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Introduction
Parkinson’s disease is characterized by the selective degeneration 

of dopamine-producing neurons that comprise the substantia nigra 
pars compacta and the presence of proteinaceous inclusion bodies 

(Lewy bodies) in the affected neurons (Dawson and Dawson, 

2003). The principal component of Lewy bodies is α-synuclein 

(α-syn), which is an intrinsically unfolded protein of unknown 

function (Weinreb et al., 1996; Uversky et al., 2000). Wild-type 

(WT) α-syn and two mutants, A30P and A53T (Polymeropoulos 

et al., 1997; Kruger et al., 1998), associated with early onset PD 

have been linked to a plethora of defects, including proteasomal 

and mitochondrial dysfunction (Tanaka et al., 2001; Martin et al., 

2006), the accumulation of reactive oxygen species (ROS) (Xu 

et al., 2002), blockage of ER to Golgi traffi c (Cooper et al., 2006), 

and histone acetylation inhibition (Kontopoulos et al., 2006).

Using a genetic screen that exploits the super sensitivity 

of α-syn–expressing yeast cells to killing by H2O2 (Flower 

et al., 2005), we discovered that YGR198w, which is an essential 

gene of unknown function, suppresses the toxicity of the mutant 

α-syn A30P. Because humans have several possible YGR198w 

orthologues, understanding the function of this gene may shed 

light on how human neurons protect themselves from α-syn. 

Given that YGR198w codes for an α-synuclein protective protein, 

YGR198w was named YPP1.

Until quite recently, other than its deletion kills cells 

(Rodriguez-Pena et al., 1998), scant information existed about 

YPP1. A recent study using a technique to probe the spectrum of 

synthetic genetic interactions among essential genes revealed that 

YPP1 interacts genetically with ACT1, ARP2, SEC1, SEC15, and 

SEC18 (Davierwala et al., 2005). Other studies have indicated 

that YPP1 functions in MAPK pathways (Roberts et al., 2000; 

Hazbun et al., 2003; Mnaimneh et al., 2004). Ypp1p-GFP local-

izes in a punctate pattern around the plasma membrane (Huh 

et al., 2003), although there is no indication from its sequence 

that Ypp1p is a membrane protein. Although information exists 

about its synthetic genetic interactions and localization, Ypp1p’s 

function has remained obscure. Here, we show that Ypp1p binds 

A30P (but not WT or A53T) and mediates a sequence of events 

in which A30P is encapsulated into vesicles at the plasma mem-

brane, and the vesicles then transit to and merge with the vacuole, 

where the A30P protein is proteolytically degraded.

Results
A genetic screen identifi es YPP1 
as a suppressor of A30P toxicity
A high copy yeast genomic library was used to identify sup-

pressors of the super sensitivity of A30P expressing cells to 
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killing by hydrogen peroxide (Fig. 1 A). Herein, we describe 

the characterization of one suppressor, YPP1, which is an es-

sential gene of unknown function. Table I gives the strains and 

plasmids used in this study.

YPP1 codes for a protein with a theoretical molecular mass 

of 95.4 kD. Cells expressing α-syn and transformed with a plas-

mid harboring a myc-tagged YPP1 fusion indeed expressed myc-

Ypp1p, as judged by Western blot analysis and staining with an 

anti-myc antibody (Fig. 1 B). Specifi cally, myc-Ypp1p was de-

tected in cells that coexpressed WT α-syn or A30P (lanes 2 and 4); 

however, in each case, a ladder of bands ranging from 95 to 

>200 kD was observed. We attribute the band at 95 kD to myc-

Ypp1p and suggest that the bands at higher molecular mass are 

posttranslationally modifi ed forms of Ypp1p. The four major 

bands of myc-tagged Ypp1p were absent in lysates of cells that 

did not harbor the MYC-YPP1 plasmid (lanes 1 and 3).

The effect of Ypp1p overexpression on the viability of cells 

expressing the various α-syns was also evaluated. A viability 

assay (Fannjiang et al., 2004) was conducted using the dye FUN1 

on cells induced for 12 h. Dead cells stained green; metabolically 

active, and hence viable cells, stained red; and a small percentage 

of cells (�10%) failed to stain. The percentage of red cells indi-

cated viability. For cells expressing A30P with Ypp1p over-

expression, 90% of the cells were viable, whereas only 10% of 

cells were viable when A30P was expressed without Ypp1p over-

expression (Fig. 1, C and D). In contrast, for cells expressing WT 

α-syn or A53T, with or without Ypp1p overexpression, only 

�10% of the cells were viable (Fig. 1 D). This viability assay 

demonstrated that YPP1 in high copy specifi cally enhances the 

viability of A30P expressing cells but not of cells expressing the 

other two α-syns (WT or A53T).

YPP1 suppresses ROS accumulation 
in A30P expressing cells
A signature feature of α-syn is that it induces oxidative stress in 

various types of cells (Xu et al., 2002; Flower et al., 2005; Smith 

et al., 2005). Given that YPP1 in high copy suppresses the super 

sensitivity of A30P expressing cells to killing by hydrogen per-

oxide, we expected that Ypp1p overexpression would abolish 

ROS production in A30P expressing yeast cells (Flower et al., 

2005), but not in cells expressing WT or A53T α-syn. To test 

this hypothesis, cells expressing α-syn (WT, A30P, or A53T) 

with decreased, endogenous, or increased levels of Ypp1p were 

stained with the cell-permeant dye DHR 123. This dye enters 

cells, and when oxidized by free radicals yields a fl uorescent 

product (Schulz et al., 1996). For these experiments a strain from 

the “Hughes collection” of titratable promoter alleles was used 

(Mnaimneh et al., 2004) in which a kanR-tetO7-TATA cassette 

is integrated into the promoter of YPP1. Repression is con-

trolled by adding doxycycline, which has no appreciable effect 

on global gene expression at the concentrations (20 μg/ml) used 

for the promoter shut off.

Fig. 2 (A–C) shows ROS accumulation in cells expressing 

WT α-syn, A30P, or empty vector controls. ROS accumulation 

in cells expressing WT α-syn (or A53T) was insensitive to varia-

tions in the level of Ypp1p (compare the three vertical panels 

Figure 1. Identifi cation of YPP1 as a suppres-
sor of A30P 𝛂-syn toxicity. Suppression of 
A30P toxicity by a high-copy yeast genomic 
 library. FY23 cells transformed with pTF202 
(A30P) and plated on SGal–Trp (left plate). 
FY23 cells transformed with pTF202 (A30P) 
and a 2-μm yeast genomic library and plated 
on SGal–Trp–Leu (right plate). 2-d incubation 
at 30°C. The disk in the center of each plate 
contained 10 μl of �8% hydrogen peroxide. 
(B) Western blot analysis of cells expressing 
α-syn with or without myc-Ypp1p overexpression. 
FY23 cells transformed with pTF201 (WT α-syn), 
pTF202 (A30P), or pTF203 (A53T) and pTF504 
(myc-Ypp1) or pTF503 (empty vector) were 
pregrown in noninducing media to mod-log 
phase, shifted to inducing media, and incu-
bated for 3 h at 30°C. Cell extracts were 
 prepared and subjected to SDS-PAGE and 
 immunoblotting. The proteins were visualized us-
ing monoclonal antibodies (anti-α-syn; anti-myc). 
Lane 1, WT α-syn; lane 2, myc-Ypp1p and WT 
α-syn; lane 3, A30P; lane 4, myc-Ypp1p and 
A30P. (C) Effect of Ypp1p overexpression on 
cell viability after 12 h of induction. The FUN1 
dye stains metabolically active cells red and 
dead cells green. The top panel shows that 
cells expressing A30P (plus plasmid with no 
insert) are dead (green). The bottom panel shows 
that cells expressing A30P with Ypp1p over-
expression are viable (red). The FY23 strain, 
harboring pTF302 (A30P) and pTF602 (YPP1) 
or pTF604 (empty vector), was used in these 
 experiments. (D) Plot of percent viability (mean ± 
SD). The number of cells counted for each group 
was n = 400 to 1,400. *, P = 0.000013.
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 labeled DHR in Fig. 2 A). In contrast, ROS accumulation in cells 

expressing A30P was exquisitively sensitive to the level of 

Ypp1p: 100% of the cells exhibited intense red fl uorescence 

when the level of Ypp1p was decreased (+doxy), whereas only 

�5% of the cells exhibited red fl uorescence when Ypp1p was 

overexpressed (compare the three vertical panels labeled DHR in 

Fig. 2 B). Identically treated control cells harboring the plasmid 

with no insert exhibited no appreciable ROS accumulation 

(Fig. 2 C). These experiments revealed that Ypp1p, when over-

expressed, abolished ROS accumulation in cells expressing 

A30P—but not in cells expressing WT α-syn or A53T (Fig. 2 D).

Ypp1p binds to A30P—but not to WT 
or A53T
Coimmunoprecipitation experiments were performed to deter-

mine whether Ypp1p physically associated with A30P. Coimmuno-

precipitations of cells overexpressing Ypp1p with WT α-syn, 

A30P, or A53T coexpressed are shown in Fig. 2 E (lanes 1–6). 

For each sample, one lane contained the lysate and the other lane 

contained the myc-Ypp1p pull down. The myc-Ypp1p (�95-kD 

band) was visualized with an anti-myc antibody and the α-syns 

(�19 kD) with an anti-α-syn antibody. A comparison of the two 

blots showed that Ypp1p pulled down A30P (lane 4), but not WT 

α-syn or A53T (lanes 2 and 6). The experiments revealed that, 

when overexpressed, Ypp1p associates with A30P.

We also found that in high copy YPP1 permitted normal 

growth of cells expressing A30P but not of cells expressing WT 

or A53T (Fig. S1, available at http://www.jcb.org/cgi/content/

full/jcb.200610071/DC1), and that in high copy YPP1 failed 

to protect yeast cells from hydrogen peroxide-induced ROS 

(Fig. S2). YPP1 is thus unlikely to code for an enzyme that in-

activates hydrogen peroxide.

Ypp1p alters GFP-𝛂-syn localization
To gain insight into the mechanism of suppression, fl uorescence 

microscopy studies were conducted to determine the effect of 

Figure 2. YPP1 suppresses ROS accumulation in 
A30P expressing cells. ROS accumulation in cells 
expressing A30P (pTF302) (A), WT α-syn (pTF301) 
(B), or vector control cells (pTF300) (C). The “Hughes” 
YPP1 strain that contains a titratable promoter was 
used in these experiments. This strain transformed with 
pTF602 (YPP1) or pTF604 (empty vector) was used for 
these experiments. For shutting off YPP1 (+doxy), cells 
were pregrown in noninducing media with 20 μM 
doxycycline for 7 h, and then shifted into inducing 
media with doxycycline. For experiments with Ypp1p 
overexpression, cells were pregrown in noninducing 
media to mid-log, and then shifted into inducing me-
dia. The images shown in all panels were obtained at 
3 h in inducing media. The dye DHR123 was added 
after 2 h in inducing media to give 5 μg/ml, and the 
cells were then washed before image acquisition. 
DHR, rhodamine 123. DIC, differential interference 
contrast. (D) Plot of the percentage of cells that exhib-
ited red fl uorescence (mean ± SD). The number of 
cells counted for each group was n = 640 to 1,200. 
The symbols “−“, “e”, and “+” indicate decreased 
(with doxycycline), endogenous, and increased levels 
of Ypp1p, respectively. (E) Coimmunoprecipitation 
shows selective binding of myc-Ypp1p to A30P. Cells 
expressing the various α-syns and overexpressing 
myc-tagged Ypp1p were lysed, the extract was incu-
bated with an anti-myc antibody-protein A resin, and 
the resin was boiled and reduced and subjected to 
SDS-PAGE and immunoblotting. The top panels show 
the �95-kD band due to myc-Ypp1p; the bottom 
 panels show α-syn. Lane 1, WT α-syn lysate; lane 2, 
myc-Ypp1p fails to pull down WT α-syn; lane 3, A30P 
lysate; lane 4, myc-Ypp1p pulls down A30P; lane 5, 
A53T lysate; lane 6, myc-Ypp1p fails to pull down 
A53T. The FY23 strain was transformed with pTF201 
(WT α-syn), pTF202 (A30P), or pTF203 (A53T) and 
with pTF504 (myc-YPP1) or pTF503 (empty vector).
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Ypp1p overexpression on the localization of the various GFP-

tagged α-syns. We found that Ypp1p overexpression altered the 

localization of each of the three GFP-tagged α-syns (WT, A30P, 

or A53T), but in subtly distinct ways compared with control 

cells without Ypp1p overexpression (Fig. 3, A–C). For exam-

ple, cells expressing GFP-A30P with Ypp1p overexpression 

exhibited 3 to 6 inclusions per cell at 3 h of induction, whereas 

at 12 h the inclusions had coalesced into 1 to 2 larger inclusions 

(Fig. 3 A). Without Ypp1p overexpression, GFP-A30P expressing 

cells exhibited diffuse green fl uorescence at 3 and 12 h. In con-

trast, Ypp1p, when overexpressed, even drove GFP-WT α-syn and 

GFP-A53T from the plasma membrane into inclusions, but in 

each case the inclusions failed to effi ciently merge with one 

 another (Fig. 3, B and C). Notice that control cells expressing 

GFP exhibited diffuse green fl uorescence that was unaffected by 

increased levels of Ypp1p (Fig. 3 D). The experiments revealed 

that Ypp1p when overexpressed drives the various α-syns into 

inclusions. That Ypp1p concentrated GFP-A30P into 1 to 2 

inclusions per cell raised the possibility that Ypp1p also drives 

A30P into a compartment such as the vacuole.

Ypp1p drives A30P to the vacuole
To test the hypothesis that Ypp1p drives A30P to the lysosome/

vacuole, two-color fl uorescence microscopy experiments were 

conducted using cells expressing the various GFP-tagged α-syns 

and the lipophilic dye FM4-64, which stains vacuoles (Vida and 

Emr, 1995). At various times (3 or 12 h) after induction, cells 

 expressing GFP-α-syn were incubated with the FM4-64 dye and 

microscopy images were acquired (Fig. 4 A). If GFP-α-syn en-

ters the vacuole then the green fl uorescence from GFP and the red 

fl uorescence from FM4-64 should overlap. No overlap between 

any of the GFP-α-syn inclusions with the red structures occurred 

after 3 h of induction, whereas almost every one of the GFP-

A30P inclusions overlapped with the red structures after 12 h of 

induction. No such overlap occurred for GFP-WT α-syn or GFP-

A53T structures with vacuoles. However, because vacuoles were 

not prominent in the DIC images (12 h), these experiments do not 

prove that Ypp1p drove A30P into the vacuole. For this reason, 

the following biochemical analysis was conducted.

Ypp1p-mediated transport of A30P to the vacuole was 

tested using Western blot analysis to monitor the level of the 

A30P protein. Cells transformed with the various plasmids were 

pregrown in noninducing media to mid-log phase, shifted to 

 inducing media, inhibited with 10 μM cycloheximide to halt 

protein synthesis, and incubated for 12 h. Aliquots were removed 

at the indicated times and extracts were prepared, subjected to 

SDS-PAGE followed by Western blot analysis. First, we found 

that A30P was rapidly degraded (t1/2 �1 h) in cells overexpressing 

Ypp1p (Fig. 4 B i, and C), whereas in cells expressing A30P, 

but with no Ypp1p overexpression, no such degradation of 

A30P occurred (Fig. 4 B ii, and C). Second, if A30P is degraded 

in the vacuole, then A30P should fail to be degraded in a strain 

that lacks PEP4, which is a gene that codes for a protease that 

activates a variety of vacuolar proteases (Jones et al., 1982). To 

test this hypothesis, the level of A30P was monitored in a ∆pep4 

deletion strain, and the A30P protein showed no appreciable 

degradation in this strain (Fig. 4 B iii, and C). Third, to rule out the 

possibility that Ypp1p mediates the proteasomal degradation of 

A30P, experiments were also conducted using the proteasome 

inhibitor MG132 (50 μM). With protein synthesis inhibited and 

with proteasome function inhibited A30P was still degraded 

(Fig. 4 B iv, and C), albeit not with the exact kinetics as observed 

when only cycloheximide was used. The ability of the pep4 

deletion to halt A30P degradation, combined with the lack of 

appreciable inhibition of A30P degradation by a proteasome 

inhibitor, indicated that Ypp1p mediates the transport of A30P 

to the vacuole, where it is proteolytically degraded.

Ultra structural analysis
Transmission electron microscopy was conducted to gain in-

sight into the nature of the α-syn inclusions in +A30P/+Ypp1 

cells. A30P expression induced dramatic morphological changes 

in cells at only 3 h of induction compared with control cells 

(Fig. 5 A). Changes included granulation of the cytosol and 

chromatin condensation. In contrast, control cells containing 

two empty plasmids (−A30P/−Ypp1) had a well-delineated 

vacuole and cytoplasm. Cells expressing A30P with Ypp1p 

overexpressed exhibited smaller vacuoles than cells with the 

two empty plasmids and had numerous mitochondria per slice. 

Vesicles budding off of the plasma membrane were also ob-

served in these cells. These vesicles were absent in cells ex-

pressing only A30P. Such a vesicle can be seen in the bottom 

left image in Fig. 5 A (denoted by the white arrow). At higher 

magnifi cation the vesicle appears to be emerging from the plasma 

membrane (Fig. 5 B).

After 12 h of induction, cells expressing only A30P were 

characterized by a granulated cytosol and even more extensive 

chromatin condensation compared with 3 h induction. Comparing 

Figure 3. Ypp1p alters GFP-𝛂-syn localization. The effect of Ypp1p 
overexpression on the localization of (A) GFP-A30P, (B) GFP-WT α-syn, 
(C) GFP-A53T, and (D) GFP at 3 and 12 h of induction. In each group of four 
panels, the top and bottom rows are of cells expressing GFP-α-syn with and 
without Ypp1p overexpressed, respectively. S288c cells were transformed 
with pTF305 (WT α-syn), pTF306 (A30P), pTF307 (A53T), or pTF308 
(GFP) and pTF602 (YPP1) or pTF604 (empty vector). Bar, 5 μm.
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this TEM image to the images of the −A30P/−Ypp1 control cells 

and +A30P/+Ypp1 cells revealed the following differences: 

(1) control cells with two empty plasmids exhibited a granu-

lated cytosol and chromatin condensation (Fig. 5 A). These 

changes did not occur when the strain was incubated in glucose 

or sucrose for 12 h. The changes occurred because of the abrupt 

shift from sucrose to galactose. It turns out that the wt S288c 

strain, but not the Resgen deletion collection, which is derived 

from the S288c strain, has a mutation in GAL2. After �15 gen-

erations WT S288c cells begin to lose viability. Using the FUN1 

assay we found that 90% and 60% of the WT S288c cells were 

viable after 3 h and 12 h in galactose (unpublished data), 

respectively. It should be pointed out that YPP1 in high copy 

suppressed A30P-induced ROS at 12 h in strains FY23, S288c, 

and various S288c gene deletion strains. (2) The +A30P/+Ypp1 

cells were characterized by a normal nucleus, numerous mito-

chondria per optical slice, and three large vacuoles (denoted 

by white arrows; Fig. 5 A). More than 90% of the EM sections 

examined contained such vacuoles.

Immunogold labeling was also performed to visualize the 

subcellular location of A30P. Cells expressing A30P and over-

expressing Ypp1p were characterized by numerous clusters of gold 

particles in association with the plasma membrane (Fig. 5 C). In 

contrast, cells expressing A30P only, or harboring the two control 

plasmids, did not have gold particles in association with the plasma 

membrane. Therefore, we attributed the membrane-associated 

clusters to A30P molecules that were being packaged by Ypp1p 

into endocytic vesicles. Note that the membrane-associated clusters 

are smaller than the budding vesicle (compare Fig. 5, B and C); 

this could be because of the diffi culty of preserving membrane 

structure for immunogold labeling and also because only a small 

portion of a vesicle contains A30P. Clusters of gold particles 

were also evident inside the cells (Fig. 5 D). The TEM results 

showed that YPP1 in high copy protects cells from A30P.

Genes that interact with YPP1
To begin to defi ne the pathway by which YPP1 suppresses A30P 

toxicity, a targeted screen of 116 nonessential genes involved in 

Figure 4. Ypp1p drives A30P to the vacuole. 
(A) Two-color fl uorescence microscopy experi-
ments of cells expressing GFP-α-syn with Ypp1p 
overexpression. S288c cells transformed with 
pTF305 (WT α-syn), pTF306 (A30P), pTF307 
(A53T), or pTF308 (empty vector) and pTF602 
(YPP1) or pTF604 (empty vector) were pre-
grown in noninducing media to mid-log phase, 
transferred to inducing media, and induced for 
3 or 12 h. Before the analysis cells were 
stained with the dye FM4-64. Aliquots were 
removed, washed, resuspended in YPD, and 
incubated with 40 μM FM4-64 for 10 min at 
30°C. Cells were then washed twice, re-
suspended in YPD, incubated an additional 30 
min at 30°C, and then visualized by fl uores-
cence microscopy. The white arrows (top right-
hand panel, GFP-A30P) indicate areas of 
overlap between the GFP inclusions with the 
red structures. Bar, 5 μm. (B) Ypp1p promotes 
degradation of A30P. Western blot analysis 
was conducted to monitor the level of A30P in 
cells. Blots (i and ii): Ypp1p overexpression. 
10 μM cycloheximide was used to halt protein 
synthesis in cells with (i) or without (ii) Ypp1p 
overexpression. S288c cells transformed with 
pTF202 (A30P) and pTF602 (YPP1) or pTF604 
(empty vector) were pregrown in noninducing 
media to mid-log phase, transferred to induc-
ing media, inhibited with cycloheximide, and 
induced for 12 h. Indicated times are after ad-
dition of cycloheximide. Blot (iii): Deletion of 
PEP4. A ∆pep4 deletion strain transformed 
with pTF202 (A30P) and pTF602 (YPP1) was 
pregrown in noninducing media to mid-log 
phase, transferred to inducing media, inhib-
ited with 10 μM cycloheximide, and induced 
for 12 h. Indicated times are after addition of 
cycloheximide. Blot (iv): Proteasome inhibition. 
S288c cells transformed with pTF202 (A30P) 
and pTF602 (YPP1) were pregrown in non-
inducing media to mid-log phase, transferred 
to inducing media, inhibited with 10 μM cyclo-

heximide and 50 μM of MG132, and induced for 12 h. Indicated times are after addition of inhibitors. For each experiment, cell extracts were prepared, 
subjected to SDS-PAGE, and immunoblotted using a monoclonal antibody specifi c for α-syn. In each blot, 20 μg of protein was loaded per well. Experiments 
were conducted two or three times. (C) Degradation of A30P. Band intensities in the blots were determined using a scanner with image quantization 
software and plotted against time. (i) Blue, A30P + Ypp1p overexpression; (ii) red, A30P + endogenous level of Ypp1p; (iii) green, A30P + Ypp1p over-
expression in ∆pep4 strain; (iv) yellow, A30P + Ypp1 overexpression + 50 μM MG132.
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autophagy, cytosol-to-vacuole transport (Cvt), endocytosis, and 

the vacuole protein sorting pathway (vps) was conducted (Fig. 6 

and Table S1 for entire list, available at http://www.jcb.org/cgi/

content/full/jcb.200610071/DC1). We reasoned that any gene that 

cooperates with YPP1 to protect against A30P, when deleted, 

should increase ROS accumulation. The ROS assay using the 

DHR 123 dye was conducted in 96-well plates on cells induced 

for 3 h using a plate reader with fl uorescence detection. The 

various deletion strains were transformed with the pTF302 (A30P) 

and pTF602 (YPP1) plasmids.

The vacuolar protein sorting pathway (vps) is a network 

of genes involved in the transport of newly synthesized proteins 

from the late Golgi to the vacuole (Bowers and Stevens, 2005). 

56 VPS deletion strains were analyzed, and of these 56 strains 

16 gave statistically signifi cant increases in ROS (Fig. 6). Curi-

ously, 11 of the 16 hits clustered in the class E VPS genes. Many 

of the class E VPS genes code for ESCRT (Hurley and Emr, 

2006) proteins that function to sort membrane-bound proteins 

into lumenal multivesicular body vesicles (MVB). Our inter-

pretation of these fi ndings is that the deletion of certain class E 

genes resulted in the failure of A30P to be sorted into lumenal 

MVB vesicles, and this prevented A30P from being delivered 

to and degraded within the vacuole. Failure to degrade A30P 

resulted in the accumulation of ROS.

Data obtained from selected deletion strains associated 

with actin organization, autophagy, Cvt, endocytosis, vacuolar 

biogenesis, and vesicle–vacuole fusion, are presented in Fig. 6 

and Table S1. First, fi ve deletion strains gave very large 

(>200,000 units; P < 0.001) increases in ROS compared with 

the WT control (25,818 ± 7005 units) (Fig. 6). These fi ve strains 

were: ∆sla1, ∆sla2, ∆end3, ∆mon1, and ∆ccz1. Sla1, Sla2, and 

End3 proteins form a complex on the lumenal side of the plasma 

membrane (Holtzman et al., 1993; Raths et al., 1993), where 

they regulate actin dynamics and proteins required for endocytosis 

(Toshima et al., 2006). The Ccz1p–Mon1p complex is required 

for nearly all membrane-traffi cking pathways where the terminal 

acceptor compartment is the vacuole (Wang et al., 2002). Second, 

six deletion strains gave large (>100,000 units; P < 0.001) in-

creases in ROS compared with the WT control (Fig. 6). These 

strains were: ∆rvs161, ∆siw14, ∆snc1, ∆trx1, ∆vta1, and ∆vtc1. 

In general, these genes have roles in vesicle traffi cking and actin 

fi lament organization. Third, eleven genes involved in the auto-

phagy and Cvt pathways, when deleted, failed to increase ROS 

(Table S1). The broad picture that emerged from this screen was 

that YPP1 suppressed A30P toxicity via a pathway involving 

SLA1, SLA2, and END3, class E VPS genes, and MON1 and 

CCZ1. Given that these genes are involved in endocytosis and 

vesicle traffi cking to the vacuole, such a fi nding, together with 

the fl uorescence and TEM data (Figs. 3–5), indicate a role for 

YPP1 in the endocytic pathway.

Latrunculin A, a known inhibitor of actin (Ayscough et al., 

1997), disrupts the trafficking of endosomal vesicles from 

Figure 5. Transmission electron microscopy images of 
cells expressing Ypp1p and A30P. (A) S288c cells trans-
formed with pTF302 (A30P) or pTF300 (empty vector) 
and pTF602 (YPP1) or pTF604 (empty vector) were pre-
grown in noninducing media to mid-log phase, transferred 
to inducing media and induced for 3 or 12 h. Top: 
−A30P/−Ypp1 (cells contained two plasmids with no 
 inserts). Middle: +A30P/−Ypp1 (cells contained two plas-
mids, one with no insert). Bottom: +A30P/+Ypp1 (cells 
contained two plasmids). Bars, 1 μm. (B) Magnifi cation of 
+A30P/+Ypp1 cell at 3 h shows vesicle budding from 
the plasma membrane. (C and D) Immunogold labeling of 
cells expressing A30P and overexpressing Ypp1p at 12 h. 
A secondary antibody conjugated with 50-nm gold parti-
cles was used to detect A30P. Several clusters of gold par-
ticles occurred in the vicinity of the plasma membrane (C) 
and also in the interior of cells (D).
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the plasma membrane to the vacuole (Toshima et al., 2006). 

Latrunculin A (25 μM)–treated cells expressing A30P and 

overexpressing Ypp1p indeed exhibited a large increase in ROS 

signal (284,979 ± 10,816) compared with identically treated 

cells that lacked latrunculin A (25,818 ± 7005) (Fig. 6). Our 

interpretation of this result is that latrunculin A inhibits the 

formation of actin fi laments which in turn blocks the budding 

of endocytic vesicles containing A30P and delivery of A30P to 

the vacuole.

Mechanism of YPP1 suppression
To verify results obtained from the ROS plate reader assay, the 

∆mon1 and ∆sla1 strains were selected for further analysis. The 

S288c control strain expressing GFP-A30P and overexpressing 

Ypp1p exhibited 4 to 5 inclusions per cell at 3 h, and these 

inclusions had coalesced into 1 to 3 inclusions per cell at 12 h 

(Fig. 7 A). The ∆mon1 strain expressing GFP-A30P and over-

expressing Ypp1p also exhibited 4 to 5 inclusions per cell 

at 3 h (Fig. 7 B), but at 12 h multiple inclusions per cell were 

Figure 6. Screening for genes that interact withYPP1. The indicated deletion strains transformed with pTF302 (A30P) and pTF602 (YPP1) were pregrown 
in noninducing media to mid-log phase, transferred to inducing media, and induced for 3 h. Matched controls consisted of identically treated S288c cells 
transformed with the same two plasmids. The dye DHR 123 was added at 2 h after induction. After several washing steps, cells were aliquoted into 96-well 
plates and the DHR 123 fl uorescent product was detected using a plate reader. Cells incubated in dilute acetic acid exhibit ROS (Ludovico et al., 2002), 
and this served as a positive control. Latrunculin A was used at 25 μM. Experiments were performed in two to fi ve independent experiments, each in tripli-
cate. Bars indicate mean ROS signal ± SD. Comparing each deletion strain to matched controls (S288c +A30P/+Ypp1) yielded P-values: red, P < 0.001; 
orange, P < 0.05; and blue, P > 0.05. Exact P values are given in Table S1 (available at http://www.jcb.org/cgi/content/full/jcb.200610071/DC1).
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still evident. Given its role in catalyzing the fusion of vesicles 

with the vacuole (Wang et al., 2002), deletion of MON1 would 

be expected to hinder fusion of A30P-containing vesicles with 

the vacuole, and the microscopy images are consistent with 

such a defect. Notice that adding back MON1 on a plasmid res-

cued the inability of vesicles to coalesce at 12 h in the ∆mon1 

strain (Fig. 7 C). These experiments confi rmed that MON1 is 

involved in the pathway by which YPP1 rids cells of A30P.

The effect of the ∆sla1 deletion on Ypp1p-mediated 

traffi cking of GFP-A30P was also analyzed. After 3 or 12 h of 

induction ∆sla1 cells expressing GFP-A30P and overexpressing 

Ypp1p displayed green fl uorescence throughout the cell (Fig. 7 D). 

These images are very different from the images acquired from 

the S288c and ∆mon1 strains. Our interpretation of the ∆sla1 

images is that deletion of SLA1 prevents the packaging of GFP-

A30P into vesicles. Notice that adding back SLA1 on a plasmid 

resulted in the formation of �0–3 inclusions per cell after 3 h of 

induction; whereas, after 12 h of induction the inclusions had 

coalesced yielding 1–2 inclusions per cell (Fig. 7 E). These 

images from 12 h are remarkably similar to the images obtained 

at 12 h from the WT strain. Accordingly, we concluded that 

deletion of SLA1 resulted in a failure of cells to package A30P 

into vesicles.

An issue is whether A30P transits to the vacuole via the 

endocytic pathway, as proposed, or the secretory pathway. ER 

stress occurs when unfolded proteins accumulate in the ER, and 

such proteins are typically retrotranslocated out of the ER to the 

proteasome for degradation; this process is called ERAD (endo-

plasmic reticulum–associated degradation) (Meusser et al., 

2005). YPP1 does not facilitate retrotranslocation and ERAD 

because A30P was still degraded when the proteasome was in-

hibited (Fig. 4, B and C). However, yeast have another pathway 

for the degradation of soluble, unfolded proteins that transit 

through the ER and Golgi, and this occurs via receptor-mediated 

forward transport of unfolded luminal proteins to the vacuole 

(Hong et al., 1996). The receptor for this process is coded for 

by VPS10. Because deletion of VPS10 caused intense ROS ac-

cumulation in cells expressing A30P (Fig. 6), perhaps YPP1 is 

an enhancer of the forward transport of luminal proteins to the 

vacuole. On the other hand, although WT α-syn and A53T use 

the secretory pathway and cause ER stress (Cooper et al., 2006), 

such fi ndings have not been reported for A30P. Instead, evidence 

exists that A30P does not use the secretory pathway (Dixon 

et al., 2005).

We examined whether loss of function of one early-acting 

and two late-acting SEC genes, i.e., SEC12, SEC1, and SEC5, 

respectively, affected YPP1-mediated traffi cking of A30P to 

the vacuole. Sec12p controls transport vesicle budding from the 

ER (Barlowe and Schekman, 1993). Sec1p controls the fusion 

of secretory vesicles with the plasma membrane (Wiederkehr 

et al., 2004), and when exocytosis is shut down actin regulation 

also becomes disrupted (Aronov and Gerst, 2004). The Sec5 

protein is a component of the essential exocyst complex, which 

tethers secretory vesicles to the plasma membrane (TerBush 

et al., 1996). If YPP1 mediates A30P traffi cking through the 

ER-Golgi to the vacuole, then this traffi cking should be dis-

rupted in the sec12 but not in the sec1 or sec5 strains. Conversely, 

if YPP1 mediates A30P traffi cking to the vacuole via endo-

cytosis, then this traffi cking should be disrupted in the sec1 

and sec5 but not in the sec12 strains. The Hughes collection of 

titratable promoter alleles (Mnaimneh et al., 2004) was used in 

these experiments.

Decreasing the level of the essential Sec12 protein had 

no appreciable effect on YPP1-mediated traffi cking of A30P to 

the vacuole. Specifi cally, cells expressing GFP-A30P and over-

expressing Ypp1p, but with a decreased level of Sec12p, exhibited 

1–2 large GFP-A30P inclusions per cell, which coincided with 

the vacuole (Fig. 7 F). In contrast, decreasing the level of the 

Figure 7. Effects of gene deletions on YPP1-mediated A30P traffi cking. 
The S288c strain and the two deletion strains transformed with pTF306 
(GFP-A30P) and pTF602 (YPP1) were pregrown in noninducing media to 
mid-log phase, transferred to inducing media, induced for 3 or 12 h, and 
then visualized by fl uorescence microscopy. The SEC1 and SEC12 Hughes 
strains transformed with pTF306 (GFP-A30P) and pTF602 (YPP1) were pre-
grown in noninducing media with doxycycline (20 μg/ml) for 7 h, trans-
ferred to inducing media with doxycycline, and then visualized at 3 and 
12 h by fl uorescence microscopy. (A) S288c; (B) ∆mon1; (C) ∆mon1 and 
pTF700 (MON1); (D) ∆sla1; (E) ∆sla1 and pTF701 (SLA1); (F) tet-SEC12 
strain + doxycycline; and (G) tet-SEC1 strain + doxycycline. (A–E): Im-
ages labeled “MERGE” had brightness and contrast adjustments of −12 
and +20, respectively. (F and G): images labeled MERGE had brightness 
and contrast adjustments of +40 and +20, respectively. Bar, 5 μm.
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essential Sec1 protein abolished YPP1-mediated traffi cking of 

A30P to the vacuole. Specifi cally, cells expressing GFP-A30P 

and overexpressing Ypp1p, but with a decreased level of Sec1p, 

exhibited no GFP-A30P inclusions after 3 or 12 h of induction 

(Fig. 7 G). Similar results were obtained for cells with a decreased 

level of the Sec5 protein (unpublished data). Because decreasing 

the level of Sec1p, or Sec5p, or deleting SLA1 eliminated YPP1-

mediated transport of A30P to the vacuole, we concluded that 

YPP1 mediates the traffi cking of A30P to the vacuole via the 

endocytic pathway.

YPP1 participates in receptor-mediated 
endocytosis
Several reports have indicated that YPP1 functions in a MAPK 

pathway (Roberts et al., 2000; Hazbun et al., 2003; Mnaimneh 

et al., 2004). Because the yeast mating response is a MAPK 

pathway (Schwartz and Madhani, 2004) that involves receptor-

mediated endocytosis (RME), we asked whether YPP1 functions 

in the yeast mating response (Engqvist-Goldstein and Drubin, 

2003). In yeast, the response to pheromone is a well character-

ized example of RME: α-factor pheromone binds to Ste2p (on 

Mata cells) and triggers a sequence of events in which Ste2p and 

the α-factor are encapsulated into endosomes, which then transit 

along actin cables to the vacuole, where the pheromone and its 

receptor are proteolytically degraded (Dohlman, 2002). The hypo-

thesis that YPP1 participates in RME was tested by incubating 

α-factor with a Mata haploid strain containing an integrated 

YPP1-GFP allele replacing the WT allele (Table I).

The Mata haploid strain expressing Ypp1p-GFP exhibited 

no change in the localization of Ypp1p-GFP upon incubation 

for 20 min, and no change in localization was detected even 

 after hours of incubation. Weak, diffuse green fl uorescence 

 occurred throughout the cytosol in these cells, and somewhat 

more brightly fl uorescent puncta appeared around the periphery 

of the cells (Fig. 8 A). The enhanced staining around the pe-

riphery was consistent with Ypp1p-GFP associating with actin 

cortical patches, which are thought to be the sites of exocytosis 

and endocytosis. In contrast, treatment of this strain with 

α-factor resulted in a rapid change in the localization of Ypp1p-

GFP and a parallel increase in the fl uorescence signal (Fig. 8 A). 

Cells exhibited numerous vesicles that appeared to coalesce 

into larger structures after 20 min. The green inclusions of 

Ypp1p-GFP merged with the vacuolar structures in the DIC 

 images. These experiments showed that the endosomes formed 

in response to pheromone contained Ypp1p-GFP, and that such 

Ypp1p-GFP–containing endosomes then merged with the vacuole. 

This data strongly supported our conclusion that Ypp1p is in-

volved in endocytosis.

Intrigued by the ability of pheromone to drive Ypp1p into 

vesicles, the hypothesis that pheromone itself could protect 

cells from the toxicity of the A30P protein—by driving A30P 

into endosomes, which then traffi c to the vacuole, where A30P 

is degraded—was tested. The experiment was conducted by 

transforming the FY23 Mata haploid strain with plasmids for 

the various α-syns (WT, A30P, or A53T), pregrowing cells in 

noninducing media to mid-log phase, and shifting cells to in-

ducing media for 3 h. The α-factor pheromone (5–10 μM) was 

added upon the shift into inducing media; the DHR 123 dye was 

added after 2 h in inducing media; and the images were ac-

quired after 3 h in inducing media. The α-factor had no effect 

on ROS accumulation in cells expressing WT α-syn (or A53T), 

as judged by red fl uorescence (Fig. 8, B and E). In contrast, in 

identically treated cells expressing A30P α-factor decreased the 

percentage of red staining A30P-expressing cells to 26.3 ± 

4.2% from 69.2 ± 8.5% (P = 1.1 × 10−7) (Fig. 8, C and E). No 

appreciable amounts of ROS occurred in vector control cells 

with or without pheromone (Fig. 8 D). Our interpretation of 

these results was that pheromone triggered rapid RME, and 

because of Ypp1p’s ability to bind A30P at the plasma membrane, 

A30P was encapsulated into the endocytic vesicles, which then 

traffi cked to the vacuole.

Discussion
The biochemical, cell biological, and genetic experiments in 

this study have demonstrated a role for the essential gene YPP1 

in endocytosis. We conducted a PSI-blast analysis of YPP1, 

 using the Saccharomyces Genome Database, and found six 

 potential functional homologues (orthologues) in humans. One 

of these, human TTC7B (Q86TV6), has 15% identical residues 

with YPP1. The TTC7B protein contains multiple tetratrico-

peptide repeat (TPR) protein–protein interaction domains (Lamb 

et al., 1995), and it is likely that the Ypp1 protein also contains 

such domains. Other than TPR domains, Ypp1p has no rec-

ognizable domains. Next, several issues are discussed relating 

to the role of Ypp1p in endocytosis and protection it affords 

against A30P.

Notice that A30P expression in the pep4∆ strain with 

YPP1 in high copy caused no appreciable toxicity, as judged by 

ROS accumulation (Fig. 6). We propose that YPP1 in high 

copy, whether in WT cells or pep4∆ cells, mediates the trans-

port of A30P to vacuole. The lack of toxicity of A30P in pep4∆ 

cells with YPP1 in high copy is due to the removal of A30P 

from the plasma membrane and cytosol and sequestration in 

vacuoles. Suppression of A30P toxicity could be linked more to 

its sequestration in the vacuole rather than its degradation.

If Ypp1p functions in the endocytic pathway, why does 

Ypp1p select A30P, which appears to be a cytosolic protein, 

and target it to the vacuole instead of WT α-syn or A53T, which 

are membrane bound? Points addressing the selectivity of 

Ypp1p for A30P are: (1) A30P is not only a cytosolic protein; it 

also associates with membranes, albeit not as strongly as WT 

α-syn or A53T, and permeablizes the membranes to which it 

binds (Lashuel et al., 2002; Furukawa et al., 2006). Therefore, 

membrane-associated A30P should be able to associate with 

membrane-associated Ypp1p. (2) When overexpressed, Ypp1p 

rapidly packaged each of the α-syns (WT, A30P, and A53T) 

into inclusions/vesicles, albeit only A30P-containing vesicles 

then merged with the vacuole (Fig. 3, Fig. 4 A, and Fig. 5). The 

transport of A30P-containing vesicles to the vacuole is no doubt 

casually connected to the binding of A30P to Ypp1p. Such 

results suggest two separable functions for Ypp1p. The in-

complete endocytosis of WT and A53T α-syn—which is pro-

posed to be due to their inability to bind Ypp1p—results in the 
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accumulation of Lewy body–like structures. (3) It is important 

to recognize that a spectrum of protein–protein equilibrium 

constants, from nanomolar to micromolar, occurs in cells. 

Ypp1p may weakly associate with WT α-syn or A53T, but the 

short-lived complexes cannot be pulled out of solution. The 

A→P substitution could increase the strength of the association 

between α-syn and Ypp1p for many reasons. We reason that, 

compared with WT α-syn and A53T, A30P may adopt a differ-

ent conformation when membrane bound, it may possess a dif-

ferent phosphorylation pattern, and it may be ubiquitinylated at 

a different site. These unique features could foster a strong 

association between A30P and Ypp1p, resulting in kinetically 

stable complexes that can be pulled out of solution.

WT α-syn and the A53T mutant cause ER stress (Gosavi 

et al., 2002; Smith et al., 2005; Cooper et al., 2006), and, above 

a certain threshold concentration, each protein inhibits forward 

vesicle transport through the ER (Cooper et al., 2006). Alleles 

that suppress α-syn toxicity (WT and A53T) enhance forward 

ER-Golgi transport, and these suppressors are YPT1, YKT6, 

UBP3 and BRE5, and ERV29. YPP1 in high copy failed to sup-

press the toxicity of WT α-syn and A53T, thus YPP1 does not 

enhance forward ER-Golgi traffi c vis-à-vis these two α-syns. 

Regarding A30P, A30P has not been shown to cause ER stress 

or inhibit ER-Golgi traffi c, and our experiments gave no indica-

tion that YPP1 enhances the forward transport of A30P through 

the ER-Golgi (Fig. 7, F and G).

In summary, YPP1 interacts with the evolutionarily con-

served genes SLA1, SLA2, END3, class E VPS, and CCZ1 and 

MON1 to target A30P α-syn to the vacuole for degradation via 

the endocytic pathway (Fig. 9). It will be of interest to charac-

terize the step or steps that Ypp1p catalyzes in the endocytic 

pathway, correlate Ypp1p structure with function, and determine 

whether the potential human orthologues mediate the traffi cking 

of A30P to the lysosome in human cells.

Figure 8. Pheromone protects cells from 
A30P toxicity. (A) Effect of α-factor on cells 
expressing Ypp1p-GFP. Top (−α-factor): no 
change in the localization of Ypp1p-GFP oc-
curred over 20 min. Bottom (+α-factor): 10 μM 
α-factor was added to cells and then images 
were acquired from 2 to 20 min. Strain: YPP1-
GFP cultured in YPD. Identical instrumental 
conditions were used for all images. Bar, 5 μm. 
The ROS assay using the DHR 123 dye is 
shown in (B) WT α-syn, (C) A30P, and (D) vec-
tor control. The FY23 strain was transformed 
with pTF201 (WT α-syn), pTF202 (A30P), 
pTF203 (A53T), or pTF200 (empty vector) and 
pregrown in noninducing media to mid-log 
phase. 10 μM pheromone was added after 
shifting to inducing media; after 2 h in induc-
ing media the DHR 123 dye was added to 
5 μg/ml; and, before acquiring images at 3 h, 
cells were washed and resuspended in induc-
ing media. The two images labeled “MERGE” 
(in A) had brightness and contrast adjustments 
of +10 and +40, respectively. (E) Plot of mean 
ROS (%) (± SD). Cells (n = 292–696) were 
counted in two independent experiments. *, P = 
1.1 × 10−7. DIC, differential interference con-
trast; DHR, rhodamine 123.



SUPPRESSION OF A30P α-SYN TOXICITY BY YPP1 • FLOWER ET AL. 1101

Materials and methods
Strains, plasmids, and media
The yeast strains used in this study were FY23 (Winston et al., 1995), 
S288c (Invitrogen), YPP1-GFP (Invitrogen), which contains an integrated 
copy of YPP1-GFP replacing the WT allele, and several strains from the 
Hughes collection (Open Biosystems) (Table I). Additionally, 116 strains 
from the ResGen deletion collection were also used; these strains were de-
rived from the parental strain S288c. Cells transformed with various plas-
mids were pregrown in synthetic sucrose (2% wt/vol) drop out media to 
maintain selection for plasmids. Media containing sucrose is referred to as 
noninducing media. α-Syn expression, as well as Ypp1p overexpression, 
was induced in the same drop out media with galactose (2% wt/vol) 
replacing sucrose (Burke et al., 2000). Media containing galactose is re-
ferred to as inducing media. The various S288c deletion strains were 
cultured in noninducing media with selection for plasmids supplemented 
with 0.4 g/L G418 (Geneticin) or inducing media with selection for plasmids 
supplemented with 0.4 g/L G418. The Resgen deletion strains (Invitrogen) 
and the high copy yeast genomic library (Nasmyth and Tatchell, 1980) 
(YEp13 LEU2) were gifts from Dr. Kelly Tatchell (LSU Health Sciences 
Center, Shreveport, LA). In every experiment in this study, cells were pre-
grown in noninducing media (sucrose) with selection for plasmids to mid-log 
phase and then shifted to inducing media (galactose) with selection for 
plasmids and induced for 3 h. In some cases, 12-h inductions were used. 
Cells were grown at 30°C.

YPP1 was cloned from genomic DNA using the forward and reverse 
primers 5′-C C A C T G G A T C C A T G C C T A A C T C A A A T G T T C -3′ and 5′-G A A-
G A A G A G C T C T T A G T A A TT C G A A T A C C T T A G -3′, respectively. These prim-
ers contained the BamHI and SacI restriction sites. The PCR product was 
subcloned into the BamHI and SacI restriction sites on the 2-μm pRS326 
plasmid. For all other YPP1 constructs, the YPP1 ORF was excised from the 
pRS326 plasmid at the BamHI and SacI sites and ligated into those same 
sites in the other plasmids. Preparation of the plasmids harboring untagged 
and GFP-tagged α-syns was described elsewhere (Flower et al., 2005). 
MON1 was cloned from genomic DNA using the forward and reverse prim-
ers 5′-C A T A G A C G G G C C G C A T G G G T C T A G C T T A A A T A C -3′ and 5′-A A C-
C T C G A G C T C A C AA G T T A A A A C A C G G C C -3′, respectively. These primers 

contained the NotI and SacI restriction sites; the PCR product was subcloned 
into the same restriction sites on the low copy pRS313 plasmid. SLA1 was 
cloned from genomic DNA using the forward and reverse primers 5′-C A G-
G T G A C T A G T G A A G T A G G C C A T T C A C T G C -3′ and 5′-T C T T A A C C G C G G T-
T A A T C T A G A A T C C A A A C G G A T T T T G -3′ These primers contained SpeI and 
SacII restriction sites; the PCR product was subcloned into the same restric-
tion sites on the low copy pRS313 plasmid. Plasmids were propagated 
according to standard protocols using Escherichia coli DH5α (Sambrook 
et al., 1989).

Yeast α-factor pheromone (Zymo Research) was aliquoted into cells 
from a stock solution; the fi nal concentration of α-factor was 5–10 μM. 
 Latrunculin A, cycloheximide, and the proteasome inhibitor MG132 were 
purchased form Sigma-Aldrich and used at concentrations of 25, 10, and 
50 μM, respectively. For the ROS experiments that used pheromone, 
FY23 cells transformed with the various plasmids for α-syn (pTF200-203) 
were pregrown in noninducing media to mid-log phase and then shifted 
into inducing media. Upon the shift into inducing media the α-factor phero-
mone was added to 5–10 μM. After 2 h in inducing media with phero-
mone the DHR 123 dye was added to a fi nal concentration of 5 μg/ml, 
and cells were incubated 1 additional hour in this media. Before image 
acquisition (after 3 h in inducing media) cells were washed and resus-
pended in fresh media.

Hydrogen peroxide–based genetic screen
Cells transformed with pTF202 (A30P) and the high copy yeast genomic 
 library and induced with galactose were grown to 1.5 × 107 cells/ml and 
then plated on SGal−Leu−Trp. A disk of sterile Whatman fi lter paper con-
taining 10 μl of 8% H2O2 was placed in the center of each plate, and 
plates were incubated for 3 d. Colonies growing close to the peroxide 
disk were selected, cultured overnight, and the plasmid DNA was isolated 
and then amplifi ed in DH5α cells. Plasmids were retested for protection in 
the hydrogen peroxide assay. Each strand of a protective plasmid was 
 sequenced. YPP1 was discovered by this approach.

Western blot analysis
Westerns were conducted as described previously (Flower et al., 2005). 
The monoclonal antibody against human α-syn was purchased from 
Cell Signaling Technologies. The monoclonal antibody against Pgk1p 
was purchased from Invitrogen. The monoclonal antibody against myc 
was purchased from Sigma-Aldrich. Secondary antibodies were pur-
chased from Sigma-Aldrich or Bio-Rad Laboratories. 20 μg of protein 
were loaded per well in each Western blot conducted (Fig. 1 B, Fig. 2 E, 
and Fig. 4 B).

Coimmunoprecipitation
The coimmunoprecipitation was performed using protein A–Sepharose beads 
saturated with the anti-myc antibody as described in Flower et al. (2005).

Fluorescence microscopy
Fluorescent images of cells were obtained with a microscope (AX70; 
Olympus), including an Olympus UPlanFl 100×/1.35 NA objective with 
CoolSNAP HQ CCD camera (Roper Scientifi c). The acquisition software 
was IPLab v3.6 (Scanalytics). An Olympus U-MWG (510–550) fi lter set was 
used for detecting GFP (Figs. 3, 7, and 8), and a U-MNG fi lter (530–550 nm) 
was used to detect FM4-64, DHR 123, and FUN1 (Figs. 1, 2, 4, and 8; 
and Fig. S2). For the two-color experiment (Fig. 1 C and Fig. 4), a more 
restrictive Chroma JP1 (510 nm) was used to detect GFP; this fi lter set 
prevented bleed-through of GFP signal into the FM4-64 channel. All data 
were collected at room temperature.

The ROS assay, using the DHR 123 dye, was performed as de-
scribed previously (Flower et al., 2005). The viability assay, using the 
FUN1 dye, was conducted according to Fannjiang et al. (2004). Vacuole 
staining, using the FM4-64 dye, was conducted according to a method 
adapted from Vida and Emr (1995). In brief, S288c cells transformed with 
a GFP-α-syn plasmid (pTF305-308) and with a YPP1 plasmid (pTF602) 
were pregrown in SSuc−Leu−Ura to mid-log phase. Cells were then 
washed and resuspended in SGal−Leu−Ura and induced for 12 h at 
30°C. At various times aliquots were removed, washed, resuspended in 
YPD, and incubated with 40 μM FM4-64 (Invitrogen) for 10 min at 30°C. 
Cells were then washed twice, resuspended in YPD, incubated an addi-
tional 30 min at 30°C, and visualized by fl uorescence microscopy. Adobe 
Photoshop 5.5 was used to prepare all fi gures. Adjustments in contrast 
were made to Westerns blots. Adjustments in brightness and contrast were 
made to some differential interference contrast (DIC) images and to some 
merged images (DIC merged with GFP fl uorescence). Specifi c adjustments 
are given in the legends.

Figure 9. Illustration of YPP1-mediated protection against A30P. Sla1p, 
Sla2p, and End3p form complexes at the actin cortical patches. Ypp1p 
binds to A30P and mediates the encapsulation of A30P into vesicles, which 
then bud off the membrane and transit to the vacuole. Class E Vps proteins 
are required for protein sorting into lumenal vesicles. The Mon1p–Ccz1p 
complex facilitates vesicle–vacuole fusion. MVB, multivesicular body.
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Transmission electron microscopy
TEM samples were prepared as described previously (Yang et al., 2006) 
and examined using an electron microscope (H-7000; Hitachi), equipped 
with a high-resolution digital camera (Gatan, Inc.). For immunogold label-
ing, cells were fi xed with 4% formaldehyde and 0.25% glutaraldehyde in 
40 mM phosphate buffer (pH 6.7), containing 1 mM MgCl2 and 1 mM 
EGTA for 1 h at room temperature. Cells were washed with phosphate 
buffer, incubated in 1% sodium metaperiodate for 15 min, then in 50 mM 
ammonium chloride for 15 min. Cells were dehydrated with graded ethanol, 
embedded in LR White resin (Electron Microscopy Sciences). 60-nm-thin 
sections were cut and collected on nickel grids. Grids were incubated in 
0.1 M glycine in PBS containing 0.1% (vol/vol) Triton X-100 for 15 min to 
inactivate residual aldehydes. Sections were blocked with blocking buffer 
(PBS containing 5% normal goat serum, 0.2% Tween 20, and 0.2% BSA) 
for 40 min. Grids were then incubated in the primary rabbit anti-A30P 
 antibody, diluted 1:50 in blocking buffer for 2 h. Grids were washed then 
incubated in 12-nm gold–conjugated goat anti–rabbit IgG (Jackson Immuno-
Research Laboratories) diluted 1:30 in blocking buffer for 1.5 h. Labeled 
sections were stained with 2% uranyl acetate for 30 min and lead citrate 
for 30 s, examined as described above. The control was performed by 
substituting primary antibody with blocking buffer.

ROS plate reader assay
A Perkin Elmer Wallac Victor3 1420 multilabel counter was used to screen 
deletion strains for ROS accumulation. Cells transformed with the pTF302 
(A30P) and pTF602 (YPP1) plasmids were pregrown in noninducing me-
dia until mid-log phase and then shifted into galactose inducing media and 

induced for 3 h. After the second hour of induction, the DHR 123 dye was 
added to a fi nal concentration of 5 μg/ml. Before adding the cells to the 
96-well plates, cells were washed twice using PBS and the assay was con-
ducted in PBS. The excitation and emission wavelengths were 485 and 
535 nm, respectively. At minimum, deletion strains were analyzed in two 
independent experiments in triplicate. Thirty of the deletion strains were 
analyzed in three to four independent experiments in triplicate. ROS read-
ings from each deletion strain were compared with the ROS readings from 
the S288c strain (transformed with pTF302 [A30P] and pTF602 [YPP1]). 
Acetic acid treatment has been shown to induce apoptosis and ROS in 
yeast cells (Ludovico et al., 2002), and acetic acid–treated cells were pre-
pared and incubated with DHR 123 as described previously (Flower et al., 
2005) as a control.

Deletion strains exhibiting greater than fourfold increases in ROS 
signal compared with the control (S288c transformed with pTF202 and 
pTF602) were selected for further evaluation. One two-plasmid control con-
sisted of the various deletion strains expressing Ypp1p (pTF602 (YPP1) plus 
pTF300 (empty vector)). The other two-plasmid controls consisted of the 
various deletion strains harboring plasmids with no inserts (pTF300 and 
pTF604). ROS accumulation was measured after 3 h of induction. Ypp1p 
overexpression did not appreciably increase the ROS signal, and the two-
plasmid control cells yielded a signal indicative of zero fl uorescence.

Statistical analysis
For the ROS (and FUN1 viability assays) (Figs. 1 and 8, and Fig. S2), 
P values were determined using a two-tailed t test (heteroscedastic) that 
compared red cell counts from various +α-syn/+Ypp1 cultures to red cell 

Table I. Yeast strains and plasmids

Strains

YPP1-GFP his3∆1 leu2∆0 met15∆0 ura3∆0 YPP1-GFP MATa

FY23 ura3-52 trp1∆63 leu2∆ 1 MATa

S288c his3∆1 leu2∆0 met15∆0 ura3∆0 gal2 MATα
Tet-YPP1 pYGR198W::kanR-tet07-TATA URA3::CMV-tTA his3-1 leu2-0 met15-0 MATa

Tet-SEC1 pSEC1::kanR-tet07-TATA URA3::CMV-tTA his3-1 leu2-0 met15-0 MATa

Tet-SEC5 pSEC5::kanR-tet07-TATA URA3::CMV-tTA his3-1 leu2-0 met15-0 MATa

Tet-SEC12 pSEC12::kanR-tet07-TATA URA3::CMV-tTA MATa his3-1 leu2-0 met15-0 MATa

Plasmids

pRS313 Low copy CEN HIS3 ARS Ampr ATCC

pRS314 Low copy CEN TRP1 ARS Ampr ATCC

pRS316 Low copy CEN URA3 ARS Ampr ATCC

pRS326 2 μ URA3 Ampr (Christianson et al., 1992)

pRS325 2 μ LEU2 Ampr (Christianson et al., 1992)

pTF200 GAL1 promoter in pRS314 (Flower et al., 2005)

pTF201 GAL1 promoter WT α-syn in pRS314 (Flower et al., 2005)

pTF202 GAL1 promoter A30P α-syn in pRS314 (Flower et al., 2005)

pTF203 GAL1 promoter A53T α-syn in pRS314 (Flower et al., 2005)

pTF300 GAL1 promoter in pRS316 (Flower et al., 2005)

pTF301 GAL1 promoter WT α-syn in pRS316 (Flower et al., 2005)

pTF302 GAL1 promoter A30P α-syn in pRS316 (Flower et al., 2005)

pTF303 GAL1 promoter A53T α-syn in pRS316 (Flower et al., 2005)

pTF305 GAL1 promoter GFP-WT α-syn in pRS316 This study

pTF306 GAL1 promoter GFP-A30P in pRS316 This study

pTF307 GAL1 promoter GFP-A53T in pRS316 This study

pTF308 GAL1 promoter GFP in pRS316 This study

pTF503 GAL1 promoter cMyc (9 repeats) in pRS326 This study

pTF504 GAL1 promoter cMyc (9 repeats) YPP1 in pRS326 This study

pTF601 GAL1 promoter YPP1 in pRS326 This study

pTF602 GAL1 promoter YPP1 in pRS325 This study

pTF603 GAL1 promoter in pRS326 This study

pTF604 GAL1 promoter in pRS325 This study

pTF700 GAL1 promoter MON1 in pRS313 This study

pTF701 GAL1 promoter SLA1 in pRS313 This study
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counts from various +α-syn/−Ypp1 cultures. Cells were counted in two 
to three independent experiments. The program Excel was used for this 
analysis. For the ROS plate reader assay (Fig. 6), a paired t test was used 
to compare the ROS signals from deletion strains to matched controls 
(S288c +A30P/+YPP1). To adjust for multiple comparisons, the Bonferroni 
correction method was used, with a family-wise error rate of 0.05 or 0.001. 
For example, because 116 gene deletion strains were tested, the highest 
accepted P value was 4.3 × 10−4 (= 0.05/116) for a family error rate of 
0.05. The statistical software used for this analysis was SAS v9.13 (SAS 
Institute, Inc.). Table S1 gives exact P values (available at http://www.jcb
.org/cgi/content/full/jcb.200610071/DC1).

Online supplemental material
Fig. S1 shows that in high copy YPP1 permitted normal growth of cells ex-
pressing A30P, but not of cells expressing WT or A53T. Fig. S2 shows that 
YPP1 in high copy fails to protect cells from hydrogen peroxide– induced 
ROS. Online supplemental material is available at http://www.jcb.org/
cgi/content/full/jcb.200610071/DC1.

We thank Kelly Tatchell for the yeast genomic library and deletion strains; Jen-
nifer Larson for streaking out the deletion strains; Lucy Robinson and Michelle 
Kearney for retesting some library plasmids found in the hydrogen peroxide 
assay; and Brent Reed for help in fi gure preparation.

This work was supported in part by grants from the Parkinson’s 
 Resource of Northwest Louisiana and from the National Institutes of Health 
(R21NS053678) to S.N. Witt.

Submitted: 16 October 2006
Accepted: 21 May 2007

References
Aronov, S., and J.E. Gerst. 2004. Involvement of the late secretory path-

way in actin regulation and mRNA transport in yeast. J. Biol. Chem. 
279:36962–36971.

Ayscough, K.R., J. Stryker, N. Pokala, M. Sanders, P. Crews, and D.G. Drubin. 
1997. High rates of actin fi lament turnover in budding yeast and roles for 
actin in establishment and maintenance of cell polarity revealed using the 
actin inhibitor latrunculin-A. J. Cell Biol. 137:399–416.

Barlowe, C., and R. Schekman. 1993. SEC12 encodes a guanine-nucleotide-
 exchange factor essential for transport vesicle budding from the ER. Nature. 
365:347–349.

Bowers, K., and T.H. Stevens. 2005. Protein transport from the late Golgi to the 
vacuole in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta. 
1744:438–454.

Burke, D., D. Dawson, and T. Stearns. 2000. Methods in Yeast Genetics. Cold 
Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 205 pp.

Christianson, T.W., R.S. Sikorski, M. Dante, J.H. Shero, and P. Hieter. 
1992. Multifunctional yeast high-copy-number shuttle vectors. Gene. 
110:119–122.

Cooper, A.A., A.D. Gitler, A. Cashikar, C.M. Haynes, K.J. Hill, B. Bhullar, K. 
Liu, K. Xu, K.E. Strathearn, F. Liu, et al. 2006. Alpha-synuclein blocks 
ER-Golgi traffi c and Rab1 rescues neuron loss in Parkinson’s models. 
Science. 313:324–328.

Davierwala, A.P., J. Haynes, Z. Li, R.L. Brost, M.D. Robinson, L. Yu, S. 
Mnaimneh, H. Ding, H. Zhu, Y. Chen, et al. 2005. The synthetic genetic 
interaction spectrum of essential genes. Nat. Genet. 37:1147–1152.

Dawson, T.M., and V.L. Dawson. 2003. Molecular pathways of neurodegenera-
tion in Parkinson’s disease. Science. 302:819–822.

Dixon, C., N. Mathias, R.M. Zweig, D.A. Davis, and D.S. Gross. 2005. alpha-
Synuclein targets the plasma membrane via the secretory pathway and 
induces toxicity in yeast. Genetics. 170:47–59.

Dohlman, H.G. 2002. G proteins and pheromone signaling. Annu. Rev. Physiol. 
64:129–152.

Engqvist-Goldstein, A.E., and D.G. Drubin. 2003. Actin assembly and endo-
cytosis: from yeast to mammals. Annu. Rev. Cell Dev. Biol. 19:287–332.

Fannjiang, Y., W.C. Cheng, S.J. Lee, B. Qi, J. Pevsner, J.M. McCaffery, 
R.B. Hill, G. Basanez, and J.M. Hardwick. 2004. Mitochondrial fi s-
sion proteins regulate programmed cell death in yeast. Genes Dev. 
18:2785–2797.

Flower, T.R., L.S. Chesnokova, C.A. Froelich, C. Dixon, and S.N. Witt. 2005. 
Heat shock prevents alpha-synuclein-induced apoptosis in a yeast model 
of Parkinson’s disease. J. Mol. Biol. 351:1081–1100.

Furukawa, K., M. Matsuzaki-Kobayashi, T. Hasegawa, A. Kikuchi, N. Sugeno, 
Y. Itoyama, Y. Wang, P.J. Yao, I. Bushlin, and A. Takeda. 2006. Plasma 

membrane ion permeability induced by mutant alpha-synuclein contrib-
utes to the degeneration of neural cells. J. Neurochem. 97:1071–1077.

Gosavi, N., H.J. Lee, J.S. Lee, S. Patel, and S.J. Lee. 2002. Golgi fragmentation 
occurs in the cells with prefi brillar alpha-synuclein aggregates and precedes 
the formation of fi brillar inclusion. J. Biol. Chem. 277:48984–48992.

Hazbun, T.R., L. Malmstrom, S. Anderson, B.J. Graczyk, B. Fox, M. Riffl e, 
B.A. Sundin, J.D. Aranda, W.H. McDonald, C.H. Chiu, et al. 2003. 
Assigning function to yeast proteins by integration of technologies. Mol. 
Cell. 12:1353–1365.

Holtzman, D.A., S. Yang, and D.G. Drubin. 1993. Synthetic-lethal inter-
actions identify two novel genes, SLA1 and SLA2, that control mem-
brane cytoskeleton assembly in Saccharomyces cerevisiae. J. Cell Biol. 
122:635–644.

Hong, E., A.R. Davidson, and C.A. Kaiser. 1996. A pathway for targeting solu-
ble misfolded proteins to the yeast vacuole. J. Cell Biol. 135:623–633.

Huh, W.K., J.V. Falvo, L.C. Gerke, A.S. Carroll, R.W. Howson, J.S. Weissman, 
and E.K. O’Shea. 2003. Global analysis of protein localization in budding 
yeast. Nature. 425:686–691.

Hurley, J.H., and S.D. Emr. 2006. The ESCRT complexes: structure and mecha-
nism of a membrane-traffi cking network. Annu. Rev. Biophys. Biomol. 
Struct. 35:277–298.

Jones, E.W., G.S. Zubenko, and R.R. Parker. 1982. PEP4 gene function is re-
quired for expression of several vacuolar hydrolases in Saccharomyces 
cerevisiae. Genetics. 102:665–677.

Kontopoulos, E., J.D. Parvin, and M.B. Feany. 2006. {alpha}-synuclein acts 
in the nucleus to inhibit histone acetylation and promote neurotoxicity. 
Hum. Mol. Genet. 15:3012–3023.

Kruger, R., W. Kuhn, T. Muller, D. Woitalla, M. Graeber, S. Kosel, H. Przuntek, 
J.T. Epplen, L. Schols, and O. Riess. 1998. Ala30Pro mutation in the 
gene encoding alpha-synuclein in Parkinson’s disease. Nat. Genet. 
18:106–108.

Lamb, J.R., S. Tugendreich, and P. Hieter. 1995. Tetratrico peptide repeat inter-
actions: to TPR or not to TPR? Trends Biochem. Sci. 20:257–259.

Lashuel, H.A., B.M. Petre, J. Wall, M. Simon, R.J. Nowak, T. Walz, and P.T. 
Lansbury Jr. 2002. Alpha-synuclein, especially the Parkinson’s disease-
associated mutants, forms pore-like annular and tubular protofi brils. 
J. Mol. Biol. 322:1089–1102.

Ludovico, P., F. Rodrigues, A. Almeida, M.T. Silva, A. Barrientos, and M. 
Corte-Real. 2002. Cytochrome c release and mitochondria involvement 
in programmed cell death induced by acetic acid in Saccharomyces cere-
visiae. Mol. Biol. Cell. 13:2598–2606.

Martin, L.J., Y.H. Pan, A.C. Price, W. Sterling, N.G. Copeland, N.A. Jenkins, 
D.L. Price, and M.K. Lee. 2006. Parkinson’s disease alpha-synuclein 
transgenic mice develop neuronal mitochondrial degeneration and cell 
death. J. Neurosci. 26:41–50.

Meusser, B., C. Hirsch, E. Jarosch, and T. Sommer. 2005. ERAD: the long road 
to destruction. Nat. Cell Biol. 7:766–772.

Mnaimneh, S., A.P. Davierwala, J. Haynes, J. Moffat, W.T. Peng, W. Zhang, X. 
Yang, J. Pootoolal, G. Chua, A. Lopez, et al. 2004. Exploration of essen-
tial gene functions via titratable promoter alleles. Cell. 118:31–44.

Nasmyth, K.A., and K. Tatchell. 1980. The structure of transposable yeast 
mating type loci. Cell. 19:753–764.

Polymeropoulos, M.H., C. Lavedan, E. Leroy, S.E. Ide, A. Dehejia, A. Dutra, B. 
Pike, H. Root, J. Rubenstein, R. Boyer, et al. 1997. Mutation in the alpha-
synuclein gene identifi ed in families with Parkinson’s disease. Science. 
276:2045–2047.

Raths, S., J. Rohrer, F. Crausaz, and H. Riezman. 1993. end3 and end4: two 
mutants defective in receptor-mediated and fl uid-phase endocytosis in 
Saccharomyces cerevisiae. J. Cell Biol. 120:55–65.

Roberts, C.J., B. Nelson, M.J. Marton, R. Stoughton, M.R. Meyer, H.A. Bennett, 
Y.D. He, H. Dai, W.L. Walker, T.R. Hughes, et al. 2000. Signaling and 
circuitry of multiple MAPK pathways revealed by a matrix of global gene 
expression profi les. Science. 287:873–880.

Rodriguez-Pena, J.M., V.J. Cid, M. Sanchez, M. Molina, J. Arroyo, and C. 
Nombela. 1998. The deletion of six ORFs of unknown function from 
Saccharomyces cerevisiae chromosome VII reveals two essential genes: 
YGR195w and YGR198w. Yeast. 14:853–860.

Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A 
Laboratory Manual. Cold Spring Harbor Press, Cold Spring Harbor, NY.

Schulz, J.B., M. Weller, and T. Klockgether. 1996. Potassium deprivation-
 induced apoptosis of cerebellar granule neurons: a sequential requirement 
for new mRNA and protein synthesis, ICE-like protease activity, and 
 reactive oxygen species. J. Neurosci. 16:4696–4706.

Schwartz, M.A., and H.D. Madhani. 2004. Principles of MAP kinase signaling 
specifi city in Saccharomyces cerevisiae. Annu. Rev. Genet. 38:725–748.

Smith, W.W., H. Jiang, Z. Pei, Y. Tanaka, H. Morita, A. Sawa, V.L. Dawson, 
T.M. Dawson, and C.A. Ross. 2005. Endoplasmic reticulum stress and 



JCB • VOLUME 177 • NUMBER 6 • 2007 1104

mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-
induced toxicity. Hum. Mol. Genet. 14:3801–3811.

Tanaka, Y., S. Engelender, S. Igarashi, R.K. Rao, T. Wanner, R.E. Tanzi, A. 
Sawa, V.L. Dawson, T.M. Dawson, and C.A. Ross. 2001. Inducible ex-
pression of mutant alpha-synuclein decreases proteasome activity and 
increases sensitivity to mitochondria-dependent apoptosis. Hum. Mol. 
Genet. 10:919–926.

TerBush, D.R., T. Maurice, D. Roth, and P. Novick. 1996. The Exocyst is a multi-
protein complex required for exocytosis in Saccharomyces cerevisiae. 
EMBO J. 15:6483–6494.

Toshima, J.Y., J. Toshima, M. Kaksonen, A.C. Martin, D.S. King, and D.G. 
Drubin. 2006. Spatial dynamics of receptor-mediated endocytic traffi cking 
in budding yeast revealed by using fl uorescent alpha-factor derivatives. 
Proc. Natl. Acad. Sci. USA. 103:5793–5798.

Uversky, V.N., J.R. Gillespie, and A.L. Fink. 2000. Why are “natively 
unfolded” proteins unstructured under physiologic conditions? Proteins. 
41:415–427.

Vida, T.A., and S.D. Emr. 1995. A new vital stain for visualizing vacuolar mem-
brane dynamics and endocytosis in yeast. J. Cell Biol. 128:779–792.

Wang, C.W., P.E. Stromhaug, J. Shima, and D.J. Klionsky. 2002. The Ccz1-
Mon1 protein complex is required for the late step of multiple vacuole 
delivery pathways. J. Biol. Chem. 277:47917–47927.

Weinreb, P.H., W. Zhen, A.W. Poon, K.A. Conway, and P.T. Lansbury Jr. 1996. 
NACP, a protein implicated in Alzheimer’s disease and learning, is 
natively unfolded. Biochemistry. 35:13709–13715.

Wiederkehr, A., J.O. De Craene, S. Ferro-Novick, and P. Novick. 2004. 
Functional specialization within a vesicle tethering complex: bypass of 
a subset of exocyst deletion mutants by Sec1p or Sec4p. J. Cell Biol. 
167:875–887.

Winston, F., C. Dollard, and S.L. Ricupero-Hovasse. 1995. Construction of a 
set of convenient Saccharomyces cerevisiae strains that are isogenic to 
S288C. Yeast. 11:53–55.

Xu, J., S.Y. Kao, F.J. Lee, W. Song, L.W. Jin, and B.A. Yankner. 2002. 
Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for 
selective neurodegeneration in Parkinson disease. Nat. Med. 8:600–606.

Yang, H., Q. Ren, and Z. Zhang. 2006. Chromosome or chromatin condensation 
leads to meiosis or apoptosis in stationary yeast (Saccharomyces cerevisiae) 
cells. FEMS Yeast Res. 6:1254–1263.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /UseDeviceIndependentColor
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue true
  /ColorSettingsFile (U.S. Prepress Defaults)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 299
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 299
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


