473, respectively), while the lowest was DI (0.719)
for WN_fd and MaxT (0.4102) for WN_wd. The same pattern of
WN was observed for WW, where for WW_fd and WW_wd the
largest estimate of σ2a1 came from RH (0.373 and 0.715 kg2,
respectively) and the lowest from DI (0.077 kg2) for WW_fd
and MaxT (0.046 kg2) for WW_wd. In summary, RH (MDP,
BFT, NBD, WN, and WW) and MaxT (OTW, TNB, NBA, IBF,
and IWE) were the ENV yielding the highest estimates of the
slope term. In addition, for OTW_30, both MaxT and THI could
be recommended based on similar results.

Theoretical Accuracy of GEBV
Overall, the accuracy of GEBV was greater for the intercept than
for the slope term. The largest accuracy for the intercept was
observed for BFT_30 considering MaxT (0.7224) as the ENV, and
the lowest was for WN_fd considering RH (0.3121) as the ENV.
Considering the slope term, the highest accuracy was observed for
MaxT (0.6375) in OTW_30 and the lowest was MinT (0.2547) in
MDP_120.Within each trait, it was not possible to observe a clear
pattern regarding the ranking of ENV, as it was variable
depending on the trait analyzed. The accuracy estimates for

TABLE 3 | Description of heritability estimates of each selected environmental variable for each trait.

Trait Critical period Environmental variable Heritability σba slope (PSD)

Min Mean Max SD

OTW 30 days prior to measurement date MaxT 0.21 0.25 0.47 0.038 52.3510 (6.380)
MDP 30 days prior to measurement date RH 0.27 0.29 0.31 0.011 1.2301 (0.576)
BFT 30 days prior to measurement date RH 0.38 0.42 0.47 0.019 1.0250 (0.466)
TNB 20 days prior to breeding to 30 days into gestation MaxT 0.09 0.11 0.12 0.008 0.2095 (0.053)
NBA 20 days prior to breeding to 30 days into gestation MaxT 0.08 0.09 0.12 0.011 0.2727 (0.062)
NBD 20 days prior to breeding to 30 days into gestation RH 0.04 0.06 0.09 0.009 0.0122 (0.004)
IBF 34 days prior to farrowing to weaning date MaxT 0.03 0.04 0.10 0.017 4.5055 (1.170)
IWE 34 days prior to farrowing to weaning date MaxT 0.04 0.05 0.08 0.011 0.9816 (0.216)
WN 34 days prior to farrowing to weaning date RH 0.07 0.11 0.31 0.048 1.4734 (0.772)
WW 34 days prior to farrowing to weaning date RH 0.05 0.08 0.26 0.036 0.7150 (0.367)

MDP, ultrasound muscle depth (mm); BFT, ultrasound backfat thickness (mm); WW, weaning weight (kg); OTW, off-test weight (kg); TNB, total number of piglets born; NBA, number of
piglets born alive; NBD, number of piglets born dead; WN, number of piglets weaned; IWE, interval between wean to estrus (days); IBF, interval between farrows (days); MaxT, average of
maximum daily temperature; RH, average of daily relative humidity; Min, minimum; Max, maximum; SD, standard deviation; PSD, posterior standard deviation.
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each trait considering all ENV are shown in Supplementary
Table S2, and the accuracy values of the recommended ENV for
each trait are shown in Table 4.

The critical period of 30 days, on average, presented higher
accuracies than the critical period of 120 days, on average, for
BFT, OTW, and MDP. For BFT_30, the estimated accuracy for
the intercept term ranged from 0.6960 (THI) to 0.7161 (DewP),
while for the slope it ranged from 0.4118 (DI) to 0.5772 (RH). A
different pattern, with lower estimates was observed for BFT_120,
ranging from 0.6855 (MaxT) to 0.7151 (MinT) for the intercept
and from 0.4153 (MeanT) to 0.4677 (MinT) for the slope. For
OTW_30, the accuracy ranged from 0.5985 (RH) to 0.7132
(MaxT) for the intercept and from 0.5562 (DewP) to 0.6375
(MaxT) for the slope term, while OTW_120 ranged from 0.6156
(DewP) to 0.7738 (MaxT) and from 0.4279 (MinT) to 0.0.4909
(THI) for the intercept and slope, respectively. For MDP_30, the
accuracy estimates for the intercept were similar between ENV,
with 0.6405 (THI) and 0.6629 (MaxT), for the lowest and the
highest values, respectively. For the slope term of MDP_30, the
accuracy of GEBV ranged from 0.3103 (DI) to 0.3554 (RH).
Considering MDP_120, the estimates ranged from 0.6330 (THI)
to 0.0.6759 (MaxT) for the intercept and from 0.2547 (MinT) to
0.3209 (RH).

For TNB, NBA, and NBD, the accuracy estimates of GEBV for
the intercept and slope terms had similar values between traits
and ENV. The accuracy of GEBV for the intercept term ranged
from 0.6473 (THI) to 0.6562 (MaxT), from 0.6287 (MeanT) to
0.6463 (MinT), and from 0.6128 (THI) to 0.6239 (MeanT) for
TNB, NBA, and NBD, respectively. For the slope, the GEBV
accuracies ranged from 0.4201 (MeanT) to 0.4702 (MaxT), from
0.3809 (RH) to 0.4694 (MaxT), and from 0.4090 (MaxT) to
0.4388 (RH) for TNB, NBA, and NBD, respectively. Regarding
IBF, GEBV accuracy ranged from 0.4776 (DewP) to 0.5776 (THI)
and from 0.3208 (MeanT) to 0.4587 (MaxT) for the intercept and
slope terms, respectively. For IWE, the GEBV accuracies ranged
from 0.5084 (DI) to 0.4049 (MaxT) and from 0.3372 (MinT) to
0.4587 (MaxT), respectively, for the intercept and slope terms.

Finally, considering the critical period of 34 days prior to
farrowing date and 34 days prior to farrowing date until weaning
date for WN and WW, respectively, more accurate GEBVs were
observed for the intercept term as for the other discussed traits.
ForWN_fd, GEBV accuracies ranged from 0.3121 (RH) to 0.4710
(DI) and from 0.2735 (MinT) to 0.3475 (RH) for the intercept and
slope terms, respectively. For WN_wd, the estimates ranged from
0.3253 (MaxT) to 0.4680 (RH) and from 0.2792 (MinT) to 0.3693
(RH) for the intercept and slope terms, respectively. The only trait
with higher GEBV accuracy for the slope than intercept was for
WN_fd, where an accuracy of 0.3121 for the intercept and 0.3475
for the slope was observed for RH. Considering WW_fd, the
estimated accuracy of GEBV ranged from 0.4144 (THI) to 0.5172
(RH) and from 0.3373 (MaxT) to 0.4126 (RH) for the intercept
and slope terms, respectively. For WW_wd, the estimates for the
intercept and slope ranged from 0.4215 (MinT) to 0.5895 (THI)
and from 0.3703 (MinT) to 0.4726 (RH), respectively. As
observed for the first criterion, RH (BFT, MDP, NBD, WN,
and WW) and MaxT (IBF and IWE) were the ENV yielding
the highest theoretical accuracy of GEBV. For the other traits not
previously mentioned, more than one climatic variable could be
recommended (RH, THI, and MaxT for OTW, MaxT and RH for
TNB, and MaxT and MeanT for NBA).

Deviation of GEBV per Environmental Variable
High GEBV standard deviations in a certain environmental value
means that the identification of animals with the highest and
lowest genetic values will be more evident. In this regard, the
deviation estimates were similar within each value of ENV within
trait. The deviation estimate followed a pattern similar to that
found for the RN slope and accuracy of GEBV estimates, being
the ENV with the largest deviations the same, in most cases, as
those that yielded higher σ2a and accuracy results. For OTW_30,
OTW_120, TNB, NBA, IBF, and IWE, MaxT yielded the greatest
deviation in most of the five categories (each category represents
the value allocated in the 0th, 25th, 50th, 75th, and 100th position
in each ENV). For the MDP_30, MDP_120, BFT_30, NBD,

TABLE 4 | Accuracies (95% confidence interval) of genomic estimated breeding value for the reaction norm intercept and slope terms considering the recommended
environmental variable.

Trait Environmental variable GEBV accuracies

Intercept Slope

Average 95% CI Average 95% CI

OTW_30 MaxT 0.6275 0.6270–0.6279 0.6347 0.6341–0.6351
MDP_30 RH 0.6557 0.6541–0.6574 0.3554 0.3539–0.3569
BFT_30 RH 0.7017 0.7000–0.7033 0.5772 0.5756–0.5787
WN_wd RH 0.4398 0.4376–0.4420 0.3693 0.3671–0.3715
WW_wd RH 0.4206 0.4194–0.4218 0.4726 0.4713–0.4739
TNB MaxT 0.6562 0.6555–0.6568 0.4702 0.4696–0.4708
NBA MaxT 0.6435 0.6429–0.6441 0.4694 0.4687–0.4700
NBD RH 0.6144 0.6138–0.6150 0.4388 0.4381–0.4394
IBF MaxT 0.5313 0.5306–0.5320 0.4587 0.4580–0.4594
IWE MaxT 0.5669 0.5663–0.5676 0.4587 0.4581–0.4594

OTW_30, off-test weight (kg) considering an interval of 30 days; MDP_30, ultrasound muscle depth (mm) considering an interval of 30 days; BFT_30, ultrasound backfat thickness (mm)
considering an interval of 30 days; TNB, total number of piglets born; NBA, number of piglets born alive; NBD, number of piglets born dead; IWE, interval between wean to estrus (days);
IBF, interval between farrows (days); WN_wd, number of piglets weaned considering measurement until weaning date; WW_wd, weaning weight (kg) considering measurement until
weaning date; MaxT, average of maximum daily temperature; RH, average of daily relative humidity; CI, confidence interval.
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WN_wd, WN_fd, and WW_wd, the ENV based on RH yielded
the higher deviation in most of the ENV values. Lastly, for the
remaining traits, there was no absolute ENV that yielded higher
deviations. In the case of BFT_120, MaxT, MinT, and DI yielded
the highest values, and for WW_fd, the highest values were for
RH, MeanT, andMinT. A complete estimation of the deviation in
each “ENV × critical period × trait” combination is shown in
Supplementary Table S4.

ptA summary of the results of the three criteria presented
above is shown in Table 4 as well as the recommended ENV
and critical period for each trait. In brief, the critical period of
an average of 30 days yielded higher estimates of σ2a and
accuracy and deviation of GEBV per ENV. Additionally, the
critical period ranging from 34 days prior to farrowing date
until weaning date yielded the highest estimation of the three
criteria. Moreover, the recommended ENVs for OTW_30
were THI and MaxT, for BFT_30, MDP_30, NBD,
WN_wd, and WW_wd was RH, and for TNB, NBA, IBF,
and IWE was MaxT. Subsequent results will be presented only
for the recommended ENV and critical periods.

Heritability Estimates
The heritability (h2) estimates across the range of the selected
ENV for each trait are shown in Table 3 and the complete pattern
in Figure 1. The average h2 ranged from 0.04 (IBF) to 0.42
(BFT_30). A similar pattern was observed for TNB (from 0.09 to
0.12), NBA (from 0.08 to 0.12), and NBD (from 0.04 to 0.09),
where a slight increase in h2 is observed as the ENV values

increase. The traits OTW_30 (from 0.21 to 0.47), WN_wd (from
0.07 to 0.31), and WW_wd (from 0.05 to 0.26) also had a similar
pattern, with higher h2 in extreme ENV values and lower
estimates closer to the mean. An opposite pattern of average
h2 was observed for MDP_30 (from 0.27 to 0.31) and BFT_30
(from 0.38 to 0.47). As the values of ENV increased, the h2 for
MDP_30 also increases, and for BFT_30 it decreases. The
heritability estimates within each trait (i.e., considering all the
ENV and critical periods evaluated) had similar patterns and are
shown in Supplementary Table S5.

Reaction Norms and Re-ranking Across
Environments
Sires were selected to have at least 30 offspring so that the
phenotypes were distributed under a large range in ENV (i.e.,
records of daughters could not be concentrated under the
comfortable environmental gradients). The reaction norms for
the slope term of the additive genetic effect of the five most HT
and the five most heat-susceptible (HSusc) sires are reported in
Figure 2. Re-rankings of animals were clearly observed for NBA,
WN_wd, WW_wd, IWE, IBF, and OTW_30, while no clear re-
ranking was observed for NBD, MDP_30, and BFT_30.
Meanwhile, there was a trend of re-ranking observed for TNB
at the best environmental conditions. For TNB (Figure 2A), HT
sires appear to have higher performance than the HSusc sires
even when the temperature increases. For NBA (Figure 2B), IWE
(Figure 2F), IBF (Figure 2G), and OTW_30 (Figure 2H), a clear

FIGURE 1 | Heritability estimates for each recommended environmental variable and critical period for each studied trait. (A) Total number of piglets born. (B)
Number of piglets born alive. (C) Number of piglets born dead. (D) Number of piglets weaned considering measurement until weaning date. (E) Weaning weight (kg)
considering the measurement of records until weaning date. (F) Interval between wean to estrus (days). (G) Interval between farrows (days). (H) Off-test weight (kg)
considering an interval of 30 days. (I) Ultrasound muscle depth (mm) considering an interval of 30 days. (J) Ultrasound backfat thickness (mm) considering an
interval of 30 days.
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distinction between groups was observed, with HT sires
performing better in the highest temperatures, while the HS
performed better in the lower temperatures. For WN_wd
(Figure 2D) and WW_wd (Figure 2E), the HT sires were
observed to have better performance under environments with
higher humidity, while the HSusc sires had a better performance
under drier environments. For MDP_30 (Figure 2I) and BFT_30
(Figure 2J), no re-ranking was observed. For all traits, even
though some of them do not have a clear re-ranking, it is
possible to observe that there are groups of animals
performing better than the average population performance
(Figure 2, black lines) in challenging environments.

In addition, the Spearman (rank) correlations are shown in
Supplementary Figure S2 for combinations of intercept and
slope terms between each pair of traits. The greatest rank
correlations were between TNB and NBA, where between
intercepts was equal to 0.917 and between slopes was equal to
0.838, indicating that the GEBV of TNB tends to increase when
the GEBV of NBA increases. All other trait combinations had
moderate to low rank correlations. Between MDP_30 and
OTW_30, IBF and TNB, IBF and NBA, and between MDP_30
and TNB, the slope terms were equal to 0.216, 0.155, 0.188, and
0.113. Negative rank correlations between the slope terms were
observed for WN-wd and TNB (−0.196), WN_wd and NBA
(−0.185), BFT_30 andWW_wd (−0.149), and IWE andWW_wd
(−0.141). The remaining rank correlations between trait

combinations for the intercept and slope terms had low rank
correlations and are presented in Supplementary Figure S2.

Genetic Correlation Between Environments
The genetic correlations of additive genetic effects across
environmental gradients are shown in Figure 3 (for weak and
moderate correlations) and Supplementary Figure S1 (for strong
correlations). All estimated genetic correlations between
environments considered just ENV values ranging from the
10th to the 90th percentiles, therefore excluding extreme ENV
values. The exclusion of the extreme values was done to remove
ENV with a low number of records, which might affect the
estimation of the parameters at the extremes. As expected, the
genetic correlation decreased gradually for greater differences
among the environmental gradients. The lowest genetic
correlation was observed for WN_wd (Figure 3; average �
0.75), even reaching negative values (-0.274). In addition to
WN_wd, IBF (Figure 3; average � 0.79), WW_wd (Figure 3;
average � 0.80), and IWE (Figure 3; average � 0.83) seem to be
largely affected by G×E interaction. Moderate interactions were
observed for OTW_30 (Figure 3; average � 0.88), NBA (Figure 3;
average � 0.92), and TNB (Figure 3; average � 0.96). The highest
genetic correlations were observed for NBD (Supplementary
Figure S1; average � 0.98), MDP_30 (Supplementary Figure
S1), and BFT_30 (Supplementary Figure S1), with both of the
latter having an average of 0.99. Therefore, we concluded that

FIGURE 2 |Genomic estimated breeding values for each recommended environmental variable and critical period for each studied trait considering five most heat-
tolerant and five most heat-susceptible sires. The black line indicates the population trend, the blue lines indicate the most tolerant sires, and the red line indicates the
most susceptible sires. (A) Total number of piglets born. (B) Number of piglets born alive. (C) Number of piglets born dead. (D) Number of piglets weaned considering
measurement until weaning date. (E) Weaning weight (kg) considering measurement until weaning date. (F) Interval between wean to estrus (days). (G) Interval
between farrows (days). (H) Off-test weight (kg) considering an interval of 30 days. (I) Ultrasound muscle depth (mm) considering an interval of 30 days. (J) Ultrasound
backfat thickness (mm) considering an interval of 30 days.
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WN_wd, IBF,WW_wd, and IWE are largely andOTW_30, NBA,
and TNB are moderately affected by the G×E interaction.
However, NBD, MDP_30, and BFT_30 were only mildly
affected by G×E interaction.

Approximated Weighted Genetic
Correlations Between Traits
Individuals with GEBV theoretical accuracies higher than 0.30
were used to calculate the weighted Pearson correlation among
the RN intercepts and slopes between all studied traits
considering the recommended ENV for each trait. The
minimum number of selected animals and the lowest
average accuracies were 5,718 and 0.4224 (95% CI of
0.4210–0.4236), respectively (Supplementary Table S6).

The approximate genetic correlations between intercepts,
intercept and slope, slope and intercept, and slope and
slope for each pair of traits (considering the recommended
ENV for each trait) are shown in Figure 4.

The greatest genetic correlations were observed between the
intercept terms. The greatest positive correlations were observed
between TNB and NBA, with 0.928, and between BFT_30 and
OTW_30 (0.581) for the RN intercept. A moderate genetic
correlation was also observed between TNB and NBD (0.328),
TNB and WN_wd (0.305), and NBA and WN_wd (0.305).
Moderate genetic correlations between intercepts were also
observed between IBF and IWE (0.375), MDP_30 and
OTW_30 (0.332), and BFT_30 and MDP_30 (0.248). For
WW_wd, moderate to low genetic correlations were observed
with IBF (0.121), OTW_30 (0.216), MDP_30 (0.234), and

FIGURE 3 | Genetic correlations across environmental gradients using the recommended environmental variable and critical period for each studied trait. The
Pearson correlation coefficient (cor) are represented by colors with the mean values shown below. TNB, total number of piglets born; NBA, number of piglets born alive;
WN, number of piglets weaned considering the measurement of records until weaning date; WW, weaning weight (kg) considering measurement until weaning date;
IWE, interval between wean to estrus (days); IBF, interval between farrows (days); OTW, off-test weight (kg) considering an interval of 30 days.
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BFT_30 (0.188). The combinations for the remaining traits for
the intercept term had low genetic correlations and are shown in
Figure 4A.

Approximate genetic correlations between the intercept and
slope terms indicate what happens to the performance of an
animal for a specific trait when another trait is expressed under
challenging heat conditions. In this matter, the greatest positive
correlation was between TNB slope and NBA intercept (0.149)
and between NBD intercept and WN slope (0.135). A similar
positive correlation was also observed betweenWW intercept and
OTW slope (0.123) and between the pairs of BFT slope with NBD
intercept and IBF intercept with WN slope (both equal to 0.109).
The WN slope and TNB intercept and the NBD slope and WW

intercept had the same correlation value of 0.105. The greatest
negative correlation was observed between the NBA slope and the
TNB slope with WW intercept (−0.137 and −0.125, respectively).
All other combinations between intercept and slope had values
lower than 0.100 (Figure 4B,C).

The smallest genetic correlations were observed between the
slope terms. This correlation indicates the relationship between
the traits under a stressful environmental condition. The greatest
positive slope × slope genetic correlation was observed for
WW_wd and IBF (0.146). A negative correlation of -0.131 was
observed for NBD and WN_wd and of -0.111 between WN_wd
and TNB. All the other trait combinations had correlations under
the absolute value of 0.100 and are shown in Figure 4D.

FIGURE 4 | Approximated Pearson genetic correlations (lower) and standard errors (upper) among (A) intercept terms, (B) intercept and slope, (C) slope and
intercept, and (D) slope terms of the recommended environmental variable and critical period for each studied trait. TNB, total number of piglets born; NBA, number of
piglets born alive; NBD, number of piglets born dead; WN, number of piglets weaned;WW, weaning weight (kg); IWE, interval betweenwean to estrus (days); IBF, interval
between farrows (days); OTW, off-test weight (kg); MDP, ultrasound muscle depth (mm); BFT, ultrasound backfat thickness (mm). For OTW, MDP, and BFT, we
considered a critical period of an average of 30 days before measurement date. For WN and WW, we considered a critical period from 34 days prior to farrowing up to
weaning date. For TNB, NBA, and NBD, we considered a critical period of 20 days prior to breeding to 30 days into gestation. For IBF and IWE, we considered a critical
period of 34 days prior to farrowing to weaning date.
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DISCUSSION

A set of comprehensive analyses to reveal the genetic background
of HTol based on routinely measured phenotypic records and
publicly recorded weather variables was performed in this study.

Environmental Variable Selection
As indicated in the “Materials and Methods” section, three
different metrics were used as criteria for the selection and
recommendation of ENV and critical period to evaluate HTol
in pigs from the Large White breed (one of the main maternal-line
breeds). The first criterion, based on the ENV yielding the higher
G×E interaction measured by the σ2a1 term, was also used by other
studies evaluating HS effects in reproductive and carcass traits in
pure breeds and crossbred animals (Tiezzi et al., 2020; Usala et al.,
2021). The second criterion was based on the theoretical accuracy
of GEBV. Therefore, the climatic metric recommended had to not
only have the strongest G×E but also provide more reliable GEBV
estimates. Furthermore, the third criterion was based on the ENV
yielding the greatest deviation of GEBV within the ENV value. The
latest mentioned criterion was considered because, in this study,
the goal was to use an ENV that allows a clear distinction (i.e.,
higher dispersion of breeding values) between HT and HSusc
animals. A large variability in GEBV (i.e., higher standard
deviation of GEBV within each ENV value) allows better
discrimination of the animals, which facilitates the selection of
the desired animals. Another metric that could also be evaluated
was the deviance information criterion (DIC). However, in this
study, the DIC was not included as another criteria for ENV
selection due to criticisms found in the literature, such as the lack of
consistency, weak theoretical justification, and overfitting
(Spiegelhalter et al., 2014; Clarke and Clarke, 2018; Salles et al.,
2019).

Climate records from the National Climatic Data Center
weather stations were used to describe the environmental
conditions experienced by the sows at different stages of
ovulation, pregnancy, and post-pregnancy. Weather stations
used in the current study were on average within 30 km from
the farm. Freitas et al. (2006) estimated a correlation of 0.9
between on-farm weather data and weather station data even
for weather stations more than 300 km away from the farm.
Although these climate records are usually publicly available and
have been successfully used in other worldwide studies focusing
on sowHTol for different reproduction, growth, and carcass traits
(Tummaruk et al., 2010; Wegner et al., 2014; Tiezzi et al., 2020;
Usala et al., 2021), we acknowledge that the collection of within-
barn environmental measurements is important and should be
done when possible. However, the variables needed for this study
were not available for this current study. It is also worth noting
that, although there was a large variability in the climatic variables
used in this study, they might not be representative of all the
possible range of climatic conditions. Therefore, additional
studies should be performed in other populations (e.g., breeds)
and geographical regions to confirm our results.

In the current study, acute HS had greater impact on OTW,
BFT, andMDP than chronic HS, which suggests that, during the
period of chronic HS, the animal might be able to recover from

the thermal stress suffered. For these traits (OTW, BFT, and
MDP), the variance components for the slope term were higher
considering a period of 30 days before measurement than 120
days. The GEBV accuracy estimates were also greater for the
acute HS. For WW and WN, the period ranging from the last
stage of gestation (around day 80) until the weaning date
resulted in higher G×E interaction and GEBV accuracies.
Therefore, the time period ranging from the last stage of
gestation until weaning date is the recommended critical
period to evaluate HT for WW and WN (referred here as
WW_wd and WN_wd, respectively).

Several studies implemented different climatic variables as the
environmental gradient covariate—for instance, some studies
used heat load calculated as THI greater than 70, temperature,
humidity, or THI (Fragomeni et al., 2016; Tiezzi et al., 2020; Usala
et al., 2021). However, reports of the best environmental metric to
be used when evaluating HTol in pigs from the maternal line are
scarce. Therefore, we evaluated several ENV based on
temperature and humidity to achieve a recommendation for
each of the evaluated traits. The use of an index-based
environmental variable is another way of carrying out the
analyses, and it has been done in plants (e.g., Resende et al.,
2020). However, in the current study, single ENV was used as
environmental gradient. The use of RH as the climatic variable is
the recommendation for NBD,WW_wd,WN_wd, MDP_30, and
BFT_30. Maximum temperature is the recommended ENV for
TNB, NBA, IBF, IWE, and OTW_30. Even though for OTW_30
the use of MaxT was recommended based on our findings, THI
also resulted in a very similar G×E interaction. This choice was
based on THI development as most THI are originally related to
the body temperatures of cattle exposed to HS and have been
adapted to other species or populations (Ingraham et al., 1979;
Buffington et al., 1981; Bohmanova et al., 2007). Therefore, the
use of THI in pigs is viewed with caution since different
physiological and anatomical characteristics (i.e., rumen,
ability to sweat, body mass, etc.) are found between cattle and
swine that directly influence thermotolerance. For OTW, a high
(0.79) rank correlation between GEBV estimates using THI and
MaxT was observed. Therefore, due to the caution in interpreting
the THI values for swine and the high rank correlation between
THI withMaxT, MaxT was recommended as the ENV to evaluate
HTol in maternal-line pigs for OTW. For five out of the 10 traits
evaluated, the ENV selected (Table 5) were built upon RH as
climate variable and the other five used MaxT. The
preponderance of RH, rather than other climatic variables, in
challenged sows was reported by Tummaruk et al. (2010) and
Tiezzi et al. (2020) who studied reproductive performance under
HS conditions. This finding might indicate that the barn cooling
systems can better mitigate the impact of temperature than RH.

G×E and Genetic Parameters
Heritability Estimates
Genomic RNM were used in this study for the estimation of
genetic parameters, including additive genetic variance for the
trait performance in a standard environment (σ2a0, intercept term)
as well as the additive genetic variance for the tolerance to a given
environmental stressor (σ2a1, slope term). The additive genetic
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variance estimates obtained agree with the estimates by Chen
et al. (2021) when evaluating HT based on CGe in the same
population. The heritability estimates are in the same range with
the ones reported by Tiezzi et al. (2020), using the average RH
before conception (for TNB) or the average THI index during the
pregnancy of sows (for NBA). Chen et al. (2021), using CGe, also
found a similar h2 for TNB, NBA, WW, and MDP. A higher
average h2 for NW was estimated using RH as the environmental
gradient when compared to CGe (Chen et al., 2021).

As described by Usala et al. (2021), the use of RNM to assess the
environmental effect on animal fertility, conformation, or carcass
quality traits is less common in pigs when compared to dairy and
beef cattle (Meyer, 2000; Coffey et al., 2002; Bradford et al., 2016;
Ansari-Mahyari et al., 2019). In pigs, the genetic component for
HTol is usually calculated as a function of heat load on growth
traits or carcass weight (Zumbach et al., 2008; Fragomeni et al.,
2016). Estimating genetic parameters for HTol in crossbred swine
carcass traits, Usala et al. (2021) also observed a high average h2 for
BFT and MDP. The heritability estimated for the beginning of the
curve (assumed as a comfortable condition compared to the right
extreme values) was also a trend observed by Tiezzi et al. (2020) for
TNB andNBA. Silva et al. (2014) also reported a higher h2 for TNB
in contemporary groups with better performance, and a similar
trend was observed by Fragomeni et al. (2016) when assessing
HTol based on the bodyweight of purebredDuroc individuals. The
use of quadratic functions is another alternative to analyze the data.
However, considering the biological aspect of heat stress, the use of
quadratic or higher-order functions can compromise the
interpretation of results (e.g., using a quadratic function could
mean that, when temperature increases, the impact of heat stress
would be higher, but after a certain point, this impact would be
favorable even though the temperature continues to increase).

Genetic Correlations Across Environments
The most common thresholds recommended for considering the
presence of G×E interaction are based on genetic correlations
across the range of ENV lower than 0.70 (Mulder and Bijma, 2007)
or 0.80 (Hayes et al., 2016). In this study, only NW, WW, and IBF
presented a G×E interaction considering an average threshold of
0.80. However, despite the fact that some traits had an average
correlation value higher than the threshold correlation of 0.80, the
minimumvalues found for TNB,NBA, IWE, andOTWwere lower
than this threshold. Therefore, we suggest that moderate G×E
interactions were observed in such traits. ForNBD,MDP, and BFT,
both average and minimum values are above the 0.80 threshold,
indicating a low G×E interaction across ENV values, which is also
supported by the RN of GEBV for the mentioned traits (Figures
2C,I,J). Similar values of genetic correlations across ENV were
found by Tiezzi et al. (2020) for TNB and NBA, in which the
correlation between RH values reached 0.78 and that between THI
reaching 0.83, respectively. Additionally, Chen et al. (2021)
observed similar average values when considering CGe as the
environmental covariate for BFT. However, differently from Chen
et al. (2021), in the current study, stronger G×E interactions were
observed for WN and moderate for OTW. Usala et al. (2021)
observed lower values for the genetic correlations in crossbred
animals (0.89 and 0.50 for BFT and loin depth, respectively, using
RH). These results suggest that the G×E interaction is not only
population dependent but also dependent on the environmental
covariate used. It is important to note that the estimates of G×E
might not reflect the exact environmental conditions experienced by
the animals because public weather station data may not precisely
represent within-barn environmental conditions. Therefore, further
studies should consider in-barn recorded environmental data to
validate the results.

TABLE 5 | Summary and recommendation of the three criteria evaluated of each environmental variable for each trait.

Traits σ2a slope GEBV accuracies Deviation of
GEBV per

ENV

Measurement interval Recommended ENV

OTW_30 THI and MaxT MaxT MaxT 30-day interval MaxT
OTW_120 MaxT RH and THI MaxT
BFT_30 RH RH RH 30-day interval RH
BFT_120 RH RH MaxT
MDP_30 RH RH MaxT and RH 30-day interval RH
MDP_120 RH RH MinT and RH
TNB MaxT MaxT and RH MaxT and RH No critical period evaluated MaxT
NBA MaxT MaxT and MeanT MaxT and RH No critical period evaluated MaxT
NBD RH RH RH No critical period evaluated RH
IBF MaxT MaxT MeanT and MaxT No critical period evaluated MaxT
IWE MaxT MaxT MaxT No critical period evaluated MaxT
WN_wd RH RH RH Until weaning date RH
WN_fd RH RH RH
WW_wd RH RH RH Until weaning date RH
WW_fd RH RH RH

OTW_30, off-test weight (kg) considering an interval of 30 days; OTW_120, off-test weight (kg) considering an interval of 120 days;MDP_30, ultrasoundmuscle depth (mm) considering an
interval of 30 days; MDP_120, ultrasoundmuscle depth (mm) considering an interval of 120 days; BFT_30, ultrasound backfat thickness (mm) considering an interval of 30 days; BFT_120,
ultrasound backfat thickness (mm) considering an interval of 120 days; TNB, total number of piglets born; NBA, number of piglets born alive; NBD, number of piglets born dead; IWE,
interval between wean to estrus (days); IBF, interval between farrows (days); WN_wd, number of piglets weaned considering measurement until weaning date; WN_fd, number of piglets
weaned considering measurement until farrow date; WW_wd, weaning weight (kg) considering measurement until weaning date; WW_fd, weaning weight (kg) considering measurement
until farrow date; MaxT, average of maximum daily temperature; MinT, average of minimum daily temperature; MeanT, average of mean daily temperature; DewP, average of daily dew
point; RH, average of daily relative humidity; DI, average discomfort index; THI, average temperature–humidity index; ENV, environmental variable.
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Visualizing more HT animals can be facilitated using RN
plots (Figure 2). Individuals with better performance under
HS conditions can be selected and used within a breeding
scheme, provided that they are not under-performing under
thermoneutral conditions (i.e., comfortable and controlled
climatic conditions). Except for TNB, NBD, MDP, and BFT,
the best-performing animals under challenging environmental
conditions (i.e., high humidity or temperature) are under-
performing in comfortable conditions. The identification of
these animals (or their descendants) means that the use of their
genetic resources will be better applied on farms experiencing
high RH or temperature values. For TNB and NBD, the most
HT animals performed better under both comfortable and
challenging conditions, and the opposite trend occurred with
MDP and BFT, where the more HSusc animals outperformed
the most HT across the entire ENV range. These results agree
with the G×E interaction (Figures 3C,I,J), where high
correlations were found for NBD, MDP, and BFT.

Approximated Genetic Correlations Between Traits
The highest positive genetic correlations observed between
TNB and NBA intercept terms were also observed by Serenius
et al. (2004) in Finnish Large White pigs. Serenius et al.
(2004) estimated the genetic correlation for first farrowing
interval with TNB, NBA, and WN to be higher (0.130, 0.160,
and 0.140, respectively) than the values found in this study,
where the correlation between IBF intercept and TNB, NBA,
and WN intercept had negative values (−0.033, −0.041, and
−0.009). Moderate correlations between OTW, MDP, and
BFT were observed in this study and were also reported by
Chen et al. (2021) and Jiao et al. (2014). The genetic
correlations among slopes for different traits were low to
moderate, which indicate that HTol based on different traits
could result in the selection of different animals. These
results are important to the industry as they indicate that
pigs should be selected for HTol defined based on multiple
traits and potentially combined in a selection sub-index.
However, as there are no gold-standard values (e.g., true
breeding values), the fact that the breeding values for
HTol based on alternative traits are different or that re-
ranking occurred cannot be used for choosing the best
environmental variable for each trait. In addition, the fact
that these correlations between slopes are low to moderate
indicates the need to evaluate traits in different
environments. These findings contribute to improving
selection strategies under HT and suggest that different
animals would be selected depending on the trait
evaluated. Selection can be achieved by selecting for all
traits, especially when including the traits in a selection
sub-index, according to the desired breeding goal.

Reaction Norm Gradient: Comparison
Between Contemporary Group Effect and
Environmental Variable
Different environmental gradients for the RN have been used over
time (CGe: Li and Hermesch, 2016; Song et al., 2020; Chen et al.,

2021 and climatic variables: Fragomeni et al., 2016; Tiezzi et al.,
2020; Usala et al., 2021). However, the feasibility of using the
average CGe or climatic variables as the environmental gradient for
assessing G×E interactions is unknown. In this regard, Chen et al.
(2021), using the same population and seven traits also used in the
current study (OTW, MDP, BFT, TNB, NBA, WN, and WW),
calculated the GEBV of animals using CGe as the environmental
gradient. In general, the estimates based on the recommended
ENV of the current study resulted in higher theoretical accuracies
of GEBV, except for MDP, where the accuracy based on CGe was
0.580 (i.e., indicator of G×E interaction), while the accuracy based
on the recommended ENV was 0.350 for the slope term. A
Spearman (rank) correlation between the GEBV of individuals
regressed on the recommended ENV and CGe shows a negative
moderate rank correlation for BFT (−0.57), WW (−0.47), and
MDP (−0.31) and a low positive rank correlation for the other
traits (Supplementary Table S7). These results suggest that,
despite being used and historically providing reliable breeding
value estimates (Song et al., 2020; Chen et al., 2021), the use of
CGe accounts for additional variability, including nutrition
practices and management. This might not be the interest
when evaluating HTol. Therefore, as suggested, the use of
ENV might be more useful when the objective is to evaluate
the breeding values of animals under challenging climatic
stress.

CONCLUSION

The genetic and genomic background of HTol was
comprehensively explored in the present study for various
reproduction, growth, and body composition traits measured
in pigs from the Large White breed (maternal line). Moreover,
the use of different critical periods and climatic variables defined
based on public weather station records was evaluated. Our
results indicate that evaluating HS in the period of 30 days
before the measurement date provided the best estimates of G×E
for OTW, MDP, and BFT. Additionally, the critical period
ranging from the last trimester of gestation until weaning
provided better estimates for WN and WW. From the
climatic variables evaluated, the average RH (for NBD, WN,
WW,MDP, and BFT) andMaxT (for TNB, NBA, IWE, IBF, and
OTW) are the recommended variables to evaluate HS based on
the mentioned traits. Large (WN, WW, IBF, and IWE) and
moderate (OTW, TNB, and NBA) G×E interactions were
observed for most of the studied traits, while other traits
(MDP, BFT, and NBD) are less impacted by heat stress,
showing a weaker evidence of G×E. The low to moderate
genetic correlations between HTol breeding values based on
different traits indicate that a selection sub-index combining the
breeding values for the slopes of multiple traits might be needed
for identifying the most HT animals throughout their entire
productive life. The current study also demonstrates that HTol
is heritable, and genetic progress can be achieved through direct
genetic and genomic selection. Therefore, selecting for
improved HTol based on reproductive, growth, and body
composition performance and public weather station data is
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feasible in swine. Future research using within-barn
environmental records will be performed next.
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