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Abstract 

Background:  Immune-related genes (IRGs) have been confirmed to have an important role in tumorigenesis and 
tumor microenvironment formation. Nevertheless, a systematic analysis of IRGs and their clinical significance in soft 
tissue sarcoma (STS) patients is lacking.

Methods:  Gene expression files from The Cancer Genome Atlas (TCGA) database and Genotype-Tissue Expression 
(GTEx) were used to select differentially expressed genes (DEGs). Differentially expressed immune-related genes 
(DEIRGs) were determined by matching the DEG and ImmPort gene sets, which were evaluated by functional enrich-
ment analysis. Unsupervised clustering of the identified DEIRGs was conducted, and associations with prognosis, 
the tumor microenvironment (TME), immune checkpoints, and immune cells were analyzed simultaneously. Two 
prognostic signatures, one for overall survival (OS) and one for progression free survival (PFS), were established and 
validated in an independent set. Finally, two transcription factor (TF)-IRG regulatory networks were constructed, and a 
crucial regulatory axis was validated.

Results:  In total, 364 DEIRGs and four clusters were identified. OS, TME scores, five immune checkpoints, and 12 
types of immune cells were found to be significantly different among the four clusters. The two prognostic signatures 
incorporating 20 DEIRGs showed favorable discrimination and were successfully validated. Two nomograms combin-
ing signature and clinical variables were generated. The C-indexes were 0.879 (95%CI 0.832 ~ 0.926) and 0.825 (95%CI 
0.776 ~ 0.874) for the OS and PFS signatures, respectively. Finally, TF-IRG regulatory networks were established, and the 
MYH11-ADM regulatory axis was verified in three independent datasets.

Conclusion:  This comprehensive analysis of the IRG landscape in soft tissue sarcoma revealed novel IRGs related to 
carcinogenesis and the immune microenvironment. These findings have implications for prognosis and therapeutic 
responses, which reveal novel potential prognostic biomarkers, promote precision medicine, and provide potential 
novel targets for immunotherapy.
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Background
Soft tissue sarcomas (STSs) are a rare group of heteroge-
neous malignant tumors originating from mesenchymal 
tissue and comprise more than 50 histological subtypes 
[1, 2]. Although STSs only account for 1% of all malignan-
cies, they account for approximately 10% of malignancies 
in children and adolescents [3, 4]. According to previous 
investigations, the total STS incidence is 2.49 – 5.87 per 
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100,000 person-years, and the 5-year survival rate after 
diagnosis is 55.5% –56.5% [5–7]. However, for advanced 
STS patients, the 5-year survival rate dramatically 
decreases to 27.2% [5]. In addition, 40% – 50% of STS 
patients develop distant metastases [8], which makes it 
difficult to select the most appropriate treatment, such as 
surgery, chemotherapy, or radiotherapy. Therefore, it is 
crucial to find accurate biomarkers for assessing risk in 
STS patients.

In recent years, several prognostic signatures based on 
lncRNA, miRNA, and plasmacytoma variant transloca-
tion 1 have been established for STS [9–11]. Neverthe-
less, these markers have been unable to be translated into 
clinical practice due to their poor prognostic ability and 
lack of validation. The role of immune-related features in 
malignancies has been a recent area of active research. 
Elements of the immune system have proven to be strong 
factors for tumorigenesis and tumor progression [12]. 
More importantly, previous studies have indicated that 
immune-related genes (IRGs) can serve as effective prog-
nostic biomarkers of many tumors, such as lung cancer 
[13, 14], ovarian cancer [15], hepatocellular carcinoma 
[16], head and neck squamous cell carcinoma [17], pap-
illary thyroid cancer [18], bladder urothelial carcinoma 
[19], and renal cancer [20]. However, the prognostic sig-
nificance of IRGs in STS remains unclear.

Here, we performed a systematic analysis of IRGs in 
STS and determined STS-related IRGs. The potential 
function and underlying regulatory mechanisms of these 
IRGs were also investigated. Furthermore, the integra-
tion of clinicopathological data and RNA-sequencing 
data provides novel insights into the prognostic value 
of IRGs. Finally, we discerned distinct clusters of STSs 
based on IRGs and investigated the association between 
IRG-based clusters and immune checkpoints, the tumor 
microenvironment (TME), and immune cells. The pre-
sent study reveals a complex immune landscape consist-
ing of both a continuous spectrum and discrete clusters 
across STS patients.

Methods
Patients and datasets
RNA sequencing data from The Cancer Genome Atlas 
(TCGA) and Genotype-Tissue Expression (GTEx) data-
sets were downloaded from the UCSC Xena browser 
(https​://xenab​rowse​r.net/) [21]. TCGA is a publicly 
funded project that aims to catalog and discover major 
cancer-causing genome alterations in large cohorts of 
over 30 human tumors through large-scale genome 
sequencing and integrated multidimensional analyses. 
The GTEx project provides RNA sequencing data from 
samples that were collected from 54 nondiseased tissue 
sites across nearly 1000 individuals. For the GTEx and 

TCGA datasets, RNA sequencing data (FPKM values) 
were normalized into log2 (FPKM + 1). Meanwhile, the 
corresponding TCGA clinical data were downloaded 
from cBioPortal (http://www.cbiop​ortal​.org/) [22]. A 
total of 259 patients with STS were included, includ-
ing 104 with leiomyosarcomas, 58 with dedifferentiated 
liposarcomas, 51 with undifferentiated pleomorphic 
sarcomas, 25 with myxofibrosarcomas, 10 with synovial 
sarcomas, and 11 with other STS types. 4The clinico-
pathological characteristics of the patients enrolled in 
our study are shown in Table  1. Additionally, the entire 
set of 2498 IRGs (Additional file  1) was collected from 
the ImmPort database (https​://www.immpo​rt.org/share​
d/) [23]. A flowchart depicting the study is shown in 
Fig. 1.

Profiling differentially expressed IRGs (DEIRGs)
To identify tumor-related genes, differential analyses 
were performed between STS samples from TCGA-
SARC and normal muscle and adipose tissues from GTEx 
in the R software with the “limma” package. The expres-
sion differences were assessed according to their log2-
fold change (log2 FC) and false discovery rate (FDR). 
Only genes with |log2FC| > 1 and FDR  < 0.05 were identi-
fied as differentially expressed genes (DEGs). According 
to the IRG dataset from the ImmPort database, DEIRGs 
were determined by matching 2498 IRGs to the DEGs.

To explore the potential function of the identified 
DEIRGs, Gene Ontology (GO) functional annotation 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analyses were performed in the 
R software with the “clusterprofiler” package [24]. The 
results with an adjusted p value < 0.05 were considered as 
statistically significant.

Comprehensive analyses of IRG‑based clusters in STS 
patients
Based on the identified DERIGs, unsupervised classifica-
tion of the 259 STS patients was performed using hier-
archical consensus in R. The “ConsensusClusterPlus” 
package was used to obtain an unbiased and unsuper-
vised outcome [25]. In this study, to ensure high strin-
gency, the optimal number of clusters was determined 
according to the elbow method and the gap statistic. 
Additionally, the expression profiles of five common 
immune checkpoints were extracted from the RNA 
sequence data of the STS samples. Furthermore, by per-
forming ESTIMATE and CIBERSORT in R, the TME 
scores and the fraction of 22 types of immune cells 
were determined. The differences in prognosis, immune 
checkpoints, TME score, and immune cells were assessed 
using the Wilcoxon rank-sum test or the Kruskal–Wallis 
test.

https://xenabrowser.net/
http://www.cbioportal.org/
https://www.immport.org/shared/
https://www.immport.org/shared/
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Identification of overall survival (OS)‑ and progression free 
survival (PFS)‑related DEIRGs and establishment of two 
prognostic signatures
To comprehensively understand the prognostic value 
of DEIRGs, the 259 STS patients were randomly 
divided into a training set and validation set at a ratio 
of 7:3 in R. Except for the external validation and 
subgroup of signatures, all subsequent analyses were 
performed in the training set. In addition, to better 
understand the prognostic value of DEIRGs in STS 
patients, both OS and PFS were analyzed. The OS 
was defined as the time interval between the day of 
the first diagnosis and the day of death for any reason, 
while PFS was defined as the time interval between 
the day of the first diagnosis and the day of tumor 

progression or death. All the procedures used for the 
survival analyses, signature establishment, and signa-
ture assessment were performed in R. First, a univari-
ate Cox analysis was performed to determine OS- and 
PFS-related DEIRGs, which were further selected for 
the least absolute shrinkage and selection operator 
(LASSO) analyses using the “glmnet” package [26]. 
Next, we performed multivariate Cox regression analy-
ses to select candidate OS- and PFS-related DEIRGs 
to construct two prognostic signatures, termed the 
OS signature and the PFS signature, respectively. The 
coefficients of all DEIRGs in the final signatures were 
confirmed simultaneously and were used to calculate 
risk scores for each STS patient in the training set. The 
risk score was calculated as follows:

Table 1  Baseline characteristics of 259 soft tissue sarcoma patients

UPS Undifferentiated pleomorphic sarcoma

Total set (n = 259) Training set (n = 183) Validation set (n = 76)

Age, years 60.71 ± 14.59 60.51 ± 14.61 61.20 ± 14.64

Race

 White 226 160 66

 Other 24 14 10

 Unknown 9 9 0

Sex

 Male 118 78 40

 Female 141 105 36

Tumor site

 Extremity 85 61 24

 Other 174 122 52

Margin status

 R0 154 107 47

 R1/2 78 57 21

 Unknown 27 19 8

Metastasis

 No 120 87 33

 Yes 56 35 21

 Unknown 83 61 22

Radiotherapy

 No 140 101 39

 Yes 73 49 24

 Unknown 46 33 13

Histological type

 Leiomyosarcoma 104 72 32

 Dedifferentiated liposarcoma 58 43 15

 UPS 51 34 17

 Myxofibrosarcoma 25 17 8

 Synovial sarcoma 10 7 3

 Other 11 10 1
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βi is the coefficient of gene i in the multivariate Cox 
analysis; Gi is the expression value of gene i ; and n is the 
number of genes in the signature.

To assess the performance of our signatures, the “sur-
vivalROC” package was used to generate receiver operat-
ing characteristic (ROC) curves at 1, 2, and 3 years, and 
the corresponding time-dependent area under the curves 
(AUCs) were calculated simultaneously. The best cutoff 
value of the risk score was then identified by X-tile soft-
ware, and all patients were divided into a high- or low-
risk group [27]. Kaplan–Meier (K-M) survival curves 
with the log-rank test were generated to find differences 
in the OS and PFS between the two groups.

Validation of the prognostic signatures
External validation is critical when establishing prog-
nostic signatures. To validate the two prognostic 

Risk Score =

n∑

i=0

βi * Gi

signatures, the expression profile data of the genes 
included in the signatures were extracted from the vali-
dation set and substituted into the equations for risk 
score calculation. According to the same cutoff value 
identified in the training set, all patients in the valida-
tion set were divided into the high- or low-risk group. 
The prediction accuracy of the signatures was verified 
by ROC and K-M survival curves.

Subgroup analyses of signatures
To confirm that a DEIRG-based signature can perform 
consistently in several subgroups, subgroup analyses 
were performed regarding age, sex, tumor site, and 
margin status group; these analyses were performed in 
both the training and validation sets. First, according 
to the clinical data, all patients were divided into sub-
groups. The K-M curves in several subgroups were then 
generated to reveal differences in prognosis between 
the two risk groups.

Fig. 1  Flowchart of our study. 259 sarcoma patient samples and 911 normal muscle and adipose tissue samples were included in our study. 183 
patients were incorporated into the training set and the remaining 76 patients were used to form the validation set. Comprehensive profiling of 
immune-related genes showed favorable prognostic value and demonstrated their significant association with immune features
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Development of nomograms integrating IRG signatures 
and clinical variables
Clinical variables, including age, race, sex, tumor site, 
margin status, metastatic status, and radiotherapy were 
obtained from the cBioPortal database [22]. Univariate 
Cox analysis combining the signature and clinical vari-
ables was performed for STS patients in the training set, 
and factors with a P < 0.05 were incorporated into the 
multivariate Cox analyses to select the independent prog-
nostic variables. Next, two prognostic nomograms were 
established by the “rms” package in R based on the inde-
pendent prognostic factors for predicting OS and PFS 
in STS patients. The concordance index (C-index) was 
used to assess the discrimination of the two nomograms, 
and calibration curves were generated to evaluate the 
concordance between actual and nomogram-predicted 
outcomes.

Identification and validation of TF‑IRG regulatory network
The transcription factor (TF) set was downloaded from 
Cistrome Cancer (http://cistr​ome.org/Cistr​omeCa​ncer/). 
According to the DEGs identified in the differential anal-
yses and the TF set downloaded from the Cistrome Can-
cer, differently expressed TFs (DETFs) were extracted. 
GO and KEGG enrichment analyses were performed in 
R to identify the potential functions and related pathways 
of the DETFs [24]. Univariate Cox analysis was then used 
to determine OS- and PFS-related DETFs. To explore the 
potential TF-IRG regulatory network in STS patients, the 
correlation between OS-related DETFs and OS-related 
DEIRGs was measured by Pearson correlation analysis. 
The correlation between PFS-related DETFs and PFS-
related DEIRGs was processed by the same method. Cor-
relation analyses results with P < 0.05 and |r| > 0.2 were 
considered as statistically significant [28]. Two TF-IRG 
regulatory networks were illustrated using Cytoscape 
(3.7.2) [29].

Statistical analyses
All statistical analyses were performed in R (version 
3.6.1). Unpaired Student’s t-test, the Wilcoxon rank-sum 
test, ANOVA, and the Kruskal–Wallis test were used 
for the comparison of continuous variables. The Chi 
square test and Fisher’s exact test were used to compare 
categorical variables. Pearson analysis was used for the 
correlation analyses. A P-value  < 0.05 (two-tailed) was 
considered to indicate statistical significance.

Results
Patient characteristics
In total, 259 STS tumor samples and 911 normal muscle 
and adipose samples were included and their expression 
profiles were examined. After screening, a total of 5610 

DEGs were identified (Fig.  2a). Next, 364 DEIRGs were 
selected by matching IRGs to DEGs, including 232 upreg-
ulated and 132 downregulated genes (Fig.  2b). To gain 
a better understanding of how these DEIRGs may drive 
STS development, GO and KEGG enrichment analyses 
were performed. Functional annotations revealed that 
DEIRGs were mainly involved in leukocyte migration, 
the immune response-regulating cell surface receptor 
signaling pathway, and the immune response-activating 
cell surface receptor signaling pathway based on the top 
three terms identified in the GO analyses (Fig. 2c). KEGG 
analysis found that DEIRGs were mainly associated with 
cytokine–cytokine receptor interaction, Epstein-Barr 
virus infection, and Th17 cell differentiation (Fig. 2d). The 
enrichment analyses indicated that DEIRGs might not 
only play a vital role in tumorigenesis but are also impor-
tant in the tumor immune microenvironment.

IRG‑based clusters significantly associated with immune 
features
As shown by the DEIRG profiling, DEIRGs were mark-
edly heterogeneous among the STS patients. To gain 
insight into the molecular heterogeneity of STS and 
explore whether IRGs presented discernable patterns in 
STS, we performed unsupervised consensus analysis of 
all samples based on 364 DEIRGs. Combining the elbow 
method and the gap statistic method enabled us to deter-
mine the optimal number of clusters (K = 4) (Fig.  3a). 
According to the consensus matrix heatmap, four IRG-
based clusters were determined as follows (Fig.  3a): C1 
(n = 50, 19.3%), C2 (n = 100, 38.6%), C3 (n = 42, 16.2%), 
and C4 (n = 67, 25.9%). Survival analyses showed that C3 
was associated with worse OS prognosis (Fig.  3b), but 
there were no significant differences in PFS among the 
four clusters (Fig. 3c).

Given the potential function of DEIRGs in immune 
regulation shown in the enrichment analyses, we further 
investigated whether IRG-based clusters show different 
immune patterns. The Kruskal–Wallis tests indicated 
that TME scores, including immune and stromal scores, 
were significantly associated with IRG clusters (Fig. 3d). 
In addition, the distribution of immune checkpoints, 
including PD-1, PD-L1, BTLA-4, CTLA4, and LAG3, 
were not random (Fig. 3e). For example, samples classi-
fied as C3 were more enriched in immune checkpoints 
and had the lowest immune scores of the four clusters 
and may be more insensitive to immunotherapy.

To assess the correlation between IRGs and additional 
immune infiltration characteristics, we compared the 
levels of 22 types of immune cells among the four clus-
ters. There were significant differences among the four 
clusters for the following cell types: B cell native, plasma 
cells, T cells CD8, T cells CD4 memory resting, T cells 

http://cistrome.org/CistromeCancer/
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follicular helper, T cells regulatory (Tregs), NK cells acti-
vated, monocytes, Macrophages M0, Macrophages M1, 
Macrophages M2, and Mast cells resting (Fig. 3f ).

Prognostic value of DEIRGs in STS
The detection of robust markers for the early diagnosis 
of tumors and potential therapeutic targets remains a 
crucial issue for clinical practice. Recent findings have 
shown that the aberrant expression of IRGs occurs in 
early-stage tumors and can serve as prognostic biomark-
ers in several cancers. Hence, we further studied the 

potential prognostic value of DEIRGs in STS patients. 
Univariate Cox regression analysis identified 57 and 33 
DEIRGs to be significantly associated with OS and PFS, 
respectively (Additional file  2 and Additional file  3). In 
the subsequent LASSO regression analysis, 20 and 16 
DEIRGs were identified as OS- and PFS-related factors, 
respectively (Additional file  4: Figure S1 and Additional 
file  5: Figure S2). Next, multivariate Cox analysis was 
performed, and 18 DEIRGs were used to construct two 
prognostic signatures, including nine DEIRGs for the 
OS signature only, seven DEIRGs for the PFS signature 

Fig. 2  Expression and enrichment analyses of DEGs in sarcoma patients. a Heat map of 5610 DEGs; b Heat map of 364 DEIRGs; c Bar chart showing 
the top ten most significant terms in the GO analyses, including BP, CC, and MF; the x-axis refers to the number of genes that are enriched in 
the corresponding function. d Bar chart showing the top 30 most significant terms in KEGG pathway enrichments of DEIRGs; the x-axis refers 
to the number of gene that are enriched in the corresponding function. DEGs: Differentially expressed genes; DEIRGs: Differentially expressed 
immune-related genes; GO Gene ontology, BP Biological process, CC Cellular component, MF Molecular function, KEGG Kyoto Encyclopedia of 
Genes and Genomes
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only, and two overlapping DEIRGs (Fig. 4a). Two circos 
plots were generated to show the location of prognos-
tic genes in the chromosome (Fig.  4b, c). The formula 
for the OS signature was as follows: Risk score = −0.37

552*JUND + 0.27513*HMGB1 + 0.74431*PIK3R2 + 0.7
8955*PSMD10 −0.42760*ILK + 0.19689* ADM −0.176
45*SECTM1 + 0.17991*SEMA7A−0.41175*PLCG2 + 0
.83549* RAF1−0.35149*IFIH1. The PFS signature was 

Fig. 3  Comprehensive profiling of IRG-based clusters in sarcoma patients. a The consensus matrix heatmap defined four clusters from the 259 
sarcoma patients. b Survival analysis showed that IRG-based clusters were significantly associated with OS. c Survival analysis showing that 
IRG-based clusters were not significantly associated with PFS. d Tumor microenvironment scores of the four clusters. e The expression levels of five 
immune checkpoints (PD-1, PD-L1, BTLA4, CTLA4, and LAG3) in the four clusters. f Histogram of the infiltration levels of 12 significant immune cells 
in the four clusters. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. IRG Immune-related gene, OS Overall survival, PFS Progression-free survival
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as follows: Risk score = −0.15562* PROCR + 0.15235* 
FABP5 + 0.06963* RBP4 −0.37785* RXRA + 0.23565* 
ADM −0.20687* SECTM1 + 0.12620* TNFSF4 
−0.63813* BECN1 + 0.06908* MMP9.

The time-dependent ROC curves showed that the 
AUCs of the OS signature for predicting 1, 2, and 
3  year OS were 0.830, 0.830, and 0.824, respectively 

(Fig.  5a). Subsequently, according to the optimal risk 
score cutoff identified by X-tile, STS patients were 
stratified into high-risk (n = 19) and low-risk groups 
(n = 164). The K-M curves indicated that patients in 
the high-risk group had a worse OS than those in the 
low-risk group (Fig. 5b). Similarly, the time-dependent 
ROC curves of the PFS signature were also generated. 

Fig. 4  Prognostic analyses for sarcoma patients. a Forest plot showing the results of the univariate and multivariate Cox analyses for 18 IRGs that 
were incorporated into the signatures. Two overlapping genes are highlighted in red. b Circos plot showing the location of OS-related IRGs. From 
outside to inside: 23 chromosomes, significant IRGs in the univariate Cox analysis, HR value of corresponding IRGs in the univariate Cox analysis, IRGs 
incorporated into the OS signature, and gene–gene interactions. c Circos plot showing the location of PFS-related IRGs. From outside to inside: 23 
chromosomes, significant IRGs in the univariate Cox analysis, HR value of corresponding IRGs in the univariate Cox analysis, IRGs incorporated into 
the PFS signature, and gene–gene interactions. IRGs Immune-related genes, OS Overall survival, PFS Progression-free survival
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The AUCs of the signature for predicting 1, 2, and 
3  year PFS were 0.763, 0.757, and 0.780, respectively 
(Fig.  5f ). The optimal risk score cutoff was also iden-
tified by X-tile, and 31 and 152 patients were strati-
fied into high-risk and low-risk groups, respectively. 
The patients with lower risk scores had favorable PFS 
(Fig.  5g). These results revealed that both signatures 
were valuable tools for predicting the prognosis of STS 
patients. Moreover, to more clearly visualize differ-
ences in the prognosis and gene expression patterns, 
heatmaps (Fig. 5c, h), survival status plots (Fig. 5d, j), 
and risk score plots (Fig. 5e, j) were generated.

External validation of the prognostic signatures
External validation is crucial for validating the applica-
bility of a prognostic signature. A total of 76 independ-
ent STS patients were included in this validation. First, 
according to the formulas generated in the training set, 
the risk scores were calculated, including the risk score 
based on the OS signature and the risk score based 
on the PFS signature. The ROC curves revealed that 
the discrimination of both signatures in the validation 
set were favorable, with the AUC ranging from 0.616-
0.834 (Fig.  6a, f ). The optimal risk score cutoff identi-
fied in the training set was used to stratify the patients 

Fig. 5  Establishment of an 11-DEIRG-based OS signature and a 9-DEIRG-based PFS signature. (a, f) Time-dependent ROC curves of the OS and PFS 
signatures at 1, 2, and 3 years. (b, g) Kaplan–Meier survival curves showing the differences in OS and PFS between low-risk and high-risk patients. (c, 
h) Differential gene expression between the high-risk and low-risk groups in the OS and PFS signatures. (d, i) OS and PFS scatter plots for sarcoma 
patients. (e, j) Risk score distribution of patients with the OS and PFS signatures. DEIRGs: Differentially expressed immune-related genes; OS Overall 
survival, PFS Progression-free survival, ROC Receiver operating characteristic
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into high-risk and low-risk groups. The K-M survival 
curves showed significant differences in both OS and 
PFS between the two groups, which was consistent with 
the training set (Fig. 6b, g). Additionally, two heatmaps, 
the survival status distribution, and the risk score dis-
tribution were also generated for the validation set to 
illustrate the differences between the high-risk and 
low-risk groups (Fig. 6c–e and h–j). To more compre-
hensively evaluate our signatures, ROC curves, survival 
curves, heatmaps, the survival status distribution, and 
the risk score distribution were also generated for the 
total TCGA cohort. Both signatures showed satisfac-
tory performance in the total cohort (Additional file 5: 
Figure S2).

Subgroup analyses of prognostic signatures
To investigate the applicable STS population of the 
DEIRG-based signatures, survival analyses with log-rank 
tests were further performed in subgroups based on sev-
eral clinical variables in both the training and validation 
sets (Additional file  6: Figure  S3). We validated the sta-
bility of our signatures by age (< 60 or ≥ 60), sex (male 
or female), tumor site (extremity or other), and margin 
status (R0 or R1-2) (Additional file  6: Figure  S3). K-M 
survival analyses indicated that both the OS and PFS sig-
natures were robust prognostic models for all subgroups, 
indicating that our prognostic signatures that were gener-
ated based on DEIRGs have strong robustness to predict 
prognosis in different patient subgroups (all p < 0.001).

Fig. 6  External validation of OS and PFS signatures. (a, f) Time-dependent ROC curves of the OS and PFS signatures at 1, 2, and 3 years. (b, g) 
Kaplan–Meier survival curves showing the differences of OS and PFS between low-risk and high-risk patients. (c, h) Gene expression levels of the 
high-risk and low-risk groups with the OS and PFS signatures. (d, i) OS and PFS scatter plots for sarcoma patients. (e, j) Risk score distribution of 
patients with the OS and PFS signatures. OS Overall survival, PFS Progression-free survival, ROC Receiver operating characteristic
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Establishment of nomograms based on DEIRG signature 
and clinical parameters
Two comprehensive models combining independent 
clinical parameters were constructed to improve the 
clinical application of our prognostic signatures. First, 
we performed univariate and multivariate Cox analy-
ses to assess independent OS and PFS prognostic vari-
ables (Fig. 7a,b). Four independent OS-related variables 
were identified, including risk score, age, margin status, 
and metastatic status (Fig.  7b). The risk score, margin 
status, and metastatic status were identified as inde-
pendent PFS-related variables (Fig.  7b). These results 
demonstrated that both DEIRG-based signatures can 
be used independently to predict the prognosis of STS 
patients.

Subsequently, based on the independent prognos-
tic variables, two novel nomograms were established 
to predict OS and PFS (Fig. 8a, e). The C-indexes were 
0.879 (95%CI 0.832–0.926) and 0.825 (95%CI 0.776–
0.874) for the OS and PFS nomogram, respectively. The 
favorable calibration of the nomograms indicated that 
the nomogram-predicted outcomes were highly con-
sistent with the actual observations (Fig. 8b–d and f–h).

Construction of TF‑IRG regulatory networks
Differential analysis confirmed 83 DETFs between the 
STS samples and normal tissue samples (Fig. 9a, b). GO 
analysis functional annotation revealed that DETFs were 
mainly involved in covalent chromatin modification, 
chromatin, and chromatin binding in BP, CC, and MF, 
respectively (Fig.  9c). KEGG pathway analysis showed 
that DETFs were mainly enriched in transcriptional 
misregulation in cancer, Th17 cell differentiation, and 
hepatocellular carcinoma (Fig.  9d). Univariate Cox pro-
portional hazard modeling was used to identify progno-
sis-related DETFs, and 14 DETFs were determined as 
OS- and PFS-related DETFs, respectively (Fig.  10a, b). 
The correlation between the expression levels of 14 OS-
related DEIRGs and 57 OS-related DEIRGs and between 
the expression levels of 14 PFS-related DEIRGs and 33 
PFS-related DEIRGs were analyzed by Pearson correla-
tion analysis. Two TF-IRG regulatory networks were 
constructed and visualized (Fig. 10c, d).

Interestingly, in the TF-IRG regulatory network 
analysis, a crucial regulatory network was identified—
MYH11-ADM. As a DEIRG, ADM was determined to 
be an independent OS- and PFS-related gene in the 

Fig. 7  Survival analyses showed that both OS and PFS signatures are independent factors to predict the prognosis of sarcoma patients. a Univariate 
Cox analyses of the DEIRG-based prognostic signature and clinical variables. b Univariate Cox analyses of the significant variables in the univariate 
Cox analyses. DEIRG Differentially expressed immune-related genes, OS Overall survival, PFS Progression-free survival
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multivariate Cox analysis and was therefore incorpo-
rated into both signatures (Fig.  4a). In addition, as a 
DETF, MYH11 showed significant associations with both 
OS and PFS (Fig.  10). Therefore, we further studied the 
expression patterns of MYH11 and ADM and the corre-
lation between MYH11 and ADM. Several gene expres-
sion profiles of STS and adjacent normal samples were 
retrieved from several datasets. Compared with normal 
tissue, the expression levels of MYH11 and ADM were 
significantly lower in the STS samples (Fig.  11a), which 
was consistent with our above findings. In addition, the 
regulatory pattern of MYH11 and ADM was also suc-
cessfully verified in three independent datasets (Fig. 11b). 
ADM and MYH11 were identified as abnormally 
expressed genes and are considered to be prognostic bio-
markers for STS patients. A regulatory relationship may 
exist between them.

Discussion
STSs are a rare group of highly heterogeneous can-
cers with a high rate of metastasis of up to 40–50% [8]. 
More than 50 different histological types with distinct 

clinical outcomes and biological behaviors complicate 
the prognostic prediction for STS patients [1, 2]. Hence, 
the present challenge was to identify precise biomarkers 
for prognosis assessment and targeted therapy in STS 
patients. In this investigation, we revealed insights into 
the role of IRGs in STS patients. A total of 364 DEIRGs 
were identified as candidate prognostic biomarkers, and 
functional annotations identified the potential mecha-
nisms of these DEIRGs. Additionally, DEIRG-based 
clusters identified by unsupervised consensus analysis 
revealed that DEIRGs presented discernable patterns 
in STS and had significant associations with immune 
features. Importantly, we established an OS-prognos-
tic signature based on 11 key DEIRGs and a PFS-prog-
nostic signature based on nine DEIRGs. Both of these 
DEIRG-based signatures were successfully validated in 
an independent validation set. The robustness of these 
two models was supported by the significant associa-
tions found between the risk score, levels of immune cell 
infiltration, and the expression levels of immune check-
points. In addition, two comprehensive nomograms 
incorporating the DEIRG-based prognostic model and 

Fig. 8  Development of two nomograms combining DEIRG-based signature and independent prognostic clinical variables to predict OS and PFS 
in sarcoma patients. a Nomogram of OS combining the OS signature and three clinical variables of sarcoma patients. (b-d) Calibration curves of 
the nomogram at 1, 2, and 3 years. (e) Nomogram of PFS combining the PFS signature and two clinical variables of sarcoma patients. In the two 
nomograms, a patient example marked in sky-blue is shown. (f–h) Calibration curves of the nomogram at 1, 2, and 3 years. DEIRGs Differentially 
expressed immune-related genes, OS Overall survival, PFS Progression-free survival
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clinical parameters were constructed to improve the clin-
ical application. By entering the score of each parameter, 
these nomograms may enable clinicians to estimate the 
OS and PFS for each STS patient. Finally, 14 OS-related 
DETFs and 14 PFS-related DETFs were selected, and two 
TF-IRG regulatory networks were generated to illustrate 
the relationship between prognostic TFs and IRGs.

Remarkable advances in our understanding of the 
tumor microenvironment and the immune system have 
resulted in significant breakthroughs in cancer immu-
notherapy [30, 31]. Novel immune infiltrate-based 

classification of sarcoma identified by integrating 
immune cell populations and tumor cell characteristics 
has shown promising prognostic ability [32]. IRG expres-
sion is connected to the immune infiltration level, key 
gene mutations, and chemosensitivity [33–35]. IRGs 
have been identified as effective prognostic biomark-
ers in ovarian cancer [36], non-squamous non-small cell 
lung cancer [37], and renal papillary cell carcinoma [38]. 
To the best of our knowledge, this is the first study to 
combine the entire set of IRGs with STS data from the 
perspective of OS and PFS. Our findings may greatly 

Fig. 9  Differential analysis and functional annotations of DETFs. a Heatmap showing the differential expression of 83 DETFs between sarcoma and 
normal tissues. b Volcano plots of 83 DETFs; the red plot shows upregulated genes and the green plot shows downregulated genes. c Bar chart 
of top ten most significant terms in BP, CC, and MP for 83 DETFs. d Bar chart of the top 30 most significant terms in the KEGG pathway enrichment 
for DETFs. DETFs: Differentially expressed transcription factors; BP Biological process, CC Cellular component, MF Molecular function, KEGG Kyoto 
encyclopedia of genes and genomes
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improve the precise classification and individual treat-
ments of STS patients.

We first selected 364 DEIRGs and 83 DETFs from 259 
STS patients and 911 normal tissue samples. Enrich-
ment analysis revealed that the DEIRGs were primarily 
involved in leukocyte migration, the immune response-
regulating cell surface receptor signaling pathway, and 

the immune response-activating cell surface receptor 
signaling pathway, the dysregulation of which are key 
factors in tumor initiation and development [39, 40]. 
Cell surface receptors have long been considered to be 
significant at all stages of tumorigenesis, and the com-
bined participation of integrins and MMPs is required 
for the invasion of tumor cells into surrounding tissues 

Fig. 10  Two TF-IRG regulatory networks. a Fourteen DETFs were determined to be OS-related DETFs; b Fourteen DETFs were determined to 
be PFS-related DETFs. c The regulatory network of OS-related DETFs and OS-related DEIRGs. d The regulatory network of PFS-related DETFs and 
PFS-related DEIRGs. The blue rectangle represents OS-related DETFs, the green rectangle represents favorable DEIRGs, and the red rectangle 
represents worse DEIRGs. TF Transcription factor, IRG Immune-related gene, DETFs Differentially expressed transcription factors, OS Overall survival, 
PFS Progression-free survival
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and metastasis [39, 41]. The KEGG pathway analysis pro-
vided additional evidence that the associations between 
DEIRGs may have clinical application potential in cancer. 
It has been estimated that Epstein-Barr virus infection is 
associated with approximately 200,000 malignancies each 
year [42], and EBS appears to dysregulate the expression 
of TCL1-family genes, leading to several typical lympho-
cyte cancers [43]. Th17 cells are a subset of CD4 + T cells, 
and high levels of tumor-infiltrating Th17 cells are cor-
related with lymph node metastases and have a negative 
impact on the postoperative survival of cancer patients 
[44].

To be the best of our knowledge, this is the first study 
to perform a systematic analysis of IRG-based cluster-
ing of STS. Four clusters were identified in our research. 
The TME score, immune checkpoints, and immune cells 
were confirmed to be unevenly distributed among the 
four clusters. As the worst-prognosis cluster, C3 had the 
lowest immune score, lowest stromal score, and several 
immune checkpoints. Although immunotherapy has 
been widely studied in lung cancer [45], gastrointesti-
nal cancer [46, 47], melanoma [48, 49], and renal cancer 
[50], its application in STS has received little research 
attention. This might be attributed to the unclear role 
of immune checkpoints in STS patients. Although our 
research indicated that the cluster with the lowest PD-L1 
expression level showed a worse prognosis, and the same 

conclusion was observed at the protein level [51], some 
studies have come to the opposite conclusion [52, 53]. 
For CTLA4, LAG3, and BTLA, some level of correla-
tion between the expression level and cluster was also 
observed. For precision medicine, a further study based 
on a larger cohort with better controls should be per-
formed to clearly elucidate the role of immune check-
points in STS patients.

In this study, the prognostic value of DEIRGs was also 
investigated. An OS-prognostic signature based on 11 
DEIRGs and a PFS-prognostic signature based on nine 
DEIRGs were constructed and then successfully validated 
in an independent set. The differences in OS and PFS sta-
tus between patients with low and high scores were nota-
ble in the two sets. The time-dependent AUCs indicated 
that the models performed well in predicting the progno-
sis of STS patients. Among the DEIRGs included in the 
two prognostic models, ADM and SECTM1 were found 
to be associated with both OS and PFS, which may have 
great clinical significance. ADM, a vasodilating peptide 
known as a regulator in the pathophysiology of cardio-
vascular disease, was recently found to have the ability to 
promote the growth of subcutaneously transplanted sar-
coma 180 tumor cells, and ADM inhibitors were shown 
to be useful for the management of sarcoma growth [54]. 
In addition, as a receptor regulatory protein of AMD, the 
overexpression of RMAMP2 suppressed the adhesion of 

Fig. 11  Validation of the crucial MYH11-ADM regulatory network. a Four datasets, including one dataset from GTEx and TCGA and three 
independent datasets from the GEO database, showed that both MYH11 and ADM were significantly lower in sarcoma tissue. b Four datasets, 
including one dataset from GTEx and TCGA and three independent datasets from the GEO database, showed a negative association between 
MYH11 and ADM in sarcoma samples. GTEx Genotype-Tissue Expression, TCGA​ The Cancer Genome Atlas, GEO Gene Expression Omnibus
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sarcoma cells to endothelial cells and metastasis via vas-
cular integrity [55]. Interestingly, the MYH11-ADM reg-
ulatory network has an important role in STS patients. 
Both proteins were significantly associated with OS and 
PFS in STS patients, and there is likely an important 
connection between them. Although details of this rela-
tionship within the tumor are unclear, our study lays the 
foundation for future research directions. Importantly, 
although both OS and PFS were studied, PFS is not a 
good surrogate for OS for patients who receive immu-
notherapy [56]. Given the rapid development of thera-
peutics in oncologic research, the assessment of both 
outcomes (OS and PFS) is essential for clinical and policy 
decision-making.

Regarding the other overlapping prognostic DEIRG, 
SECTM1 is often referred to as a ligand of CD7 and has 
rarely been studied. Recently, Wang et  al. [57] showed 
that SECTM1 produced by tumor cells could bind to 
CD7 and significantly promote monocyte migration by 
activating the PI3K pathway, which plays essential roles 
in tumor progression. Although an association between 
SECTM1 and STS has not yet been identified, our study 
provides insight into the tumor-associated immune 
mechanisms of STS, and the overexpression of SECTM1 
may be important in STS development. Several genes 
were included in the OS-prognostic signature and the 
PFS-prognostic signature. All of them were confirmed to 
be relevant to the pathogenesis and prognosis of sarcoma. 
For example, Chung et  al. [58] developed a polyclonal 
antibody against ILK and found that ILK expression was 
observed in Ewing’s sarcoma (ES, 100%), which indicated 
that ILK may be a specific and sensitive immunohisto-
chemical marker for ES. In addition, Et-1 was shown to 
increase the expression of VEGF and angiogenesis via 
ILK, resulting in the migration and tube formation of 
chondrosarcoma cells [59]. Moreover, the expression of 
RAF1, a part of the MAPK/ERK pathway, is related to 
cell proliferation in osteosarcoma [60]. Hicks et  al. [61] 
revealed a novel MTAP-RAF1 fusion in a 51-year-old sar-
coma patient. Metalloproteases-9 (MMP9) is secreted by 
metastatic cells and was shown to be highly associated 
with ES invasion and metastasis [62], and the expression 
and distribution of MMP9 are related to the occurrence 
of metastasis and clinical outcomes in STS patients [63]. 
Hence, the regulation of these IRGs may represent a sig-
nificant breakthrough in tumor immunotherapy, as the 
immune system plays a crucial role in the occurrence and 
progression of cancer [12]. The potential mechanisms by 
which these genes are involved in sarcoma require fur-
ther clarification through experimental research.

We also constructed two comprehensive nomograms 
with satisfactory AUCs (OS: 0.832–0.926, PFS: 0.776–
0.874) based on independent variables to assess the 

deterioration and survival of patients. To date, numerous 
studies have developed signatures based on sequencing 
data to stratify sarcoma patients, including CINSARC 
[64], alternative splicing events [65], relapse-related genes 
[66], and lncRNA [67]. However, none of them has been 
applied in clinical practice. Moreover, the use of specific 
biomarkers with a limited sample size to generate a risk 
score, which easily leads to overfitting, has no link to 
clinical reality. However, our prognostic models combin-
ing DEGs (which have a significant association with OS 
and PFS) and IRGs (the expression of which is strongly 
connected with immune infiltration and tumor progres-
sion) is essentially more generic than normal signatures. 
Therefore, our two nomograms based on the DEIRG-
based prognostic signatures and clinicopathologic data 
can improve the assessment of risk in STS patients.

Some limitations of this study should be noted. First, 
the training and validation sets came from a retrospec-
tive study, which has an inherent bias, and some valuable 
variables were unavailable. Second, although the signa-
tures were validated by an independent validation set, the 
prognostic ability in other ethnic groups remains unclear. 
Finally, the present study is a bioinformatic analysis, and 
the potential functional mechanisms of IRGs were not 
studied. Hence, further cell and animal studies should be 
performed to clearly elucidate the role of IRGs in STS.

Conclusion
In summary, four IRG-based clusters and two IRG-based 
signatures were constructed from sarcoma patient data. 
The clusters showed significant associations with the 
TME, immune checkpoints, and immune cells. In addi-
tion, two TF-IRG regulatory networks were generated, 
and one key regulatory network was identified and veri-
fied. Future in-depth studies should be performed to 
explore the precise role of IRGs in sarcoma.
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