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The immune system relies on themigratory capacity of its cellular components,

which must be mobile in order to defend the host from invading micro-

organisms or malignant cells. This applies in particular to immune sentinels

from the myeloid lineage, i.e. macrophages and dendritic cells. Cell migration is

already at work during mammalian early development, when myeloid cell

precursors migrate from the yolk sac, an extra embryonic structure, to

colonize tissues and form the pool of tissue-resident macrophages. Later,

this is accompanied by a migration wave of precursors and monocytes from

the bone marrow to secondary lymphoid organs and the peripheral tissues.

They differentiate into DCs and monocyte-derived macrophages. During adult

life, cell migration endows immune cells with the ability to patrol their

environment as well as to circulate between peripheral tissues and lymphoid

organs. Hence migration of immune cells is key to building an efficient defense

system for an organism. In this review, we will describe how cell migratory

capacity regulates the various stages in the life of myeloid cells from

development to tissue patrolling, and migration to lymph nodes. We will

focus on the role of the actin cytoskeletal machinery and its regulators, and

how it contributes to the establishment and function of the immune system.
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1 Introduction

The immune system orchestrates various specialized cell types and organs in complex

and specialized tissue microenvironments to defend the organism. The establishment of

the immune system during embryogenesis is a fascinating process in which one unique

genuine hematopoietic stem cell (HSC) can support the renewal of all components of the

immune system, including the lymphoid, granuloid, erythroid, and myeloid

compartments (Osawa et al., 1996; Yamamoto et al., 2013; Carrelha et al., 2018).

A main cellular compartment of the immune system is constituted by cells collectively

named “myeloid cells” and comprises; granulocytes, monocytes, tissue-resident

macrophages, and dendritic cells (DCs). In here we find two of the best immune

sentinels; the tissue-resident macrophages and DCs that sense and respond to defiant

surroundings and pathogens, and in the case of tissue-resident macrophages have an

essential role in tissue development, homeostasis, and remodeling (McGrath et al., 2015).

The great versatility of these sentinels is in part achieved by a key feature of myeloid cells:
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they can efficiently migrate within and/or in between tissues. In

this review, we will focus on two components of the myeloid

compartment: DCs and, tissue-resident macrophages.

The amoeboid migration mode (for mechanistic details,

see Box 1), is characterized by rapid single-cell crawling,

which is driven by relatively fragile and transitory

interactions with the substrate. This type of movement can

further be divided into several cellular locomotion modes,

including blebbing-based motility to gliding involving actin-

polymerization. Moreover, this ameboid motility allows the

cells to shift in response to changing environmental

conditions or activation of distinct molecular pathways

between distinct migration strategies (Lämmermann and

Sixt 2009)—behavior that facilitates their entry into and

movement through a variety of organs, including brain,

gut, and skin. Ameboid cells hence preserve a potent

capacity for recirculation between the lymphatic and blood

systems as well as organs (Lämmermann and Sixt 2009).

In humans, actin-regulatory proteins deficiencies/mutations

can cause primary immunodeficiency diseases (PIDs)

highlighting the relevance of actin regulation in the systemic

immunity (Janssen et al., 2016). For example, it has been reported

that loss-of-function of actin regulators such as WASP, WIP

(WASp-interacting protein), and RAC2, among others, trigger

myeloid and lymphoid compartment disorder yielding to

autoimmune disease, PIDs and cancer (see (Burns et al., 2017)

for review).

Certain migrating blood cells, i.e. lymphocytes and some

myeloid cells (DCs and tissue-resident macrophages) exhibit an

amoeboid motility (von Andrian and Mempel 2003;

Lämmermann et al., 2008; Jacobelli et al., 2010; Collin and

Bigley 2018). This is constrained to cells that migrate towards

porous environments, that do not need an opening of junctions

for cells to progress or proteolysis of the extracellular matrix

(ECM) (Wolf et al., 2003). The case of macrophages is more

complex. Macrophages exhibit two types of motility in a 3D

environment: amoeboid and mesenchymal (see Box 2). They

perform amoeboid migration when migrating through porous

matrices, for example in fibrillar collagen I matrix, whereas they

execute mesenchymal migration–comprising matrix proteolysis

and generation of false-feet (referred to as podosomes) in

compact matrices like Matrigel (Friedl and Weigelin 2008;

Van Goethem et al., 2010). In this review, we will focus

mainly on ameboid myeloid cells (DCs and macrophages), but

we will keep in mind that macrophages can switch to

mesenchymal migration according to the composition of their

surroundings. The mechanism of invasion and penetration of

extracellular or cellular barriers, such as endothelial, epithelial, or

basement membranes involve other cellular principles, which are

discussed elsewhere (Ley et al., 2007; Rowe and Weiss 2008).

Box 1 Actin as a motor of Ameboid migration.
The fundamental mechanisms underlying ameboid cell migrationmainly rely on the actin cytoskeleton. Two keymorphological features define a

cell as “amoeboid”: (1) the cell constantly changes shape during locomotion by rapidly extending and retracting their protrusions, referred as
pseudopods/“false feet,” and (2) the cell performs adhesion-independent movement based on flowing and squeezing. Such shape-drivenmigration
leads to cell gliding or circumnavigation, generated by the polarized architecture of the actin cytoskeleton along the plasma membrane, which
stiffens and contracts the cell cortex in the absence of mature focal contacts and stress fibers, avoiding degradation of extracellular matrix (ECM)
barriers (as it is the case in mesenchymal migration). Importantly, while during mesenchymal migration cells exert forces that are parallel to the
substrate, the one exerted by amoeboid migrating cells are rather perpendicular to the substrate (Hawkins et al., 2009).

Formation of branched F-actin networks requires the actin-related protein two-third (Arp2/3) complex, which starts actin filament branches on
the mother actin filament existing side (Pollard 2007). Arp2/3 is activated by Wiskott–Aldrich syndrome protein (WASP) family proteins, also referred
to as actin nucleation promoting factors (NPF). This family is described by its catalytic VCA domain (Miki et al., 1998). It includes: (1) WASP, was first
discovered as the gene mutated in Wiskott-Aldrich syndrome patients (Derry et al., 1994); and (2) SCAR (also called WAVE), described first in
Dictyostelium (Bear et al., 1998; Miki et al., 1998). WASP governs endocytosis and podosome formation, whereas SCAR organizes lamellipodia and
pseudopodia (Campellone and Welch 2010). Recently, a number of new WASP family members was identified in the human genome (i.e WASH,
WHAMM, and JMY) (Linardopoulou et al., 2007; Campellone et al., 2008; Zuchero et al., 2009). The roles of these newmembers are just starting to be
elucidated. The small GTPases of the Rho family activates both SCAR/WAVE and WASP (Haddad et al., 2001). WASP proteins directly bind to Cdc42
(Symons et al., 1996) through their Cdc42- and Rac-interacting and binding (CRIB) domains, which favors focalized actin assembly and generate
dynamic cell protrusions; lamellipodia, pseudopodia, and filopodia, allowing cell elongation and polarization. SCAR/WAVEs lacks of GTPase-binding
domains, but respond to Rac as part of a complex formed by Nap1, PIR121, HSPC300 (Eden et al., 2002) and Abelson kinase (Abl) interactor (Abi), that
has been shown to bind to WASP whereas PIR121 binds directly to Rac (Innocenti et al., 2005), linking WASP to SCAR/WAVE regulation. Nap1 is
involved cell adhesion (Ibarra et al., 2006; Weiner et al., 2006).

Actomyosin contractility is the result of coordinated contraction of F-actin by Myosin II motors, leading to a retrograde flow on the plasma
membrane allowing cells on solid substrates or even in liquids to progress forward. Myosin II, an hexameric protein complex that possesses two
heavy chains (MHC2), two essential chains, and two regulatory light chains. On the other hand, actin, is a globular protein-producing polypeptide
chains with pointed (−) and barbed (+) ends. The Myosin II regulatory light chain ATPase function produces actomyosin contractility, where
MHC2 drives the translocation of actin filaments towards their (+) ends. A chain of events is tightly regulated to produce cortical tension and stiffness
by the small GTPase RhoA and its effector ROCK maintaining preserved cell morphology as roundish.

The Rho family of GTPases becomes active when they are bound to GTP. A reaction that is mediated by Rho–guanine nucleotide exchange
factors (Rho–GEFs). Rho–GTPase activating proteins (Rho–GAPs) catalyze instead the hydrolysis of GTP to GDP. RhoA and RhoC activate the ROCK
kinases; ROCK1 and ROCK2, respectively. Upon activation, ROCK phosphorylates Myosin Phosphatase (MYPT), leading to its inactivation. In
consequence, there is an increase in phosphorylated MLC2 through ROCK, leading to Myosin II activation. Rho GTPases are capable of integrating
intracellular signals downstream of many receptors including; integrins, CXCR4, c-Kit, and Rho, whereas Rac, and Cdc42 (belonging to the Rho
GTPase family), are initially required for actin polymerization for cells to migrate, spread and adhere (For a review see (Murrell et al., 2015).
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During mammalian embryonic development, myeloid cell

compartment is shaped after three consecutive waves of

hematopoiesis (details in Box 3). A myeloid progenitor rising

from the Yolk sac generate microglia in the brain during the most

primitive wave of hematopoiesis. Then, during the second wave,

a multipotent erythro-myeloid progenitor originates the tissue-

resident macrophages: Langerhans cells in the skin, Kupffer cells

in the liver and alveolar macrophages in the lung. Later, at

embryonic day 10.5 (E10.5) in mice a third wave of fetal liver

hematopoiesis occurs; fetal liver-derived monocytes differentiate

into tissue macrophages; furthermore, they also contribute to the

Langerhans cell pool in the epidermis, the lamina propria

macrophages in the gut (Yosef and Regev 2016), and seed the

lung just before birth, this later will constitute the long-lived

alveolar macrophages (AM) pool. The myeloid compartment is

highly dynamic and can adapt its behavior to respond to

surrounding challenges (during homeostasis or inflammatory

response), modifying its components differentiation, tissue

infiltration, and activation status (Yosef and Regev 2016).

We will summarize the initial hematopoietic events occurring

during the embryogenesis resulting in the establishment of the

myeloid cell compartment.We will see that few is known about the

movement nature during the establishment of the compartment.

This lack of knowledge is mostly due to three factors: the difficulty

to perform in vivo studies; the fact that key events occur at

minuscule time scales; and the observation that isolated HSCs

in vitro do not behave identically to in vivo cells, and seem to

require their surrounding environmental cues to guide their

developmental path. This is prominently exemplified by the

failures of cell engraftment studies in the context of

immunodeficiencies (Epah and Schäfer 2021).

We will analyze the evidence supporting the myeloid cells

migration’s molecular mechanisms and how the extracellular

microenvironment regulates this migration process. Finally, we

will address why the migration of myeloid cells is key for

maintaining the homeostasis of tissues.

2 Formation of the myeloid cell
compartment

2.1 Migration of fetal hematopoietic
precursors

The ability of the immune system to build organized myeloid

compartments throughout the entire organism critically depends

Box 2 Mesenchymal migration.
Mesenchymal cell migration is a motility mode that involves adhesion- mediated by cell actin-rich protrusions and often accompanied by ECM

modification. Adhesion of protrusions formed at the cell leading edge is followed by retraction of the contractile cell rear, which is accompanied by
disassembly of adhesions and rear detachment. Integrins mediate adhesion to the extracellular matrix (ECM). They correspond to non-covalently
linked α/β heterodimers constituting a family of cell surface adhesion receptors. It has been described 16 α and 8 β subunits, sub-divided into families
sharing β subunits, originating 22 different heterodimers. Some integrins mediate cell–cell adhesion; like α4 and β2 subunit–containing integrins on
leukocytes. The basal membrane surrounding lymphatic vessels contains an intricate mixture of ECM proteins, including proteoglycans, type IV
collagen, laminin, as well as fibronectin. Proteolytic extracellular matrix remodeling is performed by Matrix metalloproteinases (MMPs), (for a review
see (Bear and Haugh 2014)).

Box 3 Fetal hematopoietic development.
This is achieved in three consecutive waves of hematopoiesis that lead to the establishment of the hematopoietic system.

1) The first wave occurs duringmice embryonic day 6.5 (E6.5) and last until E8.5, and is referred to as “primitive hematopoiesis.”Myeloid progenitors
appear in the primitive ectoderm at the Yolk sac and originates primitive (fetal-type) macrophage, megakaryocyte and erythroid progenitors.
These primitive macrophage progenitors eventually differentiate into brain microglia. Between E 7.0 and E 7.5, so-called blood islands appear in
the visceral Yolk sac. Later, from E8.0 until E 9.0, blood island’s outer layer cells of the acquire a spindle shape and give rise to the endothelial cells.

2) The second wave is characterized by the development of multipotent erythro-myeloid progenitors in the Yolk sac, that emerge at approximately
E8.5 producing definitive (adult-type) erythrocytes and erythro-myeloid progenitors that will differentiate into tissue-resident macrophages, that
colonize and seed diverse tissue niches (except the brain) and exhibit tissue-specific functions.

3) The third proposed wave starts by the emergence of multipotent progenitors around E9 in both; Yolk sac and intra-embryonic tissues; including
the para-aortic splanchnopleura and aorta-gonad-mesonephros. Some of these progenitors appear as predisposed toward a lymphoid fate (i.e.
lymphoid-primed multipotent progenitors). These progenitors migrate and seed the fetal liver, and represent a long-lived pool maintain
throughout adulthood.
In contrast to the first wave of primitive hematopoiesis, the second and third waves emanate from specialized endothelial cells, called hemogenic

endothelial cells, which are present in both YS and para-aortic splanchnopleura and aorta-gonad-mesonephros, and only during a restricted period
of time (E8.5–11.5) display hematopoietic activities. Long-term adult-repopulating HSCs precursors (known as pre-HSCs) are distinguishable in the
intra-embryonic aorta-gonad-mesonephros at the end of the third wave (around E10). The last hematopoietic cells to appear are the long-termHSC
at around E11, these ones are capable to self-renew and long-term repopulating all hematopoietic lineages in engraftment assays. Most probably
these cells arise from hemogenic endothelial cells- differentiated from pre-HSCs in the aorta-gonad-mesonephros region followed by the Yolk sac
and placenta. The last wave of fetal hematopoiesis, in which Long term-HSC development begins in fetal life (mid-gestation) continues generating all
hematopoietic lineages during adulthood (for a review see (Epelman et al., 2014)).
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on spatiotemporal coordination of myeloid cell migration and

positioning in specific localizations known as “niches” (Petrie

Aronin et al., 2017). In bothmice and humans, during embryonic

development, cells proliferate, differentiate and assemble

themselves into layers, referred to as “germ layers,” each of

which give rise to specific tissue or organs.

In the gastrulating phase of embryonic development, a one-

dimensional cell layer (blastula), rearranges into a multi-

dimensional structure called the gastrula, formed by three

tissue layers; endoderm, mesoderm, and ectoderm. During the

organogenesis, each specific primitive systems will be originated

from each of these layers (Mikawa et al., 2004). The endoderm

and mesoderm are at the edge of our focus, since they will give

rise to lymphatic system (endoderm), the bones, the muscles, and

circulatory system of the embryo (mesoderm). Additionally, the

mesoderm counts for the establishment of extra-embryonic

structures, that protect and nourish the embryo; the Yolk sac,

the umbilical cord, and the placenta (Saykali et al., 2019).

The three crucial components of the immune system;

Macrophage, lymphatic, and hematopoietic systems develop

independently from each other as reported by exhaustive

phylogeny and ontogeny studies (Anastassova-Kristeva

2003). The earliest chronologically is the macrophage

system, which arises as ameboid cells in the embryonic

mesenchymal compartment. As immune sentinels, these cells

are described by their capacity to distinguish “self” from “non-

self” and ingest external elements via phagocytosis

(Metchnikoff 2012). At E7 in mice, primitive macrophages

emerge (Palis et al., 1999), even before the blood circulation

onset (Ghosn et al., 2019). The ultimate component to emerge is

the hematopoietic system, which derives from the splanchnic

mesoderm of the Yolk sac (Pardanaud et al., 1989). This

“hematogenic” tissue contains a common precursor cell,

termed “hemangioblast” (Sabin, 1920), which gives rise to

endothelial cells. These endothelial cells in turn generate

sinusoidal endothelium and HSCs–the bone marrow stem

cells that will generate myeloid cells, erythrocytes, and

megakaryocytes–in an anatomic area referred to as “blood

islands” (Moore and Metcalf 1970; Palis and Yoder 2001).

Both cell types persist committed to the outer wall of the

vitelline vessels, representing a competent mechanism for

infiltrating the hematogenic tissue into the developing

embryo (Anastassova-Kristeva 2003).

2.2 Migration of definitive hematopoietic
precursors to fetal liver and bone marrow

Hematopoietic progenitors from all waves of fetal

hematopoiesis (details in Box 3, illustrated in Figure 1)

circulate through the blood vessels and seed the fetal liver,

spleen and bone marrow hence supporting homeostasis

(See Box 4). Hematopoiesis elapse within the different

microenvironments that HSCs face during fetal and adult

development, concomitantly to temporally and spatially

delivered signals; growth factors, cytokines, and chemokines,

together with cell-to-cell–mediated signaling (Ciriza et al.,

2013). At E10, definitive HSCs arise from the aorta-gonad-

mesonephros (AGM) and generate all immune lineages

(Moore and Owen 1965; Moore and Metcalf 1970). At this

stage in development, there is no hematopoietic cell diversity

and restricted Yolk sac progenitors originate only red blood

cells and macrophages, which are the single ‘white blood cell’

existing so far.

Blood cell migration is drastically affected by

experimentally induced or naturally occurring mutations in

genes encoding cell-adhesion receptors (Anderson and

Springer 1987; Labow et al., 1994; Tedder et al., 1995b;

Subramaniam et al., 1995; Yang et al., 1995). It has been

shown that absence of β-integrins compromised migration

but not HSC differentiation (Hirsch et al., 1996), supporting

the notion that adhesive interactions facilitated by β1 subfamily

of integrins (Hynes 1992) are essential to control blood cell

precursors migration (Giancotti et al., 1986; Patel and Lodish

1986; Williams et al., 1991; Ruiz et al., 1995). β1-integrin
subfamily members are required for migration, including

both binding to the basement membrane as well as adhesion

to endothelial cells (Springer 1994). Indeed, lack of β1-integrin
does not affect blood cell differentiation, but inhibits arrival, so-

called “homing,” to the fetal liver (Hirsch et al., 1996). In sum,

these data suggest that HSC use integrins for migration,

excluding them as ameboid-migrating cells, which is

surprising because once they find their niche, tissue-resident

macrophages derived from HSC behave as ameboid cells, and

their entire function relies on this feature.

Research on the signaling controlling cell migration, using

dual-chamber based migration analyses, revealed that

chemotactic behavior is different for fetal and adult HSCs.

Both migrate in response to chemokine stromal cell-derived

factor-1α named CXCL12, but additionally fetal HSCs

significantly respond to the cytokine SLF. Effectively, all fetal

HSCs in this assay become migratory in response to CXCL12 and

SLF combination, highlighting synergic effects in the migration

of fetal HSCs in response to two SLF and CXCL12 chemoattracts

(Christensen et al., 2004). A further implication of this finding is

that HSCs, which circulate at low levels constitutively, are not

required in large fluxes entering the fetal blood circulation, when

seeding the fetal hematopoietic tissue, during the gestational

period from E12 to E17. Likewise, HSCs number noticeably

augment in the fetal liver (from 1,000 at E12.5 to more than

5,000 at E14.5 approximately) (Ikuta and Weissman 1992;

Morrison et al., 1995; Christensen et al., 2004). However, this

increase is only transient; by E15.5–16.5, the number of fetal liver

HSCs drops as they migrate to seed the spleen and the bone

marrow (Morrison et al., 1995; Ema and Nakauchi 2000;

Christensen et al., 2004). Hematopoietic niches in the spleen

Frontiers in Cell and Developmental Biology frontiersin.org04

Delgado and Lennon-Duménil 10.3389/fcell.2022.932472

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.932472


and bone marrow, are seeded progressively by HSCs meanwhile

they develop and support HSC self-renewal. Genetic deficiency of

CXCL12 or its receptor; CXCR4 in mice, leads to normal fetal

liver hematopoiesis but animals are unable to establish bone

marrow hematopoiesis (Nagasawa et al., 1996; Zou et al., 1998;

Ara et al., 2003).

2.3 Colonization of bone marrow by
hematopoietic stem cells

Toward the end of prenatal life, second trimester in humans

approximately, the liver is “invested” with HSCs and remains the

central hematopoiesis organ. At that stage, HSCs find their

FIGURE 1
Myeloid cell compartment establishment. Is achieved during the three consecutive waves of hematopoiesis that lead to the establishment of
the hematopoietic system. Myeloid progenitors develop from the Yolk sac and originate macrophage progenitors that later differentiate into
microglia in the brain, that transit from a ramified state to an ameboid phenotypewhen activated. The secondwave also occurs in the Yolk sac and it is
characterized by the development of multipotent erythro-myeloid progenitors, which give rise to tissue-resident macrophages: Langerhans
cells in the skin, alveolar macrophages in the lung and Kupffer cells in the liver. A third proposed wave in which multipotent progenitors emerge in
both the Yolk sac and intra-embryonic tissues, including the para-aortic splanchnopleura (P-Sp) and aorta- gonad-mesonephros (AGM), give rise to
long term-HSCs that migrate and colonize the fetal liver (FL), and represent a long-lived pool that will last throughout adulthood. These long term-
HSCs are capable to self-renew and long-term repopulate all hematopoietic lineages during adulthood, and give rise to dendritic cells, that are
present in all tissues.
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adulthood niche after translocating through the peripheral

circulation, guided by signals from cytokines and chemokine

receptors, to the bone cavities, leading to the establishment of the

so-called bone marrow (Christensen et al., 2004). During adult

life, HSCs migrate continually between blood and bone marrow

(Méndez-Ferrer et al., 2008), passing transitory intervals in the

circulation. It has been estimated that when peripheral

circulation is joined in mice, more than 99% of the HSC pass

less than 6 s in the circulation (Wright et al., 2001). Nevertheless,

HSC migration from fetal liver to fetal bone marrow is a process

that remains to be fully understood.

As we described in the previous section, the chemokine

CXCL12 and its receptor CXCR4 are key regulators of fetal

liver HSC migration but also during adult life (Wright et al.,

2002). The CXCL12 /CXCR4 pathway regulates the expression of

extracellular matrix assembly and degradation enzymes,

including; gelatinases A (MMP-2) and/or B (MMP-9). In

bone marrow, MMP2 upregulated expression in hematopoietic

progenitor cells (CD34+ progenitors) is achieved by facilitating

factors of cell mobilization into the circulation, such as the

granulocyte-colony stimulating factor (G-CSF) and stem cell

factor (SCF, also known as c-Kit ligand) (Janowska-Wieczorek

et al., 1999). Remarkably, cleavage of CXCL12 at positions 4–5 is

catalyzed by MMP2 (McQuibban et al., 2001). The

CXCL12 remaining fragment (position 5–67) is unable to

produce the chemo-attractive response in human CD34+

progenitors since is unable to bind to the receptor CXCR4

(McQuibban et al., 2001). The cleavage of CXCL12 resulted

from G-CSF–induced MMP2 catalysis might represent a

mechanism of controlling the release of human CD34+

progenitors into circulation (Ciriza et al., 2013). Also, since

circulating human CD34+ cells have been reported to express

MMP2 and MMP9, this suggests that their migration occurs is a

non-ameboid fashion, and that they migrate toward ECM

modifications, whereas bone marrow CD34+ cells do not,

which is reflected by their ability to migrate into Matrigel-

based matrices (Murphy and Knäuper 1997; Janowska-

Wieczorek et al., 1999).

Additionally, it has been shown that bone marrow stromal

cell-derived CXCL12 stimulates CD34+ cells migration and

CD34+ cells after reinfusion into peripheral veins are able to

migrate to the bone marrow. A study comparing spontaneous

and CXCL12 -induced migration across Transwell filters of

CD34+ cells from bone marrow, peripheral blood, and cord

blood (Voermans et al., 1999) elucidated the migration

determinants. Cord blood CD34+ cells are highly migratory

compared with the other two cell populations. Also, higher

CXCL12 induced migration was observed in bone marrow

derived CD34+ cells suggesting different sensitivity to

CXCL12. Accordingly, expression of the CXCR4 in CD34+

cells from peripheral blood was found lower compared with

bone marrow and cord blood CD34+ cells. Nevertheless, no

changes in sensitivity to CXCL12 were determined after

measuring migration towards different concentrations of

CXCL12 for bone marrow and cord blood derived CD34+

cells, in agreement with CXCR4 receptor expression. On the

other hand, when ECM protein fibronectin was used to coated

filters, an increase CXCL12—inducedmigration was observed for

peripheral blood and bonemarrow CD34+ cells (2.5 and 1.5 times

increase, respectively) and was blocked after treatment with

antibodies against β1-integrins. All together these observations

suggest that increased migration of cord blood derived CD34+

cells may favor homing to the bone marrow (Voermans et al.,

1999).

The bone is formed by an exceptional mesenchymal cell type

called osteoblast, together with characteristic extracellular matrix

Box 4 Hematopoietic progenitors seeding fetal liver, spleen and bone marrow.
Early hematopoietic progenitors seed and colonize the fetal liver, where they proliferate and mature regardless of their site of origin. Later on,

these hematopoietic progenitors seed the fetal spleen and bone marrow. In the bone marrow they generate a small pool stem cells from which
hematopoietic cells will continually differentiate during the entire life of an animal (Godin and Cumano 2005).

Fetal Liver: From E11 onwards, HSCsmigrate and rapidly expand into the hematopoietic organ rudiments (i.e. fetal liver, spleen and bonemarrow)
(Ikuta andWeissman 1992;Morrison et al., 1995; Ema andNakauchi 2000). Around E11.5-E12 (Kumaravelu et al., 2002; Christensen et al., 2004), Long
term-HSCs, derived from Yolk sac- and para-aortic splanchnopleura and aorta-gonad-mesonephros-derived progenitors, migrate to the mouse
fetal liver (and placenta). Once established in the fetal liver, the long term-HSCs proliferates and originates a hierarchical hematopoiesis, leading to
the generation of the vast majority of immune cells (adult-type), including circulating follicular B and T lymphocytes, granulocytes, and monocytes.

Spleen: Fetal spleen begins to be colonize by hematopoietic cells at E12.5 (Delassus and Cumano 1996; Godin et al., 1999). However, active
spleen seeding is detected by E15.5, with daily incremental hematopoietic activity until E17.5 (Christensen et al., 2004). Unlike fetal liver cells,
hematopoietic cells within the spleen do not significantly proliferate (Godin et al., 1999). At days 2 and 14–15 post birth (P), two peaks in the spleen of
the ‘colony-forming progenitor cells’ (CFCs) can be distinguished (Wolber et al., 2002). The fetal spleen is seeded initially by progenitors unable to
sustain myelopoiesis, suggesting that long term -HSC seeding and maintenance within this organ elapsed with a parallel mechanism (Christensen
et al., 2004), in which a more differentiated and/or distinct hematopoietic progenitor, shifts the first progenitors seeding fetal spleen (Godin et al.,
1999). However, how HSCs migrate towards the fetal spleen and expand to a specific hematopoietic linage remains to be elucidated.

Bone Marrow: Vascularization of the fetal bone marrow allows blood circulation towards the bones and enables HSCs and hematopoietic
progenitors (HSCPs) to seed the marrow cavity (Aguila and Rowe 2005). Although clonogenic progenitor activity is already detectable by E15.5, the
first functional long term -HSCs in the fetal bonemarrow can be found only at E17.5 (Christensen et al., 2004; Gekas et al., 2005). It is thought seeded
elapses concomitantly to the bone development and it is achieved by few HSCs seeding the limb bud just before the bone establishment
(Kumaravelu et al., 2002). Hematopoiesis sustained by long term -HSC is established at about E18 in the bonemarrow (Christensen et al., 2004). and
supports blood and immune system regeneration during the entire organism life (Sawai et al., 2016; Säwen et al., 2018).
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glycoproteins and an exceptionally high density of calcium salts.

Inside this rigid architecture is found the bone marrow, the well-

known blood cell production site, a combination of

differentiating hematopoietic cells in areas circumscribed by

trabecular bone, endothelium-lined sinuses, blood vessels, and

adipocyte tissue (Adams and Scadden 2006). While the role of

bone in marrow physiology remains unclear, the HSC population

has been characterized by ‘immuno-phenotype’, nevertheless, its

specific location within the bone marrow has been refractory to

analysis, because this mainly fluid tissue exists inside the stiffest

tissue: the bone (Adams and Scadden 2006). A unique HSCs-

regulatory niche is achieved in this complex microenvironment,

as shown by in vivo studies, there is an association between

hematopoiesis and osteogenesis. It has been shown that Cbfa1/

Runx2, a transcription factor important for osteoblast

progression and chondrocyte development, deficient mice

embryo have normal hematopoietic development until E17.5,

but at E18.5 both liver and the spleen display excessive

extramedullary hematopoiesis (Deguchi et al., 1999). Also, it

has been shown that collagen X, an important molecule for bone

formation leads to a similar perinatally phenotype in mice (Gress

and Jacenko 2000; Jacenko et al., 2001, 2002).

HSC migration is also affected by calcium gradients, it has

been shown that the concentration of Ca+2 in endosteal area of

the bone marrow increases together with bone mineralization. It

has been shown that CASR, a seven membrane–spanning

G-protein coupled calcium-sensing receptor, is expressed by

HSCs allowing them to respond to extracellular calcium

concentrations. Lack of CASR in HSCs leads to impairment to

collagen I adhesion, an ECM protein secreted by osteoblasts,

resulting in inability to arrive in the endosteal bone marrow

niche. CASR -deficient mice, display bone marrow hypo-

cellularity and extramedullary hematopoiesis at neonatal stage,

suggesting that CASR is required for proper HSCs migration and

homing to the bone marrow niche (Adams and Scadden 2006).

Nevertheless, it is not required during embryonic development,

as CASR-deficient embryos do not display changes in the number

of HSC in fetal liver.

Studies performed in bone marrow -derived HSCs show

them in motion. Moreover, ex vivo imaging studies have

suggested that they display dynamic membrane protrusions

associated with a rapid and directed motility (Frimberger

et al., 2001). Mimicking the homing event has been achieved

by co-culturing HSCs and stromal cells, this in vitro homing

assay has shown that individually HSCs are highly migratory,

displaying motile and long pseudopodia-like membrane

extensions. Also, it was observed that the cell movement is

rather directional in response to CXCL12 and steel factor.

Interestingly, in response to extreme pH (8.5–9.5), an increase

of size and number of pseudopodia-like membrane extensions

was observed (Allena 2013). Mature cells of the immune system

may be considered to possess motility as a necessary adaptation

for fast and efficient surveillance in the context of host defense.

However, an explanation for these phenomena in stem cells is

less teleologically intuitive. Do stem cells perform some kind of

monitoring function? Such functions are not obvious in general,

but bone marrow –derived cells do integrate into neovascular

tissue, suggesting that some participation in repair is likely

(Udani et al., 2005).

So far, we have discussed the establishment of a circuit from

Yolk sac to fetal liver and from fetal liver to fetal bone marrow,

that drives the establishment of the myeloid compartment. The

bone marrow becomes colonized just before birth in mice and

during the second trimester in humans, leading to the production

of a HSCs minor pool in which hematopoiesis relies on during

adult life (Godin and Cumano 2005). This implies that HSCs are

capable of self-renewal and multilineage differentiation within

the bone marrow niche (Adams and Scadden 2006; Arai and

Suda 2007). HSC functions are orchestrated by both, intrinsic

and extrinsic factors at a fine-tuning scale (Scadden 2006; Kiel

and Morrison 2008). For example, hematopoietic lineages

express both Rac1 and Rac2, but at the progenitor level

(HSPCs) they perform distinct functions (Matsuoka et al.,

2001). Rac1-deficient HSPCs show impaired hematopoietic

repopulation due to reduced position within the tissue rather

than defective long-term re-population potential when engraft

(Gu et al., 2003; Cancelas et al., 2005, 2006). Whereas, Rac2-

deficient HSPCs are able to engraft but repopulation is impaired,

suggesting defective adhesion to and weakened retaining within

the bone marrow niche (Gu et al., 2003; Cancelas et al., 2005,

2006). Regarding the Rac downstream effectors involvement in

the HSCs engraftment process, it has been reported that knock-

down (KD) of WAVE2 in HSCs displays modest early bone

marrow repopulation similar to Rac1-deficient HSC phenotype,

suggesting that after engraftment, WAVE2 might be the specific

effector of Rac1 in HSCs, during bone marrow early repopulation

(Ogaeri et al., 2009).

On the other hand, Cdc42; another Rho GTPase family

member, has been also been involved as a downstream

effector. Cdc42-deficient HSCs are unable to migrate across a

Transwell, or across an endothelial monolayer, following a

CXCL12 gradient (Yang et al., 2007), leading to fail at bone

marrow homing, retention, and long-term repopulation. Also,

Cdc42 was shown as a positive regulator of HSC quiescence

status, suggesting Cdc42 is critical for functional and physical

interaction between HSCs and bone marrow niche. This has been

shown to occur through N-WASp andWASp pathways that lead

to filopodium formation (Takenawa and Suetsugu 2007), isolated

Cdc42-deficient HSPCs display abnormal filamentous actin

(F-actin) reorganization after CXCL12 stimulation. Taken

together, these data show that Cdc42 is required for proper

HSC actin reorganization, directional migration and progenitor

cell adhesion supporting HSC retention and homing at the bone

marrow niche (Yang et al., 2007). Whether these phenotypes

reflect Cdc42 homeostatic role in normal HSCs is unknown,

because Cdc42-deficient mice are not viable.
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3 Homeostasis of the adult myeloid
compartment

We will focus now on the evidence supporting the migration

of adult myeloid cells in an homeostatic context, with a focus on

DC and macrophages (Hashimoto et al., 2013). Macrophages

establish a wide family of professional phagocytic cells that reside

within all tissues and includes brain microglia, epidermal

Langerhans cells, lung alveolar macrophages, and liver Kupffer

cells. This compartment plays an important role during tissue

development and homeostasis (Ginhoux et al., 2016; Mass 2018)

besides defense against invading pathogens.

Resident macrophages are prenatally established in virtually

all tissues from embryonic precursors (see Box 3) and they are

self-renewably maintained independently of monocytes (Merad

et al., 2002; Ginhoux et al., 2010; Hoeffel et al., 2012, 2015; Schulz

et al., 2012; Guilliams et al., 2013; Hashimoto et al., 2013; Yona

et al., 2013; Gomez Perdiguero et al., 2015; Sheng et al., 2015).

Importantly, Macrophages orchestrate almost all main

diseases, i.e. inflammatory (rheumatoid arthritis) & chronic

neurodegenerative diseases, infection, sepsis, and also cancer

(for a review, please check (Ardura et al., 2019). Likewise, DC

migration dysregulation leading to anomalous positioning or

activation of DCs, results in mistuned immune responses and

even immune diseases, including; allergies, autoimmune diseases,

and tumors (for a review, please check (Liu et al., 2021)).

3.1 The dendritic cell sub-compartment

DCs are the antigen-presenting cells, defined by their distinct

morphology (Steinman and Cohn 1973) are found at the

interface of innate and adaptive immune responses. They have

been classified primarily by their ontogeny, and secondarily by

their phenotype, function and location (Guilliams et al., 2014). In

this section we will described the characteristic phenotype of

DCs; immature andmature and then we will explore the diversity

of DC populations, considering that four major DC subsets have

been described and classified.

During myelopoiesis, a myeloid precursor can choose

between two routes of differentiation that will originate;

megakaryocytes, erythrocytes or granulocytes, or will become

a macrophage/DC precursor (MDP) that will be capable of

differentiating into plasmacytoids DCs (pDCs), conventional

DC (cDC)-restricted precursors named (pre-cDCs) or

macrophages, through a common DC precursor (CDP) in the

bone marrow that lost the capacity of generating monocytes.

Throughout their life, DC traffic immense distances, they

traverse a varied range of environments and barriers between

different tissues and vessels to perform their function. Upon

activation, DC precursors are challenged to leave the bone

marrow niche, entering and seeding all tissues and migrating

to lymphoid tissues to begin the adaptive immune response. Final

differentiation into immature DCs is thought to occur after

leaving the blood and seeding organ tissues (O’Doherty et al.,

1994; Geissmann et al., 2003; Ginhoux et al., 2009; Liu et al.,

2009). Extravasation of DC precursors involves coordinated

signaling through cytokines, selectins and integrins (Springer

1994; Pendl et al., 2002; Alvarez et al., 2008) and it is most

probably orchestrated by tetraspanins (Saiz et al., 2018; Yeung

et al., 2018). In response to tethering, circulating (pre-)DCs

expressing isoform L of selectin (L-selectin), and endothelial

cells expressing E and P- selectin isoforms are required for

leukocyte ‘rolling’ and homing of lymphoid and peripheral

tissues (Tedder et al., 1995a), as suggested from analysis of

L-selectin- or P-selectin-deficient mice (Mayadas et al., 1993;

Arbonés et al., 1994). Tetraspanin CD63 is a key partner protein

for P-selectin, as shown by reduced surface expression and

clustering of P-selectin in CD63-deficient endothelial cells

(Doyle et al., 2011). Later, DC precursor adhesion is achieved

after binding of chemoattractants expressed by blood

endothelium to CX3CR1 on pre-DCs (Geissmann et al., 2003;

Auffray et al., 2007). This leads to activation of α4β1 and β2-
Integrins by their ligands; ICAM-1/2, VCAM-1, and MAdCAM-

1 that are expressed on blood endothelial cells (Springer 1994).

With this, cells remain adhere and arrested, they leave the blood

vessels thought-out diapedesis (Springer 1994).

It has been described that regulation of α4β1 and/or β2-
Integrins is performed by five tetraspanin family isoforms; CD9,

CD37, CD53, CD81, CD82, and CD151 on leukocyte (Shaw et al.,

1995; Mannion et al., 1996; Shibagaki et al., 1999; Karamatic

Crew et al., 2004; van Spriel et al., 2012; Reyes et al., 2015; Wee

et al., 2015; Franz et al., 2016; de Winde et al., 2020; Dunlock

2020). Nevertheless, Cd81 and Cd37 -deficient mice display

normal immune system development (Maecker and Levy

1997; Knobeloch et al., 2000), suggesting that compensation

mechanisms through other tetraspanins can occur or that

tetraspanins might not be required for DC precursor cells to

seed peripheral tissues (de Winde et al., 2020).

3.2 DC phenotypes

3.2.1 Immature DCs
By navigating tissues immature DCs function as sentinels,

and warn the immune system of tissue damage or infection signs.

They first scan peripheral tissues (so-called “patrolling”

function), before migrating through the lymphatics to

secondary lymphoid tissues (such as lymph nodes) (Germain

1994; Matzinger 2002; Schulz and Reis e Sousa 2002).

Importantly, DCs can identify tumor antigens produced by

cancer cells (Flamand et al., 1994; Fields et al., 1998), also

playing a strategic role in initiating an anti-cancer immune

response (Coulie et al., 2014). DC maturation is caused by

uptake of foreign antigens, leading to migration to lymphoid

tissues where they interact with and activate T cells to initiate
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adaptive immunity (Ingulli et al., 1997; Bousso and Robey 2003)

through lymphatic vessels (Larsen et al., 1990; Granucci et al.,

1999).

DCs are the best example of ameboid myeloid cells, and they

are widely represented: immature DCs set habits in every tissue,

performing receptor-mediated phagocytosis or non-specific

macropinocytosis to sample ambient antigens (Reis e Sousa

et al., 1993; Sallusto et al., 1995). This is the essence of their

immune sentinel function but comes at the expense of limited

migratory capacity (Banchereau and Steinman 1998). After DCs

identify a possible danger, they stop macropinocytosis, and

become highly migratory (For a review, see (Delgado et al.,

2022)). DCs organize at the leading edge actin-rich

protrusions that allow the cell to progress across the tissues, a

process that occurs concomitantly with the so-called cell

“flowing, or a trailing edge passive movement (Lämmermann

et al., 2008). Passing through narrow spaces leads to cell

“squeezing,” is allowed by the motor protein myosin II,

leading to cell rear contraction, resulting in forward nucleus

movement. DCs have been shown to migrate quickly in an

amoeboid-like manner, exploiting actomyosin contractility via

the cell cortex to modify their shape persistently (Lämmermann

and Sixt 2009; Renkawitz et al., 2009). This motility fashion is

clearly independent of integrins because it has been reported that

integrin inactivation, via deletion of Talin and all integrin

heterodimers, involved in, has no impact on DC migration in

vivo or in three-dimensional spaces (Lämmermann et al., 2008).

Immature DCs, which are responsible for patrolling tissues,

tend to move at variable speeds as they display an intermittent

migration mode (Faure-André et al., 2008), due to the myosin

IIA antagonistic effects exerted in antigen capture by

macropinocytosis versus cell migration. Studies performed

using microfluidic devices–in which is possible to separately

alter myosin IIA activity at the front and back of the

cell–showed that during phases of the slow movement,

accumulation of myosin IIA was observed at DCs front and

was recruited to the macropinosomes used for antigen capture.

Disturbing within the cell the normal front-to-back myosin

gradient, slows down DC migration as a result of myosin IIA

enrichment in the cell front controlled by the MHC class II-

associated protein invariant chain (CD74) (Chabaud et al., 2015).

The myosin localization at the DC front is essential for antigen

capture by macropinocytosis, as revealed by the less efficient

formation and retrograde intracellular transport of antigen-

loaded macropinosomes observed in both CD74-deficient and

myosin II-deficient DCS (Chabaud et al., 2015). Recruitment of

Myosin IIA to macropinosomes requires an Arp2/3-nucleated

branched actin (Pollard and Borisy 2003; Vargas et al., 2016).

Inhibition or knock-out of Arp2/3 complex in immature DCs

leads to F-actin reduction at the cell front decreased antigen

capture but enhanced migration (Vargas et al., 2016). Thus, the

intermittent migration of immature DCs facilitates effective

antigen internalization during space exploration by these cells.

3.2.2 Mature DCs
Dendritic cells enter into a maturation program upon

encounter with a dangerous signal. Upon maturation, several

processes linked to the sentinel function are downregulated,

amongst them is macropinocytosis. DC further increase the

surface expression of many molecules upon maturation, most

of them facilitating antigen presentation, cell migration, and

chemotaxis to lymph nodes DC homing to lymph nodes at

steady-state and upon inflammation is tightly dependent on

the upregulation of the G-protein coupled chemokine receptor

7 (CCR7) (Förster et al., 1999; Ohl et al., 2004). Both CCL19 and

CCL21 are ligands of CCR7, while CCL21 is critical for DC

migration from peripheral tissues to lymphatic vessels and lymph

nodes, CCL19 allows proper localization of DC in lymph nodes

(Wendland et al., 2011). In peripheral tissues, endothelial cells

secrete CCL21, which allows the formation of CCL21 haptotatic

gradients in the direction of lymphatic vessels (Weber et al.,

2013). Endothelial cells upregulate the expression of CCL21 upon

inflammation, which increases the arrival of DC to the nearest

lymph node (Johnson and Jackson 2010). CCL21 gradients start

at approximately 90 μm from lymph vessels, which tails the

distance that shifts DC migration from random to directional

(Weber et al., 2013). CCL21 is additionally released at the site of

transmigration and promotes the entry of mature DC into

lymphatic vessels (Vaahtomeri et al., 2017). The

CCL21 gradient within lymphatic vessels also facilitates the

migration of mature DC to lymph nodes (Russo et al., 2016).

The role of pro-inflammatory mediators in DC activation has

been widely studied. For example, PGE2 induces

CCR7 oligomerization on the DC surface, which leads to

CCR7 phosphorylation by Src kinases and increases the

efficiency of DC migration along CCL21 gradients (Hauser

et al., 2016).

Remarkedly, to be able to efficiently follow these gradients,

DCs must increase their cell-intrinsic migration speed and

persistence (Vargas et al., 2016).

For mature DC to reach their final destination, lymph nodes,

they first need to enter lymphatic vessels through intravasation.

The first step in this process is to cross the vessel’s basement

membrane. It has been shown that for this, DC search for entry

points or portals along the discontinuous structure of the

membrane. Once they have found a portal, DC send

protrusions into the vessels and contracts their cell rear to

squeeze and penetrate its lumen (Pflicke and Sixt 2009).

Thus, DC maturation induces major actin cytoskeleton

rearrangements, which enhances DC motility to permit a fast

migration (Vargas et al., 2016). In contrast to the homeostatic

situation, in mature DCs most of the F-actin is located at the cell

rear (Vargas et al., 2016) and it is critically maintained by the

Formin protein family member mDia1, which is activated by the

small GTPase RhoA, thereby ensuring fast migration. It has been

shown that mDia1- deficient DCs display impaired chemotaxis of

mature DCs along CCL21 gradients via lymphatic vessels to the
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lymph nodes (Vargas et al., 2016). Upon systemic inflammation,

blood circulating DCs change their ameboid behavior. The

integrin ligands expression (e.g. ICAM1 and VCAM1) is

upregulated by the lymphatic endothelium hence promoting

the adhesion-mediated DC transmigration (Johnson et al.,

2006; Johnson and Jackson 2010; Vigl et al., 2011).

Monoclonal antibodies based blocking of β2-Integrin, in

presence of the pro-inflammatory cytokine TNF-α, leads to a

reduction in DC transmigration (Johnson and Jackson 2010).

The adhesion molecule L1 (also known as CD171 or L1CAM) is

additionally expressed on the surface of some DC subsets, like in

Langerhans cells (Pancook et al., 1997; Maddaluno et al., 2009)

and via intercellular binding to integrins or L1, it is involved in

neuronal cell movement and cell-cell adhesion (Maness and

Schachner 2007). L1-deficient DCs adhere less to the

endothelium and show defects in transmigration across the

lymphatic endothelium (Maddaluno et al., 2009), suggesting

that L1 has a role in blood DC intravasation.

Lymphatic endothelial cells (LECs) express high levels of the

lymphatic vessel endothelial protein LYVE-1, a receptor for

hyaluronic acid (HA), which is bound at the DC surface. This

interaction between HA and LYVE-1 facilitates DC entry into the

lymphatic capillaries (Johnson et al., 2017). Upon inflammation,

LECs also upregulate the expression of integrin ligands such as

ICAM-1, which promotes an adhesion-mediated DC

transmigration (Johnson et al., 2006; Johnson and Jackson

2010; Vigl et al., 2011). Finally, the interaction between DC

and LECs increases intracellular calcium signaling, leading to the

secretion of vesicles loaded with CCL21, thereby reinforcing

dendritic cell recruitment and entry into the lymphatics

(Vaahtomeri et al., 2017). Once DC enter lymphatic vessels,

which forms an incredibly complex network, they need 12–24 h

to arrive at lymph nodes. Indeed, DC moves slowly within

lymphatics along the vessel wall by extending protrusions at

the cell’s front (Tal et al., 2011).

Once the maturation state is achieved, potentially, an

increase in DCs macropinocytosis might be triggered in

response to extracellular fluid increased volume, hence

facilitating effective sentinel movement during inflammation

(de Winde et al., 2020). Indeed, DC migration towards body

tissues is an integrin-independent process and raises interesting

questions regarding the migration mechanical forces, because

when migrating cells exert large forces upon the surfaces, hence

reducing their sensitivity to minor forces (Balaban et al., 2001;

Legant et al., 2010; Moreau et al., 2019). Whereas, adhesion-

independent migration exert significantly smaller forces on the

substratum (Bergert et al., 2015; Moreau et al., 2019), are DC

sensitive to the small forces? It has been shown that hydraulic

resistance produced by fluid displacement as cells progress

towards the tissue, coupled with geometric confinement,

represents the major factors that restrict DC movement

within tissues. Because immature DCs constitutive engulf the

extracellular fluid non-specifically via macropinocytosis they

have a decreased sensitivity to hydraulic resistance (Sallusto

et al., 1995; Moreau et al., 2019). Macropinocytosis inhibition

has been shown to restore barotaxis (i.e. cell’s tendency to move

along the path of least hydrostatic resistance) in immature DCs

fields (Moreau et al., 2019). Tissues with high hydraulic

resistance that otherwise may be unreachable, can be patrol

tissues exhaustively by this immature DCs special feature.

3.3 DCs subtypes

3.3.1 Coventional DCs
cDCs constitute a small subset of tissue hematopoietic cells

that reside in most lymphoid and non-lymphoid tissues, and are

characterized by an enhanced capacity of sensing tissue injuries,

phagocytosis of environmental and cell associated antigens, that

later are presented to T lymphocytes. Thus, cDCs induce

immunity to any tissue foreign antigens and generate

tolerance to self-antigens. They can be divided into migratory

DCs, which reside in non-lymphoid tissues and lymphoid tissue-

resident DCs. They have two main functions: maintain tolerance

to self and induce specific immune responses against antigens

(Merad et al., 2013). Then, some of the key features of cDCs are;

(1) their capacity of constantly capture tissue and blood antigens

in non-lymphoid tissues and in the spleen marginal zone in

homeostasis. The cDCs found in healthy non-lymphoid tissue,

i.e. the skin, are not ‘resting’, instead they are permanently going

into a maturation process known as ‘homeostatic migration’ that

drives them into the draining lymph nodes (Wilson et al., 2008)

at lower frequency (Shortman and Naik 2007). (2) Their unique

dotation for processing and presenting antigens (Villadangos and

Schnorrer 2007; Segura and Villadangos 2009; Joffre et al., 2012).

Following homeostatic maturation, non-lymphoid tissue cDCs

upregulate their expression of MHC class II molecules and they

can transport cutaneous self-antigens to the T cell zones of the

draining lymph node (Hemmi et al., 2001). The homeostasic

migration event of non-lymphoid tissue cDCs leads to

upregulation of MHC class II molecules as they can transport

cutaneous self-antigens to the draining lymph nodes T cell zones

(Hemmi et al., 2001) and is governed by the expression of the

chemokine receptor 7 (CCR7) on their surface (Ohl et al., 2004).

(3) A superior capacity to migrate, even when they are loaded

with antigens, to a T cell zone in the lymph node during

homeostasis and during inflammation (Förster et al., 2012).

Once in the lymph node, they are capable of priming naive

T cell responses (Banchereau and Steinman 1998). In most

mouse peripheral tissues, including the skin and the gut, DCs

constitute a network of trafficking from which they are able to

enter or exit from non-lymphoid organs.

The skin is composed by two anatomically different layers:

the epidermis, a tightly packed stratified epithelium formed by

keratinocytes generating the water impermeable stratum

corneum, and the dermis, formed by fibroblasts, collagen and
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elastin fibers. Both layers are separated by a basement membrane.

In the epidermis, it is localized a unique population of DC,

known as Langerhans cell (LCs), that expresses C-type lectin

langerin (CD207) and represents the exclusive tissue-resident DC

population in the epidermis. LCs are localized in the

interfollicular epidermis and the epithelium of the hair

follicles, which are dense in mouse, whereas in the human

skin, larger areas of interfollicular skin sparse with hair

follicles. In homeostasis the dermis is populated by several

types of DCs, including; (1) XC-chemokine receptor 1

(XCR1)+ conventional DC1s (cDC1s) the only subset to

express high levels of langerin in the dermis. Of note, the

human dermis XCR1+ dermal cDCs co-express CD141 (also

known as thrombomodulin and BDCA3) and XCR1 (Haniffa

et al., 2012). (2) CD11b+ conventional DC2s (cDC2s), (3)

XCR1−CD11b− double negative cDCs (Malissen et al., 2014;

Tan et al., 2015). Whereas, during inflammation, CCR2+

monocyte- derived DCs (moDCs) also expressing CD11b are

recruited to the dermis.

In the intestine, DC migration contributes importantly to

tissue-homeostasis and immune surveillance of the gut,

maintains tolerance towards proteins form food and

commensal organisms. Within the small intestinal mucosa are

located the lamina propria, Peyer’s patches and solitary intestinal

lymphoid tissues, from each of themmigratory intestinal DCs are

derived. The largest compartment is generated by the small

intestine lamina propria DCs, and that is composed (at least)

by three different cDCs populations, all of them are migratory

and reside in the intestine derived lymph (Cerovic et al., 2013)

and the intestine-draining mesenteric lymph nodes. It has been

shown that homeostatic migration from the lamina propria-

derived towards the mesenteric lymph nodes is dependent of

CCR7 signaling (Pabst et al., 2006; Schulz et al., 2009) and is

significantly amplified in response to TLR triggering and

inflammatory cytokine (Yrlid et al., 2006). Additionally, in the

lamina propria reside the intestinal cDC1s CD103+CD11b− and

intestinal cDC2s CD103+CD11b+ subpopulations (Persson et al.,

2013). Both lamina propria-derived CD103+ cDCs have been

shown to induce response in regulatory T cells, and this

induction is depend on retinoic acid (Coombes et al., 2007;

Sun et al., 2007). CD103+ CD11b− DCs share features with

mouse splenic CD8+ DCs: they have a remarkably efficiency at

cross-presenting antigens to activate CD8+ T cells, and they

express Clec9, a molecule that recognizes F-actin released

from necrotic cells, and TLR3, which binds double-stranded

RNA. These cells are also able to cross-present skin-associated

self-antigens to CD8+ T-cells, suggesting a potential role in

tolerance to self under homeostatic conditions (Heath and

Carbone 2013). Whereas the CD103+ CD11b− DCs population

was shown to be crucial during early phase of infection with

Salmonella enterica serovar Typhimurium when bacterias are

disseminating to initiate a systemic infection (Erazo et al., 2021).

This population is also the main producer of CCL17 cytokine

which induces DC migration from the skin, amplifying their

responsiveness to CCR7 and its ligand (Stutte et al., 2010). Also, it

has been shown that upon skin infection with herpes simplex

virus (HSV), CD103+CD11b−DCs present antigens preferentially

to CD4+ T-cells (Mount et al., 2008). Finally, two small subsets

have been described; CD103−CD11b+CX3CR1mid cDCs that

reside in the lamina propria small intestine of mouse and

human (Cerovic et al., 2013; Scott et al., 2015) and a ‘double

negative’ CD103−CD11b− DCs that has been shown to be present

in the intestinal lymph (Cerovic et al., 2013).

DC-mediated transport of antigen from the intestine leads to

T cell priming in mesenteric lymph nodes after oral antigen

administration (Johansson-Lindbom et al., 2005; Worbs et al.,

2006). It has been shown that upon challenge with luminal

Salmonella bacteria, CD103+CD11b+ intestinal DCs are the

first to acquire bacterial antigen and are recruited from the

lamina propria into the intraepithelial cell layer after active

migration (Farache et al., 2013). Recently, it has been shown

that lamina propria CD103+CD11b+ cDC2s are imprinted by

‘environmental cues’ according to their position within the tissue,

these cues include food-derived retinoic acid (ATRA) and the

mucus component Muc2. Lamina propria cDCs display a

mature-like proinflammatory phenotype; promoting T cell

activation, whereas intraepithelial CD103+CD11b+ cDC2s

exhibited an immature-like phenotype as well as tolerogenic

properties as they trigger T cell anergy (Rivera et al., 2022).

These different phenotypes raised from the action of ATRA,

which improved actomyosin contractility and stimulated lamina

propria resident cDC2 transmigration into the epithelium. This

implies that by reaching distinct niches inside the tissue, DCs can

exist as immature and mature cells within the same tissue,

constituting an efficient diversification mechanism within the

tissues.

Lymphoid-resident DCs present antigens in lymphoid

organs; the thymus, lymph nodes, the spleen, and in Peyer’s

patches. They are usually classified into CD8+cDCs and CD8−

cDCs, also classified into CD4+CD8− (CD4+) and CD4−CD8−

cDCs. In lymphoid organs and in addition to lymphoid resident

cDCs, two subsets of migratory DCs have been characterized in

mice: Integrin αE/CD103+ and Integrin αM/CD11b+ (Shortman

and Naik 2007). Typically, lymphoid-resident DCs display an

immature phenotype with high antigen uptake capacity whereas

migratory DCs appear to have mature-like phenotype once they

reach lymph nodes (Wilson et al., 2003).

3.3.2 Langerhans cells
(LCs) are the DCs that reside on the stratified epithelia (Helft

et al., 2010), which are concentrated in the epidermis where they

co-exist in intimate association with the keratinocytes, the main

epidermal cell type. LCs are also found in other stratified

epithelia, such as the genital epithelium and oral cavity

mucosa, but they rise from a different precursor and are

functionally different (Capucha et al., 2015). In homeostasis,
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they continuously extend membrane protrusions to patrol their

environment, and upon encountering a pathogen, they engulf it

using these large and dynamic dendrites (Ng et al., 2008).

Epidermal Langerhans cells express high levels of langerin,

which has been shown to have a key role in the uptake of

several pathogens including type I of human

immunodeficiency virus (HIV1) (Turville et al., 2002). LCs are

also characterized by the expression of E-cadherin, EpCAM,

DEC205 and the presence of “mysterious” granules called

Birbeck granules whose exact function remains to be

discovered. In homeostasis, LCs constantly migrate to lymph

nodes with a rate that increases upon inflammation (Heuzé et al.,

2013).

LCs were originally described according to functional criteria

as a part of the DC compartment, but today they are considered

to be derived from embryonic precursors as a subset of tissue-

resident macrophages (Hoeffel et al., 2012; Doebel et al., 2017).

The precise LCs function during an immune response has not

been fully clarified despite quick progress in the field. Using

developmental origin as a distinguishing feature, LCs can

defensibly be classified in the macrophage lineage (Guilliams

et al., 2014). Even though ontogenic similarities are shared with

tissue-resident macrophages, LCs unlike macrophages,

constantly migrate to draining lymph nodes to present self-

antigens and establish immune tolerance in homeostatic

conditions (Ghigo et al., 2013; Gosselin et al., 2014), but as

tissue-resident macrophages; they retain a unique self-renewal

capacity within the epidermis (Cumberbatch et al., 2001).

In homeostasis, LCs reside within epithelial layers and

establish one of the initial lines of immunological defense

against pathogens (Deckers et al., 2018). Without threatening,

LCs change continuously shape by extending and retracting

protrusions within the intercellular spaces and also between

epidermal cells, establishing a dense network across the

epidermis. This dynamic behavior allows large epidermis

sampling at the same time as the remaining sessile

(Kissenpfennig et al., 2005; Nishibu et al., 2006). Both in

steady-state conditions and during inflammation LCs can take

up and process foreign antigens, which in the lymph nodes are

presented to cells triggering the adaptative immune response.

When LCs are challenged, they undergo a series of changes

that allows them to migrate. Initially, they weaken their

intercellular association with the surrounding keratinocytes

through the release of E-cadherin, yielding to β-catenin
translocation, which is involved in the tolerogenic phenotype

of DCs (Schuler and Steinman 1985). Also, as LCs interact with

ECM components of the dermis and lymph nodes. It was shown

that α-Integrins regulate the initial stages of LC migration out of

the epidermis across the underlying basal membrane (Price et al.,

1997). This implies that LCs behave differently fromDC ameboid

sentinels, because they require integrins on the LC surface to

regulate LC migration from the epidermis towards the draining

lymph nodes. It seems that, similarly to macrophages in the

epidermis. LCs locally secrete collagen-degrading matrix

metalloproteinases, facilitating reorganizations to reach the

dermis after crossing the underlying basement membrane,

enter the afferent lymphatics to enter into the T cell area in

the draining lymph node. In so doing, LCs (Nagao et al., 2012;

Deckers et al., 2018)

Nagao et al. showed that an intermediate population of LC-

precursor is recruited via hair follicles to the epidermis for

replenishment upon LC migration to lymph nodes. The

authors analyzed the repopulation of the skin by LCs in

transgenic mice conditionally depleted of langerin-expressing

cells (langerin being a Langerhans cell marker). As previously

described, in absence of threat, this is a physiological process, but

it is accelerated by treating the skin with a hapten to induce

inflammation.

After LCs depletion, external stress (induced by stripping the

cornified skin sheets with adhesive tape) rapidly induced the

accumulation of leukocytes near hair follicles. At later time

points, LCs could be seen to extend dendrites or migrate into

the inter-follicular epidermis (Woodman 2012). Interestingly,

another myeloid cell population was found in higher numbers at

the epidermis following LC depletion, featured by expression of

GR1 as opposed to langerin, EPCAM (another LC marker), and

MHC class II molecules, and was suggested to be an immediate

precursor of an LC sub-population (which are GR1-) and were

originated from bone marrow-derived GR1hi monocytes. Using

bone marrow chimeras, it was shown that these cells were

different from CX3C-chemokine receptor 1 (CX3CR1)-

expressing LC precursors that populate the skin during

embryonic development. Also, this LCs reseeding process

from the bone marrow into the epidermis elapses across

precisely defined paths along the hair follicle (Nagao et al.,

2012). Maturation of LCs, is achieved by an increased

expression of actin concomitantly with additional actin

filaments formation to allow the formation of dendritic

structures and migration of formerly sessile cells, (Ross et al.,

1999).

3.3.3 Plasmacytoid DCs
(pDCs) express relatively low levels of MHC class II and co-

stimulatory molecules (Heuzé et al., 2013). In homeostasis. pDCs

are absent from the skin and they are only recruited in inflamed

skin where they promote wound repair (Gregorio et al., 2010)

and also participate in the systemic pro-inflammatory response

triggered after stimulation with Toll-like receptor 7 (TLR7)

agonists (Guiducci et al., 2010). Then, pDCs they accumulate

principally in lymphoid organs and whose major function is, in

response to viral infections, to secrete high amounts of

interferon-α (IFN-α), prior to differentiating into mature DCs

that are able to prime T cells against viral antigens (Liu 2005;

Merad et al., 2013; Mildner and Jung 2014; Schlitzer and

Ginhoux 2014; Sander et al., 2017). pDC migration has been

shown different from that of cDCs. Additionally, to secondary
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lymphoid organs, pDCs can also migrate from blood into

peripheral tissues. pDC migration depend CD62L, PSGL1,

β1 and β2 integrins and multiple chemokine receptors, such

as CXCR4, CCR7, CXCR3, CCR5, CCR2, CCR6, CCR10 and

CCR9 (Sozzani et al., 2010; Seth et al., 2011). Also, another

difference is that pDCs derived from BM traffic into the blood

and circulate through high endothelial venules, instead of

afferent lymphatics as cDCs, until reaching T cell areas inside

the lymph nodes (Penna et al., 2001; Sozzani et al., 2010).

3.3.4 Monocyte-derived dendritic cells
(MoDCs), are the DCs that differentiate from monocytes

upon inflammation (Geissmann et al., 2010). Monocytes

constitute about 10% of leukocytes in human blood and 4% of

leukocytes in mouse blood (Guilliams et al., 2018). Upon certain

infections, the number of circulating monocytes increase and

they infiltrate into the infected tissue or organ (Qu et al., 2014),

where they differentiate into DCs (Schlitzer et al., 2015). There

are four general subsets of monocytes according to their surface

expression of CD14 and CD16: CD14high CD16−, CD14high

CD16low, CD14low CD16 high, and CD14low CD16low (Ziegler-

Heitbrock et al., 2010).

Human MoDCs, as well as the previously described

subpopulations of DCs, have a migratory capacity toward the

lymph node dependent on surface CCR7 expression in response

to cytokines CCL19 and CCL21, but additionally requires

prostaglandin E2 (PGE2) (Scandella et al., 2002).

Proinflammatory mediator PGE2 has been shown to be

crucial for MoDCs to acquire substantial chemotactic

responsiveness to lymph node–derived chemokines and

develop potent T-helper cell stimulatory capacity (Scandella

et al., 2002).

4 Tissue-resident macrophages

4.1 Brain microglia

Microglia are central nervous system resident

macrophages. Under physiological conditions, microglia are

in a state known as “ramified’ and present processes that are

being dynamically extended and retracted. They change to an

“amoeboid” status if there is a neuronal injury, retracting their

protrusions; this state includes migration and accumulation of

microglia at the site of damage (Okajima and Tsuruta 2018).

Additionally, some microglia display “intermediate” status,

mixing functions between “ramified” and “amoeboid.” In the

ramified form, microglia without translocating their cell body

move their processes, whereas, in the amoeboid form, the

entire microglia is able to migrate towards the brain tissue

(Kettenmann and Verkhratsky 2011). Two-photon brain

imaging and single-cell RNA sequencing have revealed that

heterogeneity of microglia status, defined by their morphology

and functionality, depends on the brain region in an age-

dependent manner. However, the relation between microglial

morphology and function and the molecular mechanism

involved remains controversial (Okajima and Tsuruta

2018), whether these migration fashions are distinctly

regulated during development and in response to pathology

remains to be elucidated. Several candidates to represent a

signal for microglia during pathological events occurring in

the brain have been suggested, including the chemokine

CCL21 (Rappert et al., 2002), ATP (Honda et al., 2001;

Davalos et al., 2005), morphine (Takayama and Ueda

2005), lysophosphatidic acid (Schilling et al., 2004),

cannabinoids (Walter et al., 2003), and bradykinin (Ifuku

et al., 2007). Also, transporters and ion channels related to

the actin cytoskeleton during cell migration have crucial roles

(i.e K+, Cl− channels, Na+/Ca2+, Na+/H+, Cl−/HCO3−

exchangers, and Na+/HCO3− co-transporter and Ca2+-

permeable stretch-activated cation channels) and whose

role in microglial migration remains to be analyzed in

detail (Schwab 2001a, b; Ifuku et al., 2007)

Real-time imaging based on two-photon laser microscopy

has revealed that microglial processes, highly dynamic, move

randomly, and quickly towards the brain parenchyma (Davalos

et al., 2005; Nimmerjahn et al., 2005). Local brain ATP injection

has been used to analyze the chemotaxis of microglial processes,

that rapidly orient to the site of damage. This behavior can be

reproduced by performing a laser ablation and can be stopped by

the ATP-hydrolyzing enzyme apyrase or by G protein-coupled

purinergic receptors and connexin channels blockers, that are

highly expressed in astrocytes, suggesting ATP as primarily

stimulator of astrocytes, and later of microglial cells (Davalos

et al., 2005).

Pathological conditions (i.e., stroke, lesion, tumor invasion,

or neurodegenerative disorders), trigger microglial activation and

migration to lesions. Studies in isolated living slices from adult

brain-injured mice, showed 24 h after injury the widespread signs

of perilesional microglia migration, which peaked at 3 days with

~5 μm/min average migration speed and maximum speed

of >10 μm/min., similar to the average speed of an immature

DCs (5–8 μm/min) (Maiuri et al., 2012), but it was mostly

achieved in a random-walk migration fashion, in opposition

to the directional chemoattract-guided migration expected

(Carbonell et al., 2005a, b).

Furthermore, microglia’s closely related features to

macrophages as crucial mediators of the immune response in

the brain, because they are subject to suffering striking functional

and morphological changes after central nervous system threat.

Microglia express many neurotransmitter receptors and could be

stimulated by excitatory neurotransmitters. It has been described

that cultured microglia stimulated with glutamate receptor

agonist kainate (KA) experienced dramatic cytoskeletal

rearrangements; cytoplasmic redistribution of actin filaments

and bundles, as revealed by phalloidin staining. This suggests
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changes in migration and phagocytosis of microglia cells trigger

by a glutamate receptor agonist (Christensen et al., 2006).

On the other hand, it has been also shown that cultured

human microglia expressed receptors for the complement

fragments C3a and C5a (Lacy et al., 1995), known

anaphylatoxins able to trigger the complement system

activation, an important event during and immune response

(Noris and Remuzzi 2013). C5a receptor expression can be

greatly upregulated in the spinal cord microglia following

peripheral nerve injury or in a brain undergoing inflammation

(Griffin et al., 2007), whereas in a healthy brain remains

marginally expressed (Gasque et al., 1997). This C5a receptor

has been proposed as a regulator of microglial migration, because

microglial cells in murine culture, after treatment with C5a

quickly (within seconds) trigger membrane ruffling together

with rearrangement of the actin cytoskeleton that allows

lamellipodia extension independent from the concentration of

Ca2+ intracellular (Nolte et al., 1996). These phenomena can be

inhibited by cytochalasin B suggesting an important role for the

cytoskeleton (Nolte et al., 1996).

Additionally, it has been shown that stimulation of CXCL12 /

CXCR4 pathway can trigger microglial migration and is

accelerated by brain hypoxia, due to increased

CXCR4 expression induced by the ‘hypoxia inducible factor-

1α’ (HIF-1α) activation and PI3K/Akt signaling pathway (Wang

et al., 2008). Following a hypoxic threat in neonatal rats,

amoeboid microglial cells increase the production of

monocyte chemoattractant protein-1 (MCP-1) through the

NF-κB signaling pathway, leading to migration (from the

surrounding areas) and amoeboid microglial cells

accumulation into the periventricular white matter (Deng

et al., 2009).

4.2 Liver Kupffer cells

Kupffer cells are commonly thought sessile tissue of the liver

and constitute the greatest pool of resident macrophages in the

body, accounting for around 30% of nonparenchymal liver cells,

playing an crucial role in phagocyting foreign substances

contained in the systemic circulation (Brouwer et al., 1995).

The role of Kupffer cells acting as antigen-presenting cells by

engulfing external particles, was shown in vivo by a high-resolution

video microscopy (MacPhee et al., 1992). They were shown to be

able to independently migrate, in directions different from those of

surrounding Kupffer cells, along sinusoidal walls, with a mean speed

of migration of 4.6 ± 2.6 (SD) μm/min (n = 29 migrating Kupffer

cells) that remain constant when migration assay was performed

following or not the flow. The phagocytic challenge study in vivowas

done by presenting fluorescent microspheres and showed that

Kupffer cells that engulfed a few microspheres migrated slowly

(~1 μm/min, n = 10), compared with cells that engulfed many

microspheres, which were unable to migrate (MacPhee et al., 1992).

Interestingly, Kupffer cell functions impaired by aging are

thought to be responsible for the susceptibility to sepsis followed

by infection, trauma, or tumorigenesis observed in old people. A

study shows that the distribution and contents of cytoskeleton-

forming proteins are diminished by age in Kupffer cells. In 24-

month-old Kupffer cells actin, myosin and vimentin were

significantly decreased to 68%, 85%, and 76% respectively,

compared with freshly derived Kupffer cells. Furthermore, a

quantitative evaluation of polystyrene beads phagocytosis by

primary cultured Kupffer cells at several ages evidenced

significant decreases in phagocytic activity as cells age (Sun et al.,

1998).Whether theirmigration is impaired remains to be elucidated.

4.3 Lung alveolar macrophages

Alveolar macrophages (AMs) establish the primary line of

phagocytic defense in the alveolus (lower airways), and are

continuously exposed to inhaled substances or pathogens as a

result of their exposed position in the alveolar lumen (Féréol

et al., 2008). AMs are large mononuclear, powerful phagocytic

cells found on the alveolar surface. Similar to other leukocytes

AMs are mobile and easily recruitable immune cells that fight

aggressively against infection. Nevertheless, they are also present

in absence of infection or particulate threat. Despite their position as

the primary antigen-exposed immune cell population, and their

range of immunoregulatory functions, AMs were not commonly

thought to contribute to adaptive immune responses. It was widely

believed that AMswere unable tomigrate from the alveolar spaces to

lung draining lymph nodes. Instead, constitutive CCR7-dependent

migration of pulmonary DC was thought to be the only mechanism

by which particulate antigen is transported from the lungs draining

lymph nodes (Legge and Braciale 2003; Jakubzick et al., 2006).

Nevertheless, their role in the adaptive immunity to inhaled

material, including pathogens, was shown in lung draining

lymph nodes following transport of antigen to this site (Kirby

et al., 2009).

Assessment of the F-actin cytoskeleton, (revealed by intensity of

phalloidin staining), revealed AM population heterogeneity and

described four types of AM phenotypes (A-D) according to SP-A

genotype, sex, and age , and degree of AM exposure to SP-A1 or SP-

A2 (acutely or chronically) (Tsotakos et al., 2016). Since for the

moment, there is no direct evidence supporting a functional

significance of these sub-populations, it is possible that they

represent AM different activation stages. The globular actin

(G-actin) -based AM intensity and measurements changed

among the F-actin-based AM subpopulations, suggesting that

changes in cell phenotype can reflect alter gene expression

instead of only cytoskeleton rearrangements (Tsotakos et al., 2016).

Pulmonary surfactant protein (SP), is a lipoprotein complex

is essential for life, due to its capacity of diminishing surface

tension at the alveolus air-liquid interface, preventing their

collapse at lung low air volumes. SP is formed by a
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combination of phospholipids, non-serum-derived proteins, SP-

A, SP-B, and SP-C (reviewed in (Floros et al., 2021). It has been

described that surfactant protein A (SP-A) and its isoforms, can

induce actin cytoskeleton modifications in AMs after

microorganisms threat in the lung, contributing to immunity

by regulating inflammation (Tino andWright 1999). The pattern

of F-actin fluorescence distribution (revealed by AlexaFluor

phalloidin staining) is reduced in SP-A2 compared to SP-A1

(both human isoforms) and the effect on actin-related/

cytoskeletal proteins is specific as shown via proteomic

analysis (Phelps et al., 2013), suggesting differences in actin

cytoskeletal processes. Specifically, in this study, the authors

show that the ARP3—part of Arp2/3 actin nucleation

complex that nucleates branched actin–is also diminished in

SP-A2 AM, in agreement with lower F-actin levels (Floros 2021).

In the present COVID pandemic, AMs are in the limelight. It

has been shown that SARS-CoV-2 infects AMs, which react by

secreting T cell chemoattractant molecules (Grant et al., 2021).

Recruited T cells induce inflammatory cytokine release from AM

when producing Interferon-γ, a signal pathway leading to

enhanced T cell activation. According to the latest models,

during SARS-CoV-2 infection, AMs- containing SARS-CoV-

2 and T cells establish positive feedback that persists together

with an alveolitis (Grant et al., 2021).

5 Perspectives

Myeloid cells constitute an immune system main cellular

compartment that comprises monocytes, DCs, tissue-resident

macrophages, and granulocytes. In this review we have focused

on how DCs, tissue-resident macrophages and their precursors

use migration to fulfil their sentinel function. Indeed, cell

migration is a fundamental feature to these cells, from their

embryonic development to tissue homeostasis, immune

surveillance, and wound healing (Yamada and Sixt 2019).

Moreover, their aberrant migration can contribute to

pathologies such as chronic inflammation (Qu et al., 2019),

vascular diseases (Yu et al., 2018), and tumor development or

growth (van Helvert et al., 2018).

We anticipate that future studies should shed light on the

molecular mechanisms that control the migration of DC and

macrophage precursors. Indeed, knowledge is limited there,

most likely as a consequence of the challenges involved in

obtaining enough cells and recapitulate the microenvironment

in which they evolve in in vitro. Emergence of micro-fabricated

tools that allow reconstitution of idealized migration conditions

should help circumvent this problem (Charras and Sahai 2014).

The use of these tools can further help comparing the requirements

for migration of these different cell types in a “normalized”

environment. The ‘world cell race’ (Maiuri et al., 2012) is an

‘iconic’ illustration, in which migratory conditions were

standardized allowing comparison of migration speed and

migration persistence on a one-dimensional (1D) ECM-coated

surface of 50 cell types, leading to a universal (1D, 2D and 3D)

comprehensive understanding (Maiuri et al., 2015). In addition,

recent studies have revealed that cell confinement, strongly

influence the migration of immune sentinels (Charras and

Sahai 2014; Stroka and Konstantopoulos 2014; Hung et al.,

2016). As confinement growths, cell deformation in order to

squeeze into narrow spaces becomes more difficult. The

nucleus, the stiffest cellular organelle, during confined migration

has a rate-limiting role, preventing cell movement in ECM pores

underneath a cell life-threatening threshold (Beadle et al., 2008;

Wolf et al., 2013; Davidson et al., 2014; Harada et al., 2014). It has

been shown that confinement causes nuclear deformation because

it imposes a mechanical stress on it (Page-McCaw et al., 2007;

Friedl and Wolf 2009), leading to localized nuclear envelope

rupture and consequent DNA-damage, which is particularly

relevant for tumor cells (Denais et al., 2016) and in DCs (Raab

et al., 2016; Alraies et al., 2022). How the deformation incidents

that immune sentinels experience during their life-time impact on

their immune-surveillance function in the context of infection or

cancer remains as an opened fascinating question to be addressed.
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