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Abstract

Xenografting primary human solid tumor tissue into immunodeficient mice is a widely used tool in studies of human cancer
biology; however, care must be taken to prove that the tumors obtained recapitulate parent tissue. We xenografted primary
human hepatocellular carcinoma (HCC) tumor fragments or bulk tumor cell suspensions into immunodeficient mice. We
unexpectedly observed that 11 of 21 xenografts generated from 16 independent patient samples resembled lymphoid
neoplasms rather than HCC. Immunohistochemistry and flow cytometry analyses revealed that the lymphoid neoplasms
were comprised of cells expressing human CD45 and CD19/20, consistent with human B lymphocytes. In situ hybridization
was strongly positive for Epstein-Barr virus (EBV) encoded RNA. Genomic analysis revealed unique monoclonal or
oligoclonal immunoglobulin heavy chain gene rearrangements in each B-cell neoplasm. These data demonstrate that the
lymphoid neoplasms were EBV-associated human B-cell lymphomas. Analogous to EBV-associated lymphoproliferative
disorders in immunocompromised humans, the human lymphomas in these HCC xenografts likely developed from
reactivation of latent EBV in intratumoral passenger B lymphocytes following their xenotransplantation into
immunodeficient recipient mice. Given the high prevalence of latent EBV infection in humans and the universal presence
of B lymphocytes in solid tumors, this potentially confounding process represents an important pitfall of human solid tumor
xenografting. This phenomenon can be recognized and avoided by routine phenotyping of primary tumors and xenografts
with human leukocyte markers, and provides a compelling biological rationale for exclusion of these cells from human solid
tumor xenotransplantation assays.
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Introduction

Xenotransplantation of human cancers into immunodeficient

mice is very useful for studying human tumor biology [1]. This

approach is widely used for research into mechanisms of tumor

growth and for preclinical evaluation of anti-cancer therapies

[2,3]. The most commonly utilized mouse strains, such as the non-

obese diabetic severe combined immunodeficiency (NOD/SCID)

and NOD/SCID/interleukin 2 receptor gamma chain null (NSG)

strains, are deficient in both innate and adaptive immunity and

thereby permit the survival of human tissue [4,5].

While it is possible to generate xenografts from purified

populations of cells from some human cancers [6–9], many

studies describe the implantation of tumor fragments or bulk

tumor cell suspensions in mice to maximize the chances of

establishing xenografts from limited clinical samples [10–13].

Reports describing xenografts from human hepatocellular carci-

noma (HCC), for example, reveal that only 10–20% of clinical

samples yielded viable xenografts when dissociated into cell

suspensions that were further fractionated for implantation in

mice [14,15].

Epstein-Barr virus (EBV) is a human-restricted herpes virus

which infects over 90% of the human population, persisting as a

latent infection for the lifetime of the host [16,17]. EBV

preferentially infects B lymphocytes and ‘‘transforms’’ them into

a proliferative state by altering cellular gene transcription,

constitutively activating key cell-signalling pathways, and prevent-

ing apoptosis [18]. In immunocompetent individuals, EBV is well

controlled by cellular and humoral immunity, and transformed B

cells are continually eliminated because they express foreign

antigens. Individuals who are immunocompromised, such as

patients with HIV/AIDS or those receiving immunosuppressive

drugs following transplantation, are at risk of developing B-cell

lymphomas from the uncontrolled proliferation of EBV-trans-

formed cells [17,19,20]. Similarly, spontaneous development of

EBV-associated human lymphomas has been described in

immunodeficient mice repopulated with normal human hemato-

poietic cells due to reactivation of latent EBV [21].
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In our attempts to efficiently generate xenografts from human

HCC specimens, we implanted tumor fragments or bulk tumor

cell suspensions into immunodeficient mice. To validate our

model, we carefully examined xenografts to determine how

accurately they recapitulated parent tumors. Unexpectedly, we

observed that several xenografts did not resemble HCC, and

sought to characterize these tumors further in order to understand

potential pitfalls of our xenotransplantation assay. In this report,

we describe how our further characterization of these atypical

xenografts revealed them to be EBV-associated human B-cell

lymphomas and discuss the implications of this observation.

Results and Discussion

As summarized in Table 1, we obtained fresh HCC samples

from 16 consecutive patients who were undergoing surgical

resection of their tumors as primary therapy. None of the patients

had received any form of neoadjuvant therapy. The diagnosis of

HCC and degree of tumor differentiation in each resected

specimen was determined through standard diagnostic assessments

performed by clinical hepatopathologists at our institution

independent of this study. Of 21 xenografts generated from the

16 different HCC specimens, we identified only 10 xenografts that

resembled HCC on initial histopathological assessment (‘‘HCC-

like xenografts’’). The remaining 11 xenografts resembled

lymphoid neoplasms rather than HCC (‘‘non-HCC-like xeno-

grafts’’). In comparing the groups of patient samples that yielded

HCC-like xenografts as compared with those that yielded non-

HCC-like xenografts, there were no obvious differences between

groups in patient age (68611 years vs. 62610 years, p = 0.27),

underlying liver disease, or degree of differentiation of primary

tumors. HCC-like and non-HCC-like xenografts arose in both

NOD/SCID and NSG mice, and the time intervals between HCC

implantation and harvesting of the first xenografts were similar

(180681 days vs. 144665 days, p = 0.28).

As shown in Figure 1A, HCC-like xenografts shared many

histological features of HCC with parent tumors, including

hepatocyte-like cells with nuclear atypia and high nuclear-to-

cytoplasmic ratio, absence of portal tracts, and distorted trabeculae

with increased thickness of hepatocellular plates. As shown in

Figure 1B, non-HCC-like xenografts differed significantly from

parent HCC tumors and HCC-like xenografts. Non-HCC-like

xenografts had no architectural features of HCC, instead

consisting of monomorphic populations of small lymphoid

mononuclear cells with nuclear atypia and high mitotic index.

As shown in Figure 1C, analysis of xenografts by RT-PCR

revealed that HCC-like xenografts retained expression of many

liver cell markers, while these were diminished or absent in non-

HCC-like xenografts. We suspect that the persistent detection of

liver epithelial markers such as cytokeratins, AAT and TDO in

some non-HCC-like xenografts reflects the extreme sensitivity of

RT-PCR to detect the presence of some persisting HCC cells in

non-HCC-like xenografts despite near replacement of the

originally implanted HCC tissue by rapidly proliferating lymphoid

cells.

Due to the resemblance of non-HCC-like xenografts to

lymphoid neoplasms, we evaluated the expression of human and

murine leukocyte markers by immunohistochemistry. In contrast

to the typically sparse distribution of leukocytes observed in all of

the parent human HCC tissues to a similar extent mainly along

portal tracts when they were invaded by the tumor (Figure 2A),

non-HCC-like xenografts were densely infiltrated or replaced by

cells that could be characterized as human B lymphocytes by their

expression of human CD45 and CD20 (Figure 2B). Flow

cytometry confirmed that the human CD45+ population consisted

predominantly of CD19+ cells, consistent with human B lympho-

cytes (Figure 2C). Staining for the human T-cell antigen CD3 was

minimal, as was staining for the mouse lymphocyte antigen B220

and the mouse histocompatibility antigen H2k (data not shown).

We did not identify any correlation between leukocyte infiltration

in parent HCC tissues and the development of non-HCC-like

xenografts. In addition, prior to their HCC resection, none of the

source patients had a history of lymphoproliferative disease or an

immunodeficient state known to predispose to lymphoproliferative

disorders (eg. human immunodeficiency virus infection, pharma-

cological immunosuppression).

Cognizant of the importance of EBV in the pathogenesis of

lymphoproliferative disorders in immunocompromised humans

[18], we evaluated our xenografts for evidence of EBV infection by

in situ hybridization (ISH) for EBV-encoded RNA (EBER), and

found that this was strongly positive in the B lymphocytes

populating the non-HCC-like xenografts (Figure 2B). We were

unable to determine the presence or absence of latent EBV in

parent HCC specimens using EBER ISH and PCR for EBV

DNA, and this needs to be prospectively evaluated. Since EBV is

so effectively suppressed in immunocompetent humans, we suspect

that the tiny amount of EBER and EBV DNA that would be

present in a few B-cells in the source tumor, of which we had

extremely limited histological sections for retrospective analysis,

was below the detection threshold of our assays. Preoperative EBV

serology of source patients was not available since this is not

routinely tested.

To further characterize the non-HCC-like xenografts, we

evaluated the clonality of the human B lymphocyte proliferations

by assaying immunoglobulin heavy chain (IgH) gene rearrange-

ments. As shown in Figure 3, B-cell proliferations arose from a

single clone in 10 of 11 non-HCC-like xenografts, and from two

clones in the remaining case. In two instances, independent

xenografts obtained from separate fragments of a single parent

HCC developed into lymphoid tumors that demonstrated different

IgH rearrangements. This suggests that the malignant transfor-

mation and clonal expansion responsible for the EBV-associated

lymphomas observed in this study occurred subsequent to the

xenotransplantation of human tissue into immunodeficient mice,

and that lymphomas were not already present in source tissues.

To exclude contamination by a lymphocyte cell line or cross-

contamination between xenografts as a source of the lymphomas,

we performed short tandem repeat (STR) analysis on genomic

DNA from each xenograft and confirmed that xenografts from

different patients were genetically distinct (Table 2).

Collectively, these findings demonstrate that non-HCC-like

xenografts were comprised of EBV-associated human B-cell

lymphomas that had developed spontaneously from xenografted

human HCC tissues. Analogous to EBV-associated lymphoprolif-

erative disorders in immunocompromised humans, this likely

occurred through reactivation of latent EBV and malignant

transformation of intratumoral passenger B lymphocytes made

possible by the immunodeficiency of the recipient mice. In future

work, we plan to apply cell sorting techniques to exclude CD45+

cells from human HCC samples prior to xenotransplantation in

order to prevent this process.

The phenomenon of EBV-associated lymphomagenesis has not

been reported in the context of human solid tumor xenografts.

Considering the high prevalence of latent EBV in humans [16]

and the presence of B lymphocytes in solid tumors from all human

tissues [22], it is likely that most solid tumors would be vulnerable

to this process. It is unlikely that this phenomenon is unique to

HCC, as EBV has not been implicated in the pathogenesis of

EBV-Associated Lymphomas in Human Tumor Xenografts

PLoS ONE | www.plosone.org 2 June 2012 | Volume 7 | Issue 6 | e39294



human HCC [23], primary hepatic lymphoid malignancies are

very rare [24], and there is no clearly established causative link

between chronic liver disease and the incidence of lymphoprolif-

erative disease. We thus believe that our observations are of

importance to all investigators utilizing human solid tumor

xenotransplantation assays. As we have shown, lymphomas can

arise within the first xenografts obtained, and do not require serial

tumor passaging. Unrecognized, this process may confound

experimental data such as measures of tumor growth and markers

of tumor cell populations. Lymphomas may also competitively

eliminate the tumor tissue of interest, resulting in loss of valuable

samples.

This process can best be recognized through phenotyping of

xenografted tissues using leukocyte markers. Histopathological

assessment is not sufficient, as lymphomas may be misinterpreted

as poorly differentiated epithelial tumors. Initial growth kinetics of

lymphomas in our model was similar to HCC-like xenografts,

indicating that this process cannot be detected by gross

observations alone. Because lymphomas may arise from one or

two B-cell clones, immunomagnetic depletion of CD45+ cells may

not be sufficient to prevent this process since all CD45+ cells are

not removed [25]. Flow cytometry-based single-cell sorting is the

most stringent technique to identify and eliminate human

leukocytes from solid tumor xenotransplantation assays. Most

rigorous analyses of human solid cancer xenografts incorporate

routine quantification, exclusion or depletion of contaminating

CD45+ cells from assays targeting biological and functional

properties of specific subpopulations of tumor cells [26]; our

observations provide a compelling biological rationale to support

this practice and extend it to include all observations involving

solid tumor xenografts.

It is important to note that the generalizability of our

observations should be interpreted with caution in the context of

a relatively small sample size of patients, HCC specimens, and

xenografts. The clinical characteristics of the source patients are

observational only and were retrospectively analyzed, making this

study vulnerable to potentially confounding patient factors or

differences that it is underpowered to detect. Similarly, although

our data does not demonstrate any obvious relationships between

the xenografting methods used (eg. tumor fragment vs. cell

suspension, NSG vs. NOD/SCID mouse strain) and the develop-

ment of EBV-associated lymphomas, the study is underpowered to

detect the relative influence of these variables on the results.

In summary, we have shown that human solid tumor xenografts

in immunodeficient mice are vulnerable to lymphomagenesis

associated with EBV. This potentially confounding process can be

recognized through immunophenotyping of xenografts using

leukocyte markers and should be preventable by excluding

leukocytes from source tissues. This phenomenon should be

recognized as an important pitfall of human solid tumor

xenotransplantation assays.

Table 1. Patient demographics, parent HCC grade, and xenograft characteristics.

Xenograft
Histology

Sample
ID

Patient
Age (yr)

Patient
Sex

Liver
Disease

HCC
Gradea

Mouse
Strain

Proportion of
Mice with
Xenografts

Days to
Xenograftb

From HCC
Fragment

From HCC
Cell
Suspension

HCC-like 51853 65 Male Hepatitis C Poor NSG – 2/4 215, 250 c

55368 62 Male NASH d Moderate NOD/SCID 1/4 – 64

58063 81 Female Hepatitis B Poor NOD/SCID 1/3 – 301

59394 66 Male Hepatitis C Moderate NOD/SCID 2/2 – 133, 209 c

59410 50 Female Hepatitis B Moderate NOD/SCID 0/2 1/1 120

59826 69 Female Alcohol Moderate NSG 2/2 0/2 85, 148 c

60333 83 Female Hepatitis B Moderate NSG 0/2 1/1 272

Non-HCC-like
(lymphoid)

54069 72 Male Cryptogenic Moderate NSG 1/6 – 140

54307 60 Male Hepatitis C Moderate NSG 2/2 – 100, 140 c

55727 83 Female Hepatitis B Moderate NOD/SCID 2/5 – 116, 193 c

57602 61 Male Hepatitis C Moderate NSG 1/3 0/2 85

58424 60 Male Hepatitis C Poor NOD/SCID 1/3 – 125

59676 50 Male Cryptogenic Moderate NSG 1/2 0/2 171

59957 59 Male NASH Moderate NSG 0/3 1/1 314

60665 61 Male Hepatitis B Moderate NSG 0/3 1/2 106

62033 51 Male Hepatitis B
and NASH

Poor NSG 1/4 – 92

aDegree of tumor differentiation documented in clinical pathology report.
bNumber of days between implantation of tumor sample and harvesting of a 1.5 cm3 xenograft.
cBoth xenografts demonstrated similar histology.
dNon-alcoholic steatohepatitis.
doi:10.1371/journal.pone.0039294.t001

EBV-Associated Lymphomas in Human Tumor Xenografts
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Figure 1. Xenografts arising from human HCC specimens. (A) Representative H&E sections (6200) of parent HCC tumors from three different
patients (top panels) and the corresponding xenografts (bottom panels), which share typical histopathological features of HCC. (B) Representative
H&E sections (6200) of parent HCC tumors from three different patients (top panels) that show typical features of HCC in contrast to the
corresponding xenografts (bottom panels) which resemble lymphoid neoplasms. (C) RT-PCR demonstrating that xenografts which retain
histopathological features of HCC (‘‘HCC-like xenografts’’) express typical liver cell markers, while many of these markers are absent from xenografts
that do not resemble HCC histopathologically (‘‘non-HCC-like xenografts’’) (composite image; ALB – albumin, AFP – alphafetoprotein, AAT – alpha-1-
antitrypsin, TAT – tyrosine aminotransferase, TDO – tryptophan-2,3-dioxygenase, G6P – glucose-6-phosphate dehydrogenase, CK8/18/19 –
cytokeratin 8/18/19, GAPDH – glyceraldehyde phosphate dehdrogenase).
doi:10.1371/journal.pone.0039294.g001

EBV-Associated Lymphomas in Human Tumor Xenografts
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Figure 2. Expression of leukocyte markers and EBER in non-HCC-like xenografts. (A) Representative section (6200) from a parent HCC
sample that gave rise to a non-HCC-like xenograft, demonstrating a typical distribution of CD45+ leukocytes along a portal tract invaded by the
tumor, only a small fraction of which are CD20+ B lymphocytes; EBER ISH is negative. (B) Representative sections (6400) from three non-HCC-like
xenografts demonstrating that a very high proportion of cells stain positively for human CD45 and human CD20 (brown), consistent with human B
lymphocytes; EBER ISH is very strongly positive in the cells in these xenografts (dark blue). (C) Representative multiparameter flow cytometry analysis
of freshly isolated cells from a non-HCC-like xenograft demonstrating that a large proportion of tumor cells are human CD45+ leukocytes (left plot),
and that the majority of the gated CD45+ population also expresses human CD19+ (right plot), consistent with B lymphocytes.
doi:10.1371/journal.pone.0039294.g002

EBV-Associated Lymphomas in Human Tumor Xenografts
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Materials and Methods

Ethics statement
Ethical approvals were obtained from the University Health

Network Research Ethics Board (Protocol #08-0697-TE) and

Animal Care Committee (Animal Use Protocol #1595). Human

tissues were obtained with written consent from source patients.

Patient samples
Human HCC samples and demographic data were obtained

from patients undergoing surgery and anonymized with 5-digit

numbers. Tumor samples were obtained only from patients for

whom surgical resection was the primary form of HCC treatment,

and who had not received any form of systemic or locoregional

neoadjuvant therapy (eg. systemic chemotherapy, intrahepatic

chemotherapy, radiofrequency tumor ablation, external beam

radiation therapy). Fresh surgical resection specimens were

transferred from the operating room to the surgical pathology

suite within 15 minutes of removal from the patient and promptly

sectioned by the attending clinical pathologist. Samples for

xenografting were taken from the peripheral zone of the tumor

in all cases, and appeared grossly viable and non-necrotic. Samples

were placed in serum-free Dulbecco’s Modified Eagle Medium

(DMEM, Life Technologies) at 4 degrees Celsius and transferred

to the research laboratory for immediate processing and implan-

tation into recipient mice. HCC diagnoses were subsequently

verified in all cases using clinical pathology reports issued

independent of this study.

Xenografts
Bulk tumor cell suspensions were prepared by digestion with

Type IV Collagenase (Sigma) for 30–60 minutes at 37uC, passage

through a 70 mm cell strainer (BD Biosciences) and lysis of red

blood cells using RBC lysis buffer (eBioscience). Following trypan

blue analysis, 106 viable cells were resuspended in 50 ml of

Matrigel (BD Biosciences) and injected subcutaneously with a 25

gauge needle into the flanks of anesthetized NOD/SCID or NSG

mice. No attempt was made to separate HCC cells from other cell

populations within tumor samples. Alternatively, 3 mm3 tumor

fragments in Matrigel were implanted subcutaneously on the

flanks through a 5 mm skin incision. Priority was given to

implantation of tumor fragments; bulk cell suspensions were

injected if sufficient tumor tissue was available and if the fraction of

viable cells in the tumor cell suspension exceeded 70%.

RT-PCR
RNA was isolated using TRIZOL Reagent (Life Technologies)

and reverse-transcribed using SuperScript First-Strand Synthesis

System (Invitrogen). PCR was performed with Taq DNA

Polymerase (New England Biolabs) using conventional thermo-

cycling protocols. Amplified products were visualized with

ethidium bromide agarose gel electrophoresis. Primer sets were

synthesized based on publicly available human nucleotide

sequences (see Table S1).

Histopathology
Formalin-fixed, paraffin-embedded tissues were utilized. For

immunohistochemistry, de-waxed sections were blocked with 3%

hydrogen peroxide, avidin/biotin blocking kit (Vector Labs), and

10% normal serum from the secondary Ab species, then incubated

at room temperature with primary Ab for 1 hour as follows: mouse

anti-human CD45 (1:80, Dako), mouse anti-human CD20 (1:100,

Dako), rabbit anti-human CD3 (1:300, Dako), or rat anti-mouse

B220 (1:1000, BD Biosciences). This was followed by biotin

labeled secondary Ab (Vector Labs) for 30 minutes and HRP-

conjugated ultrastreptavidin labeling reagent (ID Labs) for

30 minutes. Color was developed with DAB solution (Dako).

Sections were counterstained with Mayer’s hematoxylin, dehy-

drated and mounted in Permount (Fisher). In situ hybridization for

EBER was performed on a Ventana Medical Systems automated

slide stainer employing EBER probes and the Ventana ISH

iVIEW Blue Detection Kit according to manufacturer instruc-

tions.

Flow cytometry
Cells were blocked in PBS containing 0.5% BSA and human

FcR Blocking Reagent (Miltenyi Biotec), then incubated with anti-

mouse H2-K [d] FITC (SF1-1.1, BD Biosciences), anti-human

CD45 PE-Cy7 (HI30, BD Biosciences), anti-human CD3 Alexa

Fluor 647 (UCHT1, BioLegend) and anti-human CD19 PE

(HIB19, BioLegend), or with FITC Mouse IgG2a, k (G155-178,

BD Biosciences), PE-Cy7 Mouse IgG1, k (MOPC-21, BD

Biosciences), Alexa Fluor 647 Mouse IgG1, k (MOPC-21, BD

Biosciences) and PE Mouse IgG1, k (MOPC-21, BD Biosciences)

isotype controls. After washing, cells were incubated with Live/

Dead Fixable Violet Dead Cell Stain Kit (Invitrogen) and analyzed

using LSR II Flow Cytometer (BD Biosciences) with FlowJo

V8.8.6.

IgH gene rearrangement assay
DNA was isolated using GenElute Mammalian Genomic DNA

Miniprep Kit (Sigma). Clonality was evaluated by PCR for VDJ

rearrangement of the IgH gene using primers directed at

framework three of the V segments (IgHV: ACACGGCC(A/C/

G)TGTATTACTGT) and J segments (IgHJ: TGAGGA-

GACGGTGACC), flanking the hypervariable gene region. PCR

was performed with Taq DNA Polymerase (New England Biolabs)

and conventional thermocycling protocols. Amplified fragments

Figure 3. Immunoglobulin heavy chain gene rearrangements in non-HCC-like xenografts. PCR amplification of the variable region of the
human IgH gene demonstrating unique dominant rearrangements in all of the non-HCC-like xenografts, confirming clonal B-cell proliferation.
Dominant rearrangements were not amplified in HCC-like xenografts. Successful amplification of the b-globin gene confirms integrity of the genomic
DNA analyzed.
doi:10.1371/journal.pone.0039294.g003
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were visualized with ethidium bromide agarose gel electrophoresis.

Clonality was determined by the number of dominant bands, and

bands of unique size were interpreted as products of distinct B-cell

clones.

STR analysis
Genotyping was performed using the AmpFlSTR Identifiler

PCR Amplification Kit (Life Technologies) that employs a

multiplex assay which amplifies 15 tetranucleotide repeat loci

and the Amelogenin gender determining marker. Samples were

run on an ABI 3100 Genetic Analyzer and analyzed in

GeneMapper v3.7.

Statistical analysis
Where applicable, unpaired t-tests were used to compare means

between two groups and statistical significance was expressed with

two-tailed P values.
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Table S1 PCR primer sets.
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