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Abstract

Environmental quality is a major factor that directly impacts waterfowl productivity. Accurate

prediction of pollution index (PI) is the key to improving environmental management and pol-

lution control. This study applied a new neural network model called temporal convolutional

network and a denoising algorithm called wavelet transform (WT) for predicting future 12-,

24-, and 48-hour PI values at a waterfowl farm in Shanwei, China. The temporal convoluted

network (TCN) model performance was compared with that of recurrent architectures with

the same capacity, long-short time memory neural network (LSTM), and gated recurrent

unit (GRU). Denoised environmental data, including ammonia, temperature, relative humid-

ity, carbon dioxide (CO2), and total suspended particles (TSP), were used to construct the

forecasting model. The simulation results showed that the TCN model in general produced

a more precise PI prediction and provided the highest prediction accuracy for all phases

(MAE = 0.0842, 0.0859, and 0.1115; RMSE = 0.0154, 0.0167, and 0.0273; R2 = 0.9789,

0.9791, and 0.9635). The PI assessment prediction model based on TCN exhibited the best

prediction accuracy and general performance compared with other parallel forecasting mod-

els and is a suitable and useful tool for predicting PI in waterfowl farms.

Introduction

In response to the growing global demand for food, the Chinese waterfowl industry has grown

to be a leader in both goose meat and goose egg production [1]. To meet this demand,

one mechanism to increase production is to increase housing and manage more geese.

However, as the scale of intensive culture increases, there is a growing concern in China that

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0254179 July 23, 2021 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Huang J, Liu S, Hassan SG, Xu L (2021)

Pollution index of waterfowl farm assessment and

prediction based on temporal convoluted network.

PLoS ONE 16(7): e0254179. https://doi.org/

10.1371/journal.pone.0254179

Editor: Chi-Hua Chen, Fuzhou University, CHINA

Received: January 29, 2021

Accepted: June 22, 2021

Published: July 23, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0254179

Copyright: © 2021 Huang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported in part by the

National Natural Science Foundation of China under

Grants 61871475, 61471133, and 61571444,

https://orcid.org/0000-0003-3266-1885
https://doi.org/10.1371/journal.pone.0254179
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254179&domain=pdf&date_stamp=2021-07-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254179&domain=pdf&date_stamp=2021-07-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254179&domain=pdf&date_stamp=2021-07-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254179&domain=pdf&date_stamp=2021-07-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254179&domain=pdf&date_stamp=2021-07-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254179&domain=pdf&date_stamp=2021-07-23
https://doi.org/10.1371/journal.pone.0254179
https://doi.org/10.1371/journal.pone.0254179
https://doi.org/10.1371/journal.pone.0254179
http://creativecommons.org/licenses/by/4.0/


waterfowl should be raised under conditions that promote animal welfare since productivity is

related to environmental conditions in which the waterfowl are raised [1]. For example, the

organic matter present in excreta and/or litter resulting in pollutant production, such as CO2,

ammonia, and TSP, will not only impair geese and staff health but also have important conse-

quences for society once the pollutants are out in the atmosphere [2–4]. According to this, to

maintain and control optimal conditions for survival and good goose growth, establishing a

habitat that is closer to a standard ecosystem is justified [4].

Labor shortages and increasing biosecurity practices will make it more difficult for produc-

ers to monitor and manage the production, health, and welfare status of all of their birds.

Employing modern poultry management technology is necessary to increase production [5].

An example of how modern management technology can be used to monitor and control the

poultry house environment is exemplified by humidity regulation via ventilation rate changes

mediated by relative humidity sensors, as relative humidity is one of the more important envi-

ronmental aspects of a poultry house [5]. In addition, more advanced systems are being

researched. Bustamante et al. used a multisensor system to effectively assess barn ventilation

system function by tracking temperature, air velocity and differential pressure in broiler

houses [6]. Hanif et al. proposed an internet of things technology-based protection and moni-

toring of the environment of a poultry house to monitor the environment-related parameters

such as air temperature, air humidity, CO2 level of concentration and ammonia concentration,

which has been implemented successfully, leading to a safe environment and profit for the

poultry industry [7]. The techniques mentioned above are both solutions for real-time envi-

ronmental monitoring and control; however, relying on hardware monitoring in real time

cannot capture the trend of environmental changes [8], and it is easy to miss the best time for

adjustment, which leads to waterfowl health damage and property loss.

Cultivation environment forecasting has been studied for many years and has made some

achievements in aquaculture and livestock breeding [9–10]. The technique estimates or pre-

dicts the future changes in target variables that cannot be obtained directly. For example, Jack-

man et al. generated a prediction model by using sensor inputs of relative humidity, CO2,

temperature, and ammonia for environmental parameter and crop yield prediction [11]. In

waterfowl production, a system such as this would allow for actions to be taken sooner by

farmers if the environment is projected to be bad. However, few studies have applied predic-

tion in waterfowl breeding. Therefore, it is necessary to apply environmental prediction tech-

nology to waterfowl production to fill this gap.

The PI is a simple and easy assessment method for assessing environmental quality, and

precise environmental quality assessment and prediction allow better environmental manage-

ment practices and contribute to a more sustainable environmental management approach

[12–17]. In recent years, many studies on pollution models have been carried out to evaluate

the quality of the environment based on the PI method, such as river quality status assessment

and prediction [12, 14–16], air quality status assessment and prediction [17–19], and soil pol-

lution assessment and prediction [20, 21]. Forecasting the concentration of water, air, and soil

pollutants is an effective method for protecting public health, productivity, and travel by pro-

viding early warnings of harmful pollutants. Likewise, it is also important to assess and predict

PI in advance for waterfowl farms so that, if necessary, the producer can intervene more

quickly by using management practices to ensure a healthy context.

In general, PI formulations include lengthy computations and thus require considerable

time and effort. Additionally, waterfowl environment pollutant data are dynamic, complex,

and have high temporal and spatial variability [22, 23], and traditional forecasting methods

such as multiple linear regression and autoregressive integrated moving average models have
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poor performance. Hence, a method to calculate PI in an efficient and precise way is required.

Such approaches may benefit farmers when assessing and managing environmental quality.

Over the past few decades, artificial intelligence has been increasingly applied to solve vari-

ous environmental engineering problems, including water quality modeling [24, 25] and air

quality modeling [26]. Among them, STM is a class of neural networks that can only use the

current input information and historical information. Compared with other AI-based models,

LSTM is powerful for modeling sequence data such as time series or natural language [27–29].

However, recursive neural networks such as LSTM and GRU process input sequences in paral-

lel, so the cost of model training will increase with increasing length of input sequences. More-

over, distant historical memory will be forgotten, and they have a weak ability for temporal

and spatial feature extraction [30]. Therefore, convolutional neural networks have attracted

increasing attention in temporal and spatial sequence modeling. TCN [31], a model with a

simple convolutional network architecture, is proposed to be applied to language modeling

and music modeling and has demonstrated better performance than recurrent neural net-

works, especially in a long sequence. TCN has been proven to perform well in long sequence

time series modeling. However, TCNs have not yet been applied in PI prediction. Therefore, a

better TCN prediction architecture is explored to promote the predicted precision of PI in this

study.

Waterfowl house environment data usually contain many sources of noise. To eliminate

noise interference, extract essential feature information, and obtain high-quality data sets,

experts have proposed many methods, such as WT, independent component analysis, and

empirical mode decomposition [32–34]. WT can decompose time series with different resolu-

tions and distinguish between noise and useful signals. It has been successfully applied to pat-

tern recognition and noise elimination. Liu et al. proposed a hybrid wavelet analysis and least

squares support vector regression with a Cauchy partial swarm optimization algorithm model

for dissolved oxygen prediction [9]. Kumar et al. obtained better-quality denoised electrocar-

diogram signals by a denoising technique using a stationary WT compared with empirical

mode decomposition, the Fourier decomposition method, and discrete WTs [35]. To effec-

tively improve the GPR image resolution, Zhang et al. combined WT and F-K filtering [36].

Samuel et al. conducted a comparative analysis of a set of machine learning models, and the

results showed that the best combination for predicting the streamflow into the Sobradinho

Reservoir was the bootstrap, WT and neural network [37].

Based on the above studies, this paper proposes a new waterfowl house environmental qual-

ity assessment and prediction model combining WT and a temporal convolutional network.

The WT can reduce the noise of original environmental data and obtain high-quality data, and

the temporal convolutional network can extract the temporal and spatial features of processed

data, output precise environmental quality assessment, and predict results.

Materials and methods

Study area and data source

The waterfowl culture farm in Haifeng County (23˚05’N, 115˚19’E) in Shanwei City, China

was investigated in the present study. With an area of approximately 53.3 hm2, the farm is a

multifunctional integrated aquacultural base integrating waterfowl breeding, seeding breeding

and intensive aquaculture.

The environmental data were collected by the waterfowl culture internet of thing (IoT)

online monitoring terminal system, and its architecture is shown in Fig 1. The system is

equipped with a temperature sensor, ammonia concentration sensor, humidity sensor, etc.
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The environmental information is uploaded to the cloud, and users can obtain on-site infor-

mation by accessing the web server through mobile phones or personal computers.

According to the importance of the environment and expert research, we selected 5 envi-

ronmental factors, as shown in Table 1. Among them, ammonia is a toxic gas and the greatest

concern of environmental pollution in waterfowl production, adversely affecting the ecosys-

tem, environment, and health of birds and people. Less than 10 ppm is the ideal limit [38]. Rel-

ative humidity can impact bird health, and high relative humidity may worsen broiler geese

performance; the ideal value is 70% [39]. Heat stress is a major concern in waterfowl produc-

tion; high and low temperatures will reduce the growth performance and survivability of

waterfowl, and temperatures less than 27˚C and more than 10˚C are ideal [40]. TSP is from

the birds themselves as well as from the feed, litter, and building materials and may serve as a

pathogen disseminator and bring about lung damage; less than 10 mg/m3 is the ideal limit

[38]. Additionally, the levels of relative humidity, ammonia, CO2, temperature and TSP are

known to be correlated with each other [5]. These factors are important for waterfowl produc-

tion and can be monitored and optimized.

Fig 1. Schematic diagram of the waterfowl farm monitoring system based on the internet of things.

https://doi.org/10.1371/journal.pone.0254179.g001

Table 1. The selected environmental parameters for PI prediction.

Environmental factor Unit Limit Influences

Ammonia ppm 10 Ammonia is a toxic gas impairing animal performance and bird and staff health [41–42].

Relative humidity % 70 High relative humidity may worsen broiler geese performance [39].

Temperature ˚C 10~27 Influences poultry welfare and food intake, as well as increases susceptibility to disease and flock mortality rate [40].

CO2 ppm 1500 A decrease in production and bird health can occur [41].

TSP mg/m3 8 A higher incidence of lung damage [38].

https://doi.org/10.1371/journal.pone.0254179.t001
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Data sets

In this report, environmental data, including ammonia, relative humidity, temperature, CO2

and TSP, were collected from July 1st to September 28th, 2019, at intervals of 20 minutes. There

were 72 sets of data collected per day with a total yield of 6480 observed samples. For model

generation, the first 4536 sets of data were used for model training, and the remaining 1944

sets were used as the testing data to estimate the prediction performance of the constructed

model.

Pollution index

The PI in this study was formulated within the criteria for evaluating the environmental qual-

ity of livestock and waterfowl farms by the Quality and Technology Supervision Bureau of

China. The single PI can be calculated as:

I ¼
Ci

Csi
ð1Þ

where Ci is the measured concentration of environmental pollutants and Csi is the standard

concentration limit of pollutants. The composite PI of waterfowl house environment quality

can be described as follows:

Pi ¼ fImax � 1=n
X

Iig
1
2

ð2Þ

where Imax is the maximum single PI among all pollutants, n is the number of pollutants, and

Ii is the single PI of pollutant i.

Wavelet transform

Continuous WTs for a given waterfowl environment signal s(k) can be described as follows:

WTsða; bÞ ¼
1
ffiffiffi
a
p

Z � 1

1

sðkÞ c
t � b
a

� �� �

dx ð3Þ

where ðÞ denotes the complex conjugate, ψ(x) is the wavelet function, a is the time scale

dilation and b is the time translation. By controlling the values of parameters a and b, sig-

nal time-frequency positioning can be achieved. The WT can decompose signals into mul-

tiple resolutions. However, the symbols in realization communication are discrete data, so

the continuous WT needs to be discretized. Suppose a ¼ aj0; b ¼ kb0a
j
0; j; k 2 Z, when a0 =

2,b0 = 1:

cj;kðnÞ ¼ 2
� j
2c 2� jn � kð Þ ð4Þ

The discrete waterfowl environment signal s(n) can be transformed as:

Dðj; kÞ ¼
X

k

sðnÞcj;kðnÞ ð5Þ

The Mallat algorithm can quickly calculate the orthogonal WT coefficients and realize sig-

nal decomposition and reconstruction [43]. The approximation coefficients sj+1(n) and detail
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coefficients dj+1(n) can be recurrently related by the Mallat algorithm as follows:

sjþ1ðkÞ ¼
X

n

h0ðn � 2kÞsjðnÞ ð6Þ

djþ1ðkÞ ¼
X

n

h1ðn � 2kÞsjðnÞ ð7Þ

where h0 and h1 are the high-pass filter and low-pass filter, respectively. The reconstruction is

the inverse process of decomposition:

sjðkÞ ¼
X

n

sjþ1ðnÞh0ðk � 2nÞ þ
X

n

djþ1ðnÞh1ðk � 2nÞ ð8Þ

Different environmental factors may contain different kinds of noise. To achieve the best

effect of the denoising process and obtain quality data, we adopt four wavelet functions, Db4,

Haar, Coif, and Sym10, to process each environmental dataset. The signal-noise ratio (SNR)

and normalized cross correlation (NCC) were used to evaluate the denoised effect, which can

be described as:

SNR ¼
I2

1

ðI2 � I1Þ
2

ð9Þ

NCC ¼

X
ðI1 � meanðI1ÞÞ � ðI2 � meanðI2ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðI1 � meanðI1ÞÞ

2
�
X
ðI2 � meanðI2ÞÞ

2
q ð10Þ

where I1 is the denoised signal and I2 is the original signal; theoretically, the larger the SNR

and NCC are, the better the noise reduction effect.

Support vector machine

SVM has good generalization ability in solving nonlinear, small sample, and high-dimensional

pattern recognition, and the optimal solution obtained is global, which solves the local optimal

problem that cannot be avoided in other algorithms. The prediction process of the SVM

includes support vector determination, kernel function selection, kernel parameter determina-

tion, and solution.

Random forest

RF is a nonlinear ensemble model that establishes and averages a large number of random dis-

tribution decision trees for regression or classification tasks [44]. A decision tree or classifica-

tion and regression tree that constructs the RF is a nonparametric model. According to the

complexity of the input data, the tree grows in the process of learning. Decision nodes and leaf

nodes are the main components of the decision tree. Each input sample is estimated by a test

function of decision nodes and passed to different branches according to the features of the

sample. After all trees are trained, each tree can predict the test sample set according to the

node threshold, and the results of each tree are combined to vote to determine the final result

of the entire random forest.

Long short-term memory neural network

The LSTM neural network is a special kind of recurrent neural network. It was first proposed

by Ho-chreiter and Schmidhuber [45]. Its appearance effectively solved the gradient explosion
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problem of traditional recurrent neural networks. At the same time, the LSTM neural network

has long-term memory to handle long-term sequence data.

Gated recurrent unit

A GRU is a type of recurrent neural network (RNN). Similar to a long short-term memory

neural network (LSTM), it is also proposed to solve long-term and gradient backpropagation

problems. LSTM and GRU have similar performances, but compared with LSTM, GRU is

computationally cheaper.

Temporal convoluted network

TCN, like LSTM, is a novel neural network architecture that can be used for time series predic-

tion. The outstanding advantage of TCNs is that they not only have much longer memory but

also have higher computational efficiency than LSTM and other recurrent neural networks

[46].

In general, a nature sequence modeling task is any function f:XT+1!YT+1 that produces the

mapping:

y0; y1; :::; yT ¼ f ðx0; x1; :::; xtÞ ð11Þ

The goal of the sequence model is to fit this function f to minimize the expected loss. It sat-

isfies the causal constraint that yt depends only on x0,x1,. . .,xt and not on future inputs xt+1

and that the output has the same length as the input.

As shown in Fig 2, to satisfy the causal constraint, TCN uses a 1D fully convolutional net-

work architecture [47], which is different from the traditional convoluted neural network in

that the value at time t only depends on the value at time t and before in the previous layer. In

addition, zero padding of length (kernel size—1) is added to keep subsequent layers the same

length as previous layers.

One of the goals of TCNs is a long effective history size, which means an extremely deep

network or very large filters. However, more convolution layers or larger filters bring about

the problems of disappearing gradients, complex training, and poor fitting effects. To solve the

problems above, dilated convolutions [31] were employed in the TCN. Specifically, given a

sequence input Xn+1 = {x0,x1,. . .,xn} and convolution function f : f0; 1; . . . ; k � 1g ! R, the

dilated convolution operation was defined as follows:

FðsÞ ¼
Xk� 1

i¼0

f ðiÞ � xs� i�d ð12Þ

where k is the kernel size, d is the dilated factor, and s−i�d accounts for the direction of the

past. When d = 1, a dilated convolution is equal to a regular convolution. As shown in Fig 3, as

the number of layers increases, the dilated factor d grows, and the top layer can represent a

wider range of inputs. On the other hand, choosing a larger kernel size k of the filter can also

effectively expand the receptive field of a ConvNet.

Residual connections proved to be an effective method for deep network training to con-

verge quickly and reduce the risk of overfitting [48]. As shown in Fig 4, the residual block used

in the TCN has two branches from input to output. The first branch contains a series convolu-

tion layer, parameter regularization, rectified linear unit, and dropout layer in order. This was

a flexible architecture that allows the layer to modify parameters such as the activation function

and dropout rate. The second branch ensures that the output sequence length is equal to the

length of the input: if the lengths of the input sequence and output sequence are equal, the
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output layer is connected to the input layer through identity mapping; otherwise, the output

layer is connected to the input layer through a 1×1 convolution.

Performance criteria

In this paper, the mean absolute error (MAE), root mean square error (RMSE) and coefficient

of determination (R2) were selected to measure the prediction accuracy and operation effi-

ciency, and MAE, RMSE and R2 are defined as follows:

MAE ¼
1

N

XN

i¼1

jyi � yi0 j ð13Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðyi � yi0 Þ
2

s

ð14Þ

R2 ¼

XN

i¼1

ðyi � yÞðyi0 � y
0Þ

 !2

XN

i¼1

ðyi � yÞ
2
�
XN

i¼1

ðyi0 � y
0Þ

2

ð15Þ

Fig 2. Causal convolution construction.

https://doi.org/10.1371/journal.pone.0254179.g002
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where N is the total number of actual points in the data, yi is the observed value of period i, yi
is the prediction value of period i, y is the average of observed values, and yt is the average of

prediction values.

The waterfowl house environment quality assessment and prediction model

The algorithms used in this paper were implemented in Python 3.7 programming language.

The equipment used in this work has an Intel Core i5-5200u processor, CPU @2.20 GHz and

8.0 GB of random access memory installed.

Both WT and TCN have the unique advantage of being able to capture data characteristics

in time series. Thus, this paper uses WT-TCN to construct a model to assess and forecast the

PI of waterfowl houses. The implementation process for our model is shown in Fig 5. In this

study, we first reduce or eliminate the noise of environmental data by WT. Then, the denoised

data and PI data were used as the input to train the TCN, and finally, the waterfowl house envi-

ronment quality assessment and prediction model was obtained.

Results and discussion

Simulation results and discussion

As shown in Table 2, wavelet function Db4 was suitable for ammonia data (SNR = 9.4318,

NCC = 0.9485), Sym10 was suitable for temperature data (SNR = 7.4635, NCC = 0.9221),

Fig 3. Dilated convolution construction.

https://doi.org/10.1371/journal.pone.0254179.g003
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Fig 4. An example of residual connection in a TCN.

https://doi.org/10.1371/journal.pone.0254179.g004
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Fig 5. Construction process of the PI prediction model.

https://doi.org/10.1371/journal.pone.0254179.g005

Table 2. Denoised performance of five parameters.

Target Performance criteria Wavelet function

Db4 Haar Coif Sym10

Ammonia SNR/(dB) 9.4318 8.8287 9.3769 9.3602

NCC 0.9485 0.9432 0.9484 0.9474

Temperature SNR/(dB) 7.2491 6.5372 7.0205 7.4635

NCC 0.9192 0.9061 0.9149 0.9221

Relative humidity SNR/(dB) 3.9422 3.6395 3.8920 4.0809

NCC 0.8600 0.8559 0.8596 0.8630

CO2 SNR/(dB) 1.7064 1.3855 1.4991 1.7785

NCC 0.7764 0.7642 0.7689 0.7793

TSP SNR/(dB) 12.8848 12.6578 13.1443 13.1142

NCC 0.9756 0.9745 0.9771 0.9769

https://doi.org/10.1371/journal.pone.0254179.t002

PLOS ONE Pollution index of waterfowl farm assessment and prediction based on temporal convoluted network

PLOS ONE | https://doi.org/10.1371/journal.pone.0254179 July 23, 2021 11 / 21

https://doi.org/10.1371/journal.pone.0254179.g005
https://doi.org/10.1371/journal.pone.0254179.t002
https://doi.org/10.1371/journal.pone.0254179


relative humidity data (SNR = 4.0809, NCC = 0.8630), and CO2 data (SNR = 1.7785,

NCC = 0.7793), and Coif was suitable for TSP data (SNR = 13.1443, NCC = 0.9771). The best

denoised results of each environmental dataset are shown in Fig 6.

In this study, we tested the TCN’s memory and feature extraction capability for environ-

ment data sequences of different lengths. Fig 7 shows that TCN consistently converges to

approximately 0.01 MSE for all sequence lengths, whereas GRU and LSTM degenerate quickly

as the sequence lengths grow. These results suggest that TCN is better at long sequence mem-

ory and feature extraction than its recurrent counterparts.

Then, TCNs were used to predict PI at different time intervals, including 12 hours, 24

hours, and 48 hours (predicting 12 hours, 24 hours and 48 hours in the future every 20 min-

utes). Table 3 shows that TCN has the best performance in all simulation results compared

with the other models. We noted that as the prediction time interval increased, the prediction

effect decreased. This can be expected because a long prediction time interval needs a much

longer effective history, which is a challenge for time series models. The performance of TCN

fluctuates when the prediction time interval changes from 12 hours to 24 hours, but the wave

motion ranges in MAE, RMSE and R2 of TCN and GRU are less than 10%. However, the wave

motion range in MAE, RMSE and R2 of LSTM reached 25% when the prediction time interval

changed from 12 hours to 24 hours and reached 112% when the prediction time interval

changed from 24 hours to 48 hours. Moreover, the traditional SVM and RF models had poor

performance in this study, which may be caused by the lack of long-time series memory ability

compared with the recurrent neural network. In addition, scatter plots, Taylor plots and

box plots were also used here to visualize the predictive performance of various models.

The scatter plot in Fig 8 visualized the agreement between the predicted and observed val-

ues of PI. In Fig 8, the baseline is drawn as a reference, and the perfect agreement between the

observed and predicted data is described. SVM and RF models are far away from the best line.

All three TCN models showed outstanding prediction performance (points close to the best

line). Additionally, in the three phases, TCN is slightly far from the best line when PI reaches

3.5 or more, but GRU and LSTM perform worse. The reason for this phenomenon may be the

input data of the environmental parameter CO2; all were in the normal range and no data

exceeded the standard value or were distributed near the border value (Fig 5(D)), leading to

the trained models having low sensitivity for a high PI and prediction difficulty.

Furthermore, the models were also evaluated using Taylor plots for the three phases in Fig

9. In a Taylor figure correlation coefficient, normalized standard deviation and RMSE were

drawn, and the distance between the point corresponding to the model with the best predic-

tion performance and the "observation" point was the least. Again, Taylor plots showed that

the TCN model has the best prediction performance.

Finally, Fig 10 compares the observed and predicted PI value dispersion and indicates the

median (M) in a box plot. The performance of the three models was very similar in phase one,

with the median values being very close (Mobserved = 1.612, MTCN = 1.602, MGRU = 1.648,

MLSTM = 1.719,MSVM = 1.569, and MRF = 1.854), but the box shape of TCN is closer to the

box shape of the observed data, which also means that all prediction results of TCN were better

than the others. In both phase two and phase three, the performances of LSTM and GRU obvi-

ously worsen as the prediction interval grows, while the TCN performance does not change

much. Overall, TCN substantially outperforms generic recurrent architectures such as LSTM

and GRU.

In summary, TCN combines best practices such as dilations and residual connections with

the causal convolutions needed for autoregressive prediction. The experimental results indi-

cate that for all prediction time interval phases, the TCN model provides high performance for

PI forecasting, especially in the long prediction time interval problem. On the other hand, the
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LSTM model appears to be the ‘weakest’ model of all three models; furthermore, it also indi-

cates that a simple convolutional architecture is more effective across time sequence modeling

tasks than recurrent architectures such as LSTM. On the other hand, a new type of temporal

convoluted neural network is more competitive in the PI time series prediction of waterfowl

farms than the traditional machine learning model.

Fig 6. Results of noise reduction of five parameters by WT. (a) Ammonia sequence. (b) Temperature sequence. (c)

Relative humidity sequence. (d) CO2 sequence. (e) TSP sequence.

https://doi.org/10.1371/journal.pone.0254179.g006

Fig 7. Performance of three models in sequences of different lengths.

https://doi.org/10.1371/journal.pone.0254179.g007

Table 3. Comparison of model performance.

MAE RMSE R2

Hours 12 24 48 12 24 48 12 48 48

TCN 0.0842 0.0859 0.1115 0.0154 0.0167 0.0273 0.9789 0.9791 0.9635

GRU 0.1728 0.1810 0.1922 0.0759 0.0789 0.0789 0.8937 0.8903 0.8898

LSTM 0.1892 0.2523 0.4434 0.0824 0.1388 0.2953 0.8896 0.8082 0.6078

SVM 0.5919 0.7245 0.8991 0.3292 0.3537 0.8181 0.8512 0.7748 0.6617

RF 0.2744 0.5794 0.9571 0.3407 0.3555 0.7513 0.8809 0.8050 0.6799

https://doi.org/10.1371/journal.pone.0254179.t003
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Fig 8. Agreement between the observed and predicted PI values for the model considered in this study. (a) Future

12-hour prediction. (b) Future 24-hour prediction. (c) Future 48-hour prediction.

https://doi.org/10.1371/journal.pone.0254179.g008
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Fig 9. Normalized Taylor diagrams. (a) Future 12-hour prediction. (b) Future 24-hour prediction. (c) Future 48-hour

prediction.

https://doi.org/10.1371/journal.pone.0254179.g009
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Conclusions and future research

To further promote waterfowl house environment monitoring and controlling technology,

reduce labor and increase the production effect, this study analyses the shortcomings of exist-

ing methods and introduces a new way to guide waterfowl house environment management

by learning from other fields.

The new method investigates the application of denoised WT and the performance of three

neural network models and two mechanical learning models in predicting the PI of the water-

fowl house environment using environmental quality parameters at different intervals. The

results indicate that the TCN model has the best performance in predicting PI. The GRU

model has similar performance but lower performance when the prediction time interval

changed, and the LSTM model performed the worst among the three models, although it still

provided fairly accurate PI predictions.

The models presented in this paper, in particular the TCN model, could provide accurate

and long-interval PI predictions of waterfowl house environments and monitor them in real

time. The simulation results show that this method can be applied in waterfowl house environ-

ment prediction. The future trend of the environment can be estimated and predicted com-

pared with traditional real-time monitoring technology, which may allow better waterfowl

house environment management practices, better culture plan design, and, in general, contrib-

ute to a more sustainable waterfowl house management approach.

The environmental parameters selected in the present study may also pose a limitation

because of the lack of equipment. Future work may include the use of more environmental

parameters to evaluate PI and apply the model in more waterfowl breeding sites to improve

the production effect and further verify the model.
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