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Abstract: Blood vessels are essential organs that are involved in the supply of nutrients and oxygen
and play an important role in regulating the body’s internal environment, including pH, body
temperature, and water homeostasis. Many studies have examined the formation of networks of
endothelial cells. The results of these studies have revealed that vascular endothelial growth factor
(VEGF) affects the interactions of these cells and modulates the network structure. Though almost
all previous simulation studies have assumed that the chemoattractant VEGF is present before
network formation, vascular endothelial cells secrete VEGF only after the cells bind to the substrate.
This suggests VEGF is not essential for vasculogenesis especially at the early stage. Using a simple
experiment, we find chain-like structures which last quite longer than it is expected, unless the
energetically stable cluster should be compact. Using a purely physical model and simulation, we
find that the hydrodynamic interaction retard the compaction of clusters and that the chains are
stabilized through the effects of charge. The charge at the surface of the cells affect the interparticle
potential, and the resulting repulsive forces prevent the chains from folding. The ions surrounding
the cells may also be involved in this process.

Keywords: endothelial cells; network formation; simulation method; charged particle system;
fluid dynamics

1. Introduction

Blood vessels are ubiquitous in vertebrates and are essential organs responsible for the supply
of oxygen and nutrients to the whole body. Elucidation of the mechanism of vasculogenesis and
angiogenesis is crucial for our understanding of oxygen transport, organ development, and wound
healing. Although many studies have examined the formation of vascular networks [1–4], our
understanding of these networks is still far from complete.

Previous studies have proposed various simulation methods based on the authors’ assumptions
of properties of network formation, such as chemotaxis [5,6], elongated cell shapes [7–9], optimization
for flows in blood vessels [10], and interactions among cells and related components [11,12]. Almost
all of these simulation studies consider final equilibrium configurations and state the importance
of the concentration gradient of vascular endothelial growth factor (VEGF). VEGF is a protein
produced by cells after they adhered to the substrate; however, simulation studies usually assume
the presence of VEGF from the initial random state [5,6]. In addition, the experimental measurement
of the diffusion coefficient of VEGF [13] suggests that the diffusion coefficient obtained from the
experiments is quite large compared to the value which is assumed in some simulation studies.
This indicates the gradient of VEGF concentration is not essential for the vascular network formation
especially at the early stage. Thus, the initial configurations of such simulation models have not
been calculated properly, and the final configurations must therefore also be incorrect. If there
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exist some precursors of network, this intermediate stable state affects the kinetic selection for the
final stable configuration. In order to identify the kinetic pathway for network formations, it is
necessary to perform dynamic simulations which treat the equations of motion and fluctuation
properly. In addition, the concentration gradient of VEGF may have minimal effects during the initial
stage of network formation owing to temperature inhomogeneity and the vibration of the microscope
stage [8]. Therefore, we focused on the initial stage of network formation by vascular endothelial
cells, during which precursors of networks are formed through purely physical means, such as
the flow of solvents, the Brownian motion of cells and ions surrounding cells, and the electrostatic
interactions among cells. In particular, the repulsive force conferred by the surface charge of the cell
membrane may mainly affect the configuration of the network; however, these factors have generally
been ignored in previously reported simulations, and the effects of ions and the flow of the solvents
surrounding the cells have not been properly modeled owing to its difficulty in treating these factors.

In order to consider primary cluster formation of vascular endothelial cells and to clarify the
effect of VEGF, we performed in vitro experiment which was absence of VEGF as a model system.
Although in vitro experiments do not permit studies of actual interactions and morphogenesis in vivo,
they are quantifiable and reproducible, and they often provide meaningful data, which helps to
understand in vivo network formation [6,11]. From these viewpoints, we conducted an experiment
in vitro with the culture condition absence of VEGF. Based on the experimental results we also
introduce herein a purely physical model and a simulation method for charged-particle systems. This
allowed us to consider not only the dynamics of particles but also dynamic coupling with solvents
and ionic clouds surrounding the cells.

Network Formations of Endothelial Cells

Many previous studies of network formation of cells have focused on the later stages (ě1 h) in
order to observe the dynamics of network formation of cells accompanied by dramatic structural
changes (Figure 1a). Almost all of these studies have assumed that VEGF, which functions as a
chemoattractant and a signal protein which stimulates network formations, is present. However, cells
cannot secrete VEGF before adhering to the substrate. In this paper, we propose a purely physical
model for cluster formation of vascular endothelial cells with a focus on the early stages of network
formation (ď20 min). In order to identify the precursors of these cell networks, we prepared cells
and substrates and made simple observations of the suspensions using a phase-contrast microscope.
The following experiments were conducted with a culture that did not contain VEGF in order to
identify the role of VEGF. The brief method is shown in Supplemental Information, and the details
are shown elsewhere [14].

From the observations we could track the cells during the early stages (after 10 min) of network
formation (Figure 1b). During this stage, the cells formed clusters with chain-like shapes (indicated
by the white circles in Figure 1b). These clusters were not affected by the concentration gradient of
chemoattractants, such as VEGF. In the late stages of network formation, these chains shrunk, and
cells began to form networks. Therefore, the chain appeared to act as precursors for the networks.
Note that this chain formation is not limited to our experimental results, since these chains can also
be seen in the results of Serini [6] and Tosin [11]. Thus we believe these chain formation is observed
universally in in vitro experiments. In addition, even if the number of cells was increased, the cells did
not aggregate or form compact spherical clusters. Notably, the cells did still form chains, although
the compact spherical clusters should be the energetically stable state if the interaction among cells
is only the attractive forces, indicating that the formation of chains was strongly affected by kinetic
processes. In the next section, we show the results of simulation whose details are introduced in
Section 3, and we also discuss the mechanisms of this chain formation by applying the simulation
method in Section 2.
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Figure 1. (a) Network formation of vascular endothelial cells at 6 h after dispersion of cells. When the 
areal fraction of cells was sufficiently high to distribute throughout the system (above the percolation 
threshold [8]), the cells first shrunk and then formed networks; (b) As a primary phenomenon of 
network formation, chain-type clusters were formed before cells adhered to the substrate. When the 
number of these increased, the chains formed percolated networks, as shown in (a); (c) In the case of 
increased cell density, cells still tended to form chains, and the coarsening seems to be stopping for a 
while. These photos are taken by Matsunaga [14]. Both of the photos, (b,c), are taken at 10 min after 
cells were dispersed into the medium. All of the experiments above were conducted with the culture 
in the absence of VEGF (vascular endothelial growth factor). All scale bars indicate 200 μm. 

2. Results and Discussion 

Previous simulations of network formation by endothelial cells can be classified into three  
types [3,4,15]: 

(1) Cellular Potts model 
(2) Continuous model 
(3) Lattice free particle dynamics 

The first model (cellular Potts model) is a lattice-based computational method and is widely 
used to describe the network formation of endothelial cells [16]. In this simulation, each point moves 
according to a set of rules. This method allows us to change the total volume of cells and consider 
many types of interactions acting on each lattice. However the motility of cells cannot be addressed 
properly because cells are treated as continuous coarse-grained field, and the time-evolution of the 
cells are stochastically decided and thus the motility of cells becomes the same as the surrounding 
chemicals. The same features are observed in the continuous model. In this model, we can calculate 
the dynamical interactions and the distribution of chemicals such as chemotaxis [17], hydrodynamic 
interactions [18] and viscoelastic effects [19] which is introduced by using the stress-diffusion coupling 
scheme [20]; however, the cells are also treated as a concentration field, and thus, the motility of the 
cells is fast, regardless of the differences in size between cells and fluids (or chemicals). 

These difficulties come from the assumption that cells are not treated as particles with macroscopic 
sizes but as a continuous density field. Based on this observation, the third method, lattice-free particle 
dynamics, appears to be suitable for simulation of the dynamic behavior of network formation, 
despite the difficulty of introducing other degrees of freedom, such as fluids and chemicals surrounding 

Figure 1. (a) Network formation of vascular endothelial cells at 6 h after dispersion of cells. When the
areal fraction of cells was sufficiently high to distribute throughout the system (above the percolation
threshold [8]), the cells first shrunk and then formed networks; (b) As a primary phenomenon of
network formation, chain-type clusters were formed before cells adhered to the substrate. When the
number of these increased, the chains formed percolated networks, as shown in (a); (c) In the case of
increased cell density, cells still tended to form chains, and the coarsening seems to be stopping for a
while. These photos are taken by Matsunaga [14]. Both of the photos, (b,c), are taken at 10 min after
cells were dispersed into the medium. All of the experiments above were conducted with the culture
in the absence of VEGF (vascular endothelial growth factor). All scale bars indicate 200 µm.

2. Results and Discussion

Previous simulations of network formation by endothelial cells can be classified into three
types [3,4,15]:

(1) Cellular Potts model
(2) Continuous model
(3) Lattice free particle dynamics

The first model (cellular Potts model) is a lattice-based computational method and is widely
used to describe the network formation of endothelial cells [16]. In this simulation, each point moves
according to a set of rules. This method allows us to change the total volume of cells and consider
many types of interactions acting on each lattice. However the motility of cells cannot be addressed
properly because cells are treated as continuous coarse-grained field, and the time-evolution of the
cells are stochastically decided and thus the motility of cells becomes the same as the surrounding
chemicals. The same features are observed in the continuous model. In this model, we can calculate
the dynamical interactions and the distribution of chemicals such as chemotaxis [17], hydrodynamic
interactions [18] and viscoelastic effects [19] which is introduced by using the stress-diffusion
coupling scheme [20]; however, the cells are also treated as a concentration field, and thus, the motility
of the cells is fast, regardless of the differences in size between cells and fluids (or chemicals).
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These difficulties come from the assumption that cells are not treated as particles with macroscopic
sizes but as a continuous density field. Based on this observation, the third method, lattice-free
particle dynamics, appears to be suitable for simulation of the dynamic behavior of network
formation, despite the difficulty of introducing other degrees of freedom, such as fluids and
chemicals surrounding the cells [8,21]. Thus, we chose a hybrid method, combining the continuous
model and the lattice-free model, in order to properly model the dynamics of the system. This
method is called as fluid particle dynamics (FPD) method [22]. The detail is shown in Section 3.1.

2.1. Results of FPD Simulation Including the Effect of Surface Charge of Cells

The results of many body two-dimensional (2D) simulations are shown in Figure 2. In these
simulations, we set the area fraction to φarea “ 0.15. When the system does not contain salts
for screening the interaction, cells are dispersing by the long-range Coulomb repulsion, and if the
electrostatic interactions are sufficiently large, cells form a Wigner crystal like structure (Figure 2a).
On the other hand, when we add salts to screen the interaction, the spherical cells aggregate and form
clusters of chain-like shapes (Figure 2b), as was observed in the experimental results of endothelial
cells. The experimental results in Figure 1b,c show that the chain-like clusters consist of 3–5 cells,
which is appropriately described in the Figure 2b. From these results, we confirm that the electrostatic
force is controlled by the ions and that the range of interaction becomes shorter as the concentration
of ions increased. This in turn accelerates the formation of chains of cells.
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Figure 2. Morphogenesis of vascular endothelial cells. White spheres indicate cells, and the color 
shows the sum of concentration of ions ρtot: (a) without salt (only the counter ions of cells are 
considered) and (b) with salt (Cα = 20 μM). This corresponds to the early stage of vascular network 
formation; (c) Expanded View of a chain composed by three cells. Cells are surrounded by ions 
denoted by the color field which is the same as (b). 

2.2. Effects of Hydrodynamic Interactions on the Formation of the Chain-Like Structure 

In a system of charged cells dispersed into the medium, linear chain structures were selected as 
the stable structure, though compact clusters became the more energetically stable structures, 
minimizing the attractive potential acting on cells. Without chemotaxis, there were two main reasons 
for the selection of this dynamic structure: (1) the hydrodynamic effect; and (2) the effect of charge. 

The hydrodynamic interaction can alter the kinetic pathway, as in phase separation of binary 
mixtures. The phase separations of binary solid and liquid mixtures are described by the framework 
of the universality class as models B and H, respectively [23]. In the model B simulation, spherical 
droplets emerge from the initial stage of phase separation as stable structures under asymmetrical 
compositions. In the model H simulation in which hydrodynamic interactions are considered, 
continuous drops with an elongated shape persist longer. This difference suggests the hydrodynamic 
interactions play a role in the chain (or elongated shape) formation of cells. In order to clarify the 
hydrodynamic effects, we compared the aggregation structures using two distinct simulation 
methods: (1) Langevin dynamics (LD) simulation; and (2) FPD simulation. The former method 
ignores the effects of hydrodynamic interactions (see Section 3.4), whereas the latter considers the 
interaction as shown in Section 3.1. In this section, we focus on the effects of hydrodynamic 
interactions and ignore the effects of charge.  

The results of comparisons between LD and FPD are shown in Figure 3. LD simulation reveals 
that compact clusters are formed during early stages of network formation as the energetically stable 
state (Figure 3a–c). In contrast, the FPD simulation yields long-lived linear clusters (Figure 3d,e). 

Figure 2. Morphogenesis of vascular endothelial cells. White spheres indicate cells, and the color
shows the sum of concentration of ions ρtot: (a) without salt (only the counter ions of cells are
considered) and (b) with salt (Cα = 20 µM). This corresponds to the early stage of vascular network
formation; (c) Expanded View of a chain composed by three cells. Cells are surrounded by ions
denoted by the color field which is the same as (b).

2.2. Effects of Hydrodynamic Interactions on the Formation of the Chain-Like Structure

In a system of charged cells dispersed into the medium, linear chain structures were selected
as the stable structure, though compact clusters became the more energetically stable structures,
minimizing the attractive potential acting on cells. Without chemotaxis, there were two main reasons
for the selection of this dynamic structure: (1) the hydrodynamic effect; and (2) the effect of charge.

The hydrodynamic interaction can alter the kinetic pathway, as in phase separation of binary
mixtures. The phase separations of binary solid and liquid mixtures are described by the framework
of the universality class as models B and H, respectively [23]. In the model B simulation, spherical
droplets emerge from the initial stage of phase separation as stable structures under asymmetrical
compositions. In the model H simulation in which hydrodynamic interactions are considered,
continuous drops with an elongated shape persist longer. This difference suggests the hydrodynamic
interactions play a role in the chain (or elongated shape) formation of cells. In order to clarify
the hydrodynamic effects, we compared the aggregation structures using two distinct simulation
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methods: (1) Langevin dynamics (LD) simulation; and (2) FPD simulation. The former method
ignores the effects of hydrodynamic interactions (see Section 3.4), whereas the latter considers the
interaction as shown in Section 3.1. In this section, we focus on the effects of hydrodynamic
interactions and ignore the effects of charge.

The results of comparisons between LD and FPD are shown in Figure 3. LD simulation reveals
that compact clusters are formed during early stages of network formation as the energetically stable
state (Figure 3a–c). In contrast, the FPD simulation yields long-lived linear clusters (Figure 3d,e).
These results indicate that hydrodynamic interactions play an important role in decelerating the
compaction of clusters. When cells approach each other, the solvent found in between the cells has
to be squeezed out, as shown in Figure 3g. We speculate that this finite volume effect of the cells
establishes the barrier for compaction and that the hydrodynamic interactions will slow the dynamics
of aggregation, as in the coil-globule transition of a polymer or the formation of colloidal gels [24–26].

Although the coarsening process slows owing to the hydrodynamic interactions, the final
configuration simulated by the FPD method, as shown in Figure 3f, becomes compact and is therefore
still thicker than that observed in the experimental results in cells. This suggests that there may
be another force suppressing the compaction of cells. We speculate that this other force may be a
short-range repulsive force, such as Coulomb force. Indeed, the results shown in Figure 2b clearly
suggests that the chain structure is achieved without the effects of chemotaxis. In the next section, we
will consider the effects of charge on network formation in vascular endothelial cells.
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dynamics of the interactions. This dynamic selection supports the chain-like nature of clusters, despite 
the observation that the most stable structure is the spherical cluster. 

2.3. Effects of Charge on the Formation of Chain-Like Structures 

In the previous section, we showed that hydrodynamic interactions increased the lifetime of the 
chains. We also showed the chain structures were stabilized by Coulomb repulsive forces, as shown 
in Figure 2b. This could be explained by the effects of an effective pair potential acting on the cells or 
the effects of ions surrounding the cells. The effective potential is shown in Figure 4a. Competition 
between the attractive and repulsive potentials is shown. The small repulsive force Urep shown in 
Figure 4a prevented the chain from folding, as explained schematically in Figure 4b. In addition, the 
ionic cloud surrounding the cells supported the predicted rigidity of the chains (Figure 4c). Cells had 
a relatively high surface charge [27,28], and these charges bound the ions close to the cell surface. As 
shown in Figure 2c, ionic clouds (shown in blue) covered the chains, making the structures rigid by 
repelling other ions through weak interactions schematically described in Figure 4c (shown in yellow). 

2.4. Other Systems for Chain Formation 

The results of simulation and our assumptions about the reasons for chain formation suggested 
that chains did not originate from chemotaxis but through a purely physical interaction. This was 
confirmed by a simpler system in which the particles interacted not only through an attractive force 
but also through a repulsive force. To test this, we performed experiments with monodispersed 
polymethyl methacrylate (PMMA) colloids (diameter: 2.6 μm) dispersed in bromocyclohexane (CHB, 

Figure 3. Effects of hydrodynamic interactions: (a–c) Langevin dynamics simulation (without
hydrodynamic interactions); and (d–f) fluid particle dynamics simulation (including the effects of
long-range hydrodynamic interactions); (g) Schematic showing the deceleration of chain folding.
To form the spherical cluster, it is necessary to squeeze the fluid surrounding cells, which slows the
dynamics of the interactions. This dynamic selection supports the chain-like nature of clusters, despite
the observation that the most stable structure is the spherical cluster.

2.3. Effects of Charge on the Formation of Chain-Like Structures

In the previous section, we showed that hydrodynamic interactions increased the lifetime of the
chains. We also showed the chain structures were stabilized by Coulomb repulsive forces, as shown
in Figure 2b. This could be explained by the effects of an effective pair potential acting on the cells or
the effects of ions surrounding the cells. The effective potential is shown in Figure 4a. Competition
between the attractive and repulsive potentials is shown. The small repulsive force Urep shown in
Figure 4a prevented the chain from folding, as explained schematically in Figure 4b. In addition, the
ionic cloud surrounding the cells supported the predicted rigidity of the chains (Figure 4c). Cells had
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a relatively high surface charge [27,28], and these charges bound the ions close to the cell surface.
As shown in Figure 2c, ionic clouds (shown in blue) covered the chains, making the structures
rigid by repelling other ions through weak interactions schematically described in Figure 4c (shown
in yellow).

2.4. Other Systems for Chain Formation

The results of simulation and our assumptions about the reasons for chain formation suggested
that chains did not originate from chemotaxis but through a purely physical interaction. This was
confirmed by a simpler system in which the particles interacted not only through an attractive force
but also through a repulsive force. To test this, we performed experiments with monodispersed
polymethyl methacrylate (PMMA) colloids (diameter: 2.6 µm) dispersed in bromocyclohexane (CHB,
Sigma-Aldrich, St. Louis, MO, USA). The colloids were synthesized according to the method
described by Antl and Bosma [29,30], and polydimethylsiloxane (PDMS, Gelest, Inc., Frankfurt am
Main, Germany) was used as the steric stabilizer [31]. The refractive index of these colloids was
close to that of CHB. This design allowed us to capture images clearly using a confocal laser-scanning
microscope (Leica SP5, Leica Microsystems, Wetzlar, Germany). When the system includes no salts,
the long-range Coulomb repulsion was stronger than the attractive force, and the colloids achieved
stable dispersions (see Figure 5a), similar to that observed in Figure 2a. However, once the system
included salts (e.g., tetrabutylammonium bromide (TBAB, Fluka, Sigma-Aldrich, St. Louis, MO,
USA)), the Coulomb repulsion was screened, and the colloids formed chain-like clusters (Figure 5b).
Owing to the similar refractive indices of solvents and particles, the van der Waals attraction between
the colloids was quite small in these experiments according to the McLachlan equation [32]; however,
the same trend was observed as the simulation results, and the colloids did not form compact clusters.
In order to form the longer, more stable chains with colloids, highly charged colloids with large
diameters or colloids having refractive indices different from those of the solvents should be used.
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simple system. The colloidal dispersion, including salts, which screened the interactions of charged 
colloids (diameter: 2.6 μm), also exhibited the same configuration as cells, indicating that this 
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3. Materials and Methods

3.1. Simulation of Charged Particles

When solvents or other degrees of freedom are introduced, a solid-fluid boundary condition
should inevitably be considered. In order to overcome this difficulty, we consider cells as highly
viscous fluid drops having a nondeformable shape. Thus, in this model, cells are treated as immiscible
drops, and we could properly model hydrodynamic interactions acting on cells. This also resulted in
lower costs associated with simulation of the solid–liquid boundary condition. This method, called
the fluid particle dynamics (FPD) method, was first introduced by Tanaka et al. [22], and a similar
method was proposed by Yamamoto et al. [33]. For simplicity, we treated the cells as spheres and
moving with Brownian motion, and their positions were developed under mesh-free conditions, as is
applied in molecular dynamics (MD) simulations.

In order to distinguish the motility of cells and solvents, we introduce the viscosity field

η prq “ ηsol `

PN
ÿ

i“1

pηcell ´ ηsolqφi prq (1)

where ηcell is the viscosity inside a cell, and ηsol is the viscosity of the solvent surrounding the cells.
To calculate this viscosity field, a particle is represented by the concentration field φi prq. According
to the original FPD simulations, we set φi prq “ rtanh tpa´ |r´ ri|q {ξu ` 1s { 2, where a is the radius
of a particle, and ξ is the interfacial thickness, set to ξ = 500 nm. For the limits of ηcell{ηsol Ñ8 and
ξ{a Ñ 0 , cells are regarded as a rigid solid; however, in our simulation, the unit of time is related to
the viscosity of solvents, and we used ηcell/ηsol = 50 and ξ{a “ 0.2 pin 3Dq , ξ{a “ 0.1 pin 2Dq to
reduce the computation time. These parameters are guaranteed to satisfy the requirement that the
fluid particles show solid-like behavior [22].

The equation of motion is given by the Navier–Stokes equation:

ρ

ˆ

B

B t
` v ¨∇

˙

v “ f´∇p`∇ ¨
”

η prq
!

∇v` p∇vqt
)ı

` f B (2)
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where ρ, v and p denote the density, velocity, and pressure, respectively. We solved Equation (2) under
the incompressibility condition ∇ ¨ v “ 0. The time evolution of the fluid is calculated using a Euler
integration with a staggered grid; according to the velocity of the fluid, we can also move the cells by

the equation of motion r pt` ∆tq “ r ptq ` Vi ptq∆t, where Vi ptq “
ş

v pr, tqφi prqdr
ş

φi prqdr
is the integrated

velocity of the cell i. In Equation (2), the tensor fB indicates the random stress noise, which satisfies
the fluctuation–dissipation theorem [26,34].

A

f B
i pr, tq f B

j
`

r1, t1
˘

E

“ ´2ηkBTδij∇2δ
`

r´ r1
˘

δ
`

t´ t1
˘

(3)

The stress term consists of two types of interactions. The first is the interaction derived from the
interparticle potential. In this simulation, we assume that the short-range repulsion, which acts as
the soft surface of the cell and prevents the penetration of cells into other nearby cells. In addition,
we also assume that the attractive forces can be explained by van der Waals forces. For macroscopic
objects like cells, it is necessary to integrate over all paired van der Waals interactions. In the case of
monodisperse spherical bodies, Hamaker assumed the pair additivity of interaction potentials and
derived the integrated van der Waals potential as follows:

UvdW prq “ ´
AH

12

„

σ2

r2 ´ σ2 `
´ σ

r

¯2
` ln

ˆ

1´
´ σ

r

¯2
˙

(4)

This equation shows that the interaction range becomes longer in comparison with the case of
unintegrated interaction of atoms (~1/r6). As a result, the attractive force acting on cells can be
written as:

FvdW prq “ ´U1vdW prq “ ´
AH

6σ

´ σ

r

¯7
«

1 {
ˆ

1´
´ σ

r

¯2
˙2

ff

r
r

(5)

where σ denotes the interaction range, and AH is the Hamaker constant. We set this quantity as the
typical value AH/6kBT = 4. Since this potential diverges at the surface of cells, we introduced the
short-range repulsive potential, which acts as the soft core of the cells and can be easily connected
to the van der Waals potential shown in Equation (4). Therefore, we chose the Lennard–Jones-like
potential Unm(r), whose derivative is given as Fnm prq “ ´U1nm prq “ ε

“

n pσ{ rqn ´m pσ{ rqm
‰

{ r , where
the first term in parentheses indicates the short-range repulsion, and the second term indicates the
short-range attraction to connect the attractive force shown in Equation (5). In the simulation, we set
n = 36, m = 6.

Then, in order to connect the force at the cutoff radius Rcut, the interparticle force was chosen
as follows:

Ftot prq “

#

Fnm prq ´ Fnm pRcutq ` FvdW pRcutq pr ď Rcutq

FvdW prq pr ą Rcutq
(6)

In our simulation, we set Rcut = 1.14σ, and the force field is given as f “ ´Ftot φ{
ş

φdV. The
interparticle potential and force are plotted in Figure 6. From this plot, we can find that the interaction
potential is connected smoothly at the cutoff radius and can describe both the medium-range
attraction and the short-range repulsion.
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The other interaction is the electrostatic force which is strongly affected by the local distribution
of ions. In order to consider the local distribution of ions and its effect to the local stress we will
introduce charges to this simulation method [35]. The concentration of ions of species α is given by
Cα and its valence is denoted as Zα. We also define the surface charges of cells as a continuous
field quantity. When a cell i has surface charges Qi, the distribution of charges are considered
to distribute uniformly and is written as ρi prq “ Qi |∇φi prq|

2
{
ş

|∇φi prq|
2 dr; as Qi, we used the

scaled value according to the experiments [27,28]. By using these quantities, the electrostatic force
is expressed as fel “ ´ρtot ∇ψ , where ρtot indicates the total charge density, which is written
as ρtot “

ř

i
ρi `

ř

α
ezαCα. In this formula, the electrostatic potential ψ is calculated from the

Poisson equation εrε0∆ψ “ ´ρtot where ε0 and εr denote the permittivity of vacuum and relative
dielectric constant, respectively. The time evolution of ions surrounding cells satisfies the following
diffusion equation.

ˆ

B

B t
` v ¨∇

˙

Cα “ ∇ ¨
«

LCα∇
˜

kBTlnCα ` ezαψ` kBTχ
ÿ

i

φi

¸ff

` θ pr, tq (7)

In this equation, kB is the Boltzmann constant, and T is the temperature. We set the temperature
at room temperature T = 30 ˝C. The diffusion constant of ions Dion satisfies Dion = kBTL, where we
chose Dion as the typical value Dion = 10´9 (m2/s), and χ is the artificially introduced parameter,
which prevents ions from penetrating into the cells, and we set to χ = 3. In the final term of this
equation, the thermal fluctuation is considered, satisfying the fluctuation–dissipation theorem as
follows [34,36,37]:

@

θ pr, tq θ
`

r1, t1
˘D

“ ´2 L∇Cα∇δ
`

r´ r1
˘

δ
`

t´ t1
˘

(8)

All of these equations are scaled using the unit length λ and time τ. λ “ Ae2{4πε0εrkBT was
taken as the unit length, and we could change the constant parameter A and calculate the appropriate
system size. In this simulation, we took the interfacial thickness as the unit length ξ = λ. The unit time
is also defined from the relaxation time for fluids as τ “ ρλ2{ηsol “ λ2{ν, where ν is the kinematic
viscosity coefficient of the solvent. We solved these equations with periodic boundary conditions.

3.2. Dynamics of a Single Cell

In order to confirm the dynamic properties, Figure 7a plots the temporal change in the mean
square displacement (MSD) of the cells. The simulation of each run was performed in three
dimensions with a sufficiently large simulation box (128 ˆ 128 ˆ 128). In Figure 7a, the average of
the results of 16 distinct simulation runs is shown. In this figure the vertical and horizontal axes were
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scaled by radius of cells a and the Brownian time τB “ a2{Dcell , respectively. We assumed that cells
had a spherical shape, and the diffusion constant of the cells was estimated from the Einstein relation

Dcell “
kBT
6πηa

. Below τB, the MSD is proportional to t2, since the cell is kicked by the surrounding fluid

molecules, which move by the fluctuation, and cells move with a constant velocity v “
a

3kBT{mC
for this short-time regime, where mc denotes the mass of the cell in this regime. This stage is called
as ballistic regime. On the other hand, the diffusional process dominates above τB (at long times),
and the MSD grows in proportion to the time

A

p∆rq2
E

“ 6Dcellt. This crossover is well-described at
t = τB.Int. J. Mol. Sci. 2015, 16, page–page 
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The Langevin dynamics (LD) simulation is based on the Langevin equation of motion: 
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= − +  (10) 

LD omits the solvent degrees of freedom. However, the Stokes’ drag force dragF v= −ζ , which mimics 
the solvent surrounding cells, is introduced in order to account for the viscous aspects of solvents. 
Here, we assumed cells had a spherical shape, and ζ is written as 6 aζ = πη . The notation and value 
of each variable and the interparticle force totF U= −∇  used here are the same as those described in 
Section 3.1. 

Figure 7. (a) Brownian motion of charged cells from the calculation of the mean square displacement
of cells. The Brownian motion of cells exhibited a continuous change from ballistic (below τB) to
diffusive motion (above τB). The horizontal axis indicates time scaled by the Brownian time, and the
vertical axis indicates the MSD scaled by the radius of cells. The red and blue solid lines represent the
ballistic motion and diffusional motion, which are characterized by p3kBT{mq t2 and 6Dt, respectively;
(b) The concentration distribution of ions surrounding charged cells: (b-1) two-dimensional profile
of counter ion concentration and (b-2) concentration profile of counter ions surrounding a cell.
This shows the artificially introduced potential kBTχ prevents ions from penetrating into the cell;
(c) Electrostatic potential of charged cells. Screened-coulomb or Yukawa potential allowed us to fit
the profile. All of the results in this figure were obtained from three-dimensional simulations with
box sizes of 128 ˆ 128 ˆ 128.
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3.3. Distribution of Ions and Electrostatic Behavior

Electrostatic behaviors of ions and cells are also confirmed. Figure 7b,c show the distribution of
ions surrounding the cell and the behavior of electrostatic potential from the center of the cell. The
conditions for simulation were the same as in the previous section, and we only considered the effects
of counter ions of the cell. Ions are strongly bound to the surface of the cell, and the concentration of
ions gradually decreases as the distance from the cell becomes greater. Figure 7b-2 clearly shows that
the artificially introduced potential prevents ions from penetrating into the cell. The bounded ions
screen the electrostatic potential around the cell, which is known to be described by the following
screened Coulomb (or Yukawa) potential.

βψ prq “ βεYuk
exp p´κ pr{σ´ 1qq

r{σ
(9)

where βεYuk is the magnitude of the Yukawa repulsion in the units β “ 1{kBT, and κ is the
inverse Debye screening length in units of the hard-sphere diameter σ = 2a. Figure 7c shows that
the simulation results of single particles (green dots) were well described by this Yukawa potential
(red solid line).

3.4. Langevin Dynamics Simulation

The Langevin dynamics (LD) simulation is based on the Langevin equation of motion:

m
dv
dt
“ F´ Fdrag ` FB (10)

LD omits the solvent degrees of freedom. However, the Stokes’ drag force Fdrag “ ´ζv, which mimics
the solvent surrounding cells, is introduced in order to account for the viscous aspects of solvents.
Here, we assumed cells had a spherical shape, and ζ is written as ζ “ 6πηa. The notation and value
of each variable and the interparticle force F “ ´∇Utot used here are the same as those described in
Section 3.1.

4. Conclusions

We focused on the initial stage of network formation of vascular endothelial cells, which is not
affected by chemoattractants, such as VEGF. From simple observations, we found that cells formed
chain-like structures as a primary phenomenon of network formation. In order to elucidate the
mechanisms mediating this process, we performed a hybrid simulation of the mesh-less dynamics
of cells and a continuous field method. The continuous model allowed us to model the other degrees
of freedom, such as hydrodynamic interactions and the distribution of ions.

From these simulations, we found that hydrodynamic interactions slowed the compaction of
clusters and that the lifetime of the chains became longer. This structure was stabilized by the effects
of charges. The Coulomb repulsion of the effective interparticle potential between cells prevented
chains from folding, and ions that bound to the cells further stabilized the chains. Therefore, the initial
configuration of the network should not be treated as homogeneous, but should instead be considered
as a directional precursor. Our findings suggested that chemoattractants, such as VEGF, may be
necessary for the later stages of network formation, as has been shown in multiple studies [1,2,38];
however, the initial configuration of cells will also affect the speed at which the networks form and
the final morphologies of the networks.

Our simulation also suggested that it is important to add salts to screen long-range interactions
for generating precursors of networks of vascular endothelial cells. This may affect the threshold
of the percolation transition [8]. Thus, these purely physical effects like electrostatic forces,
hydrodynamic interactions and elastic forces should be considered in other biological structural
transformations, such as cell division, tube formation of endothelial cells, and late-stage network
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formation. Actually, in the late stages of network formation, the other factors for example the size
distribution of cells and the elasticity of cells should also be considered. This will be future work.

Finally, we expect that the simulation method presented above will be applicable to other
physical and biological processes, like charged colloidal systems, and the later stages of network
formation, during which VEGF or other chemicals are present and play a role in forming networks.
Additional experiments and simulations are necessary to elucidate the many features of these
morphogenic processes.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/16/
12/26149/s1.
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