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Roles of osteocytes in
phosphate metabolism
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Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s
Hospital, Osaka Prefectural Hospital Organization, Izumi, Japan
Osteocytes are dendritic cells in the mineralized bone matrix that descend

from osteoblasts. They play critical roles in controlling bone mass through the

production of sclerostin, an inhibitor of bone formation, and receptor activator

of nuclear factor k B ligand, an inducer of osteoblastic bone resorption.

Osteocytes also govern phosphate homeostasis through the production of

fibroblast growth factor 23 (FGF23), which lowers serum phosphate levels by

increasing renal phosphate excretion and reducing the synthesis of 1,25-

dihydroxyvitamin D (1,25(OH)2D), an active metabolite of vitamin D. The

production of FGF23 in osteocytes is regulated by various local and systemic

factors. Phosphate-regulating gene homologous to endopeptidase on X

chromosome (PHEX), dentin matrix protein 1 (DMP1), and family with

sequence similarity 20, member C function as local negative regulators of

FGF23 production in osteocytes, and their inactivation causes the

overproduction of FGF23 and hypophosphatemia. Sclerostin has been

suggested to regulate the production of FGF23, which may link the two

functions of osteocytes, namely, the control of bone mass and regulation of

phosphate homeostasis. Systemic regulators of FGF23 production include 1,25

(OH)2D, phosphate, parathyroid hormone, insulin, iron, and inflammation.

Therefore, the regulation of FGF23 in osteocytes is complex and

multifactorial. Recent mouse studies have suggested that decreases in serum

phosphate levels from youth to adulthood are caused by growth-related

increases in FGF23 production by osteocytes, which are associated with the

down-regulation of Phex and Dmp1.

KEYWORDS
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Introduction

Osteocytes, which are terminally differentiated cells of the osteoblast lineage, are

dendritic cells embedded within the mineralized bone matrix (1–3). Although osteocytes

are the most abundant among all cells in bone, their location and inaccessibility has
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delayed our understanding of their function at the molecular

level. In the past few decades, mounting evidence has indicated

that osteocytes play important roles in bone homeostasis. They

produce sclerostin, a secreted potent suppressor of bone

formation (4, 5). Furthermore, critical roles for osteocyte-

derived receptor activator of nuclear factor k B ligand

(RANKL) in the control of postnatal bone resorption have

been demonstrated in mouse models in which its expression

was specifically deleted from osteocytes (6).

Phosphate is an essential nutrient that mediates the majority

of biological processes (7). Fibroblast growth factor 23 (FGF23),

which functions as a central regulator of phosphate metabolism

in mammals, is mainly produced by osteocytes (8). In addition to

FGF23, several other molecules responsible for phosphate

homeostasis are highly expressed in osteocytes, which include

phosphate-regulating gene homologous to endopeptidase on X

chromosome (PHEX), dentin matrix protein 1 (DMP1), and

family with sequence similarity 20, member C (FAM20C), the

genes responsible for hereditary hypophosphatemia (8–12).

Current concepts on the molecular mechanisms by which

osteocytes regulate phosphate metabolism are discussed herein.
Osteocyte differentiation
from osteoblasts

Osteocytes account for 90-95% of all bone cells in adult bone

and have the longest lifespan (1–3). In the process of

osteocytogenesis, a subpopulation of matrix-producing

osteoblasts on the bone surface become embedded within the

matrix proteins they produce and differentiate into osteocytes

with a decrease in the production of the bone matrix, marked

changes in morphology, and the expression of genes that

constitute the signature of osteocytes (1–3). Approximately 5

to 20% of osteoblasts mature into osteocytes, while the

remainder die by apoptosis or become bone lining cells (3).

During the maturation of osteoblasts into osteocytes, cell

morphology changes to a stellate shape with long processes.

Osteocytes reside in lacunae within the mineralized bone matrix,

and interconnect with each other and with osteoblasts on the

bone surface by their long cytoplasmic processes running

through canaliculi. As osteoblasts differentiate into osteocytes,

they acquire the expression of molecules that regulate bone

homeostasis and phosphate metabolism (1–3).
Control of bone mass by osteocytes

Osteocytes embedded in the bone matrix sense mechanical

signals and regulate bone formation and resorption. A previous

study reported that the genetic ablation of osteocytes in mice led
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to osteoporotic bone loss and the suppression of mechanically-

induced new bone formation (13). Sclerostin encoded by the

SOST gene is secreted by osteocytes and suppresses bone

formation (5). The inactivation and reduced expression of

SOST in humans have been shown to be responsible for rare

bone sclerosing diseases, such as sclerosteosis 1 and van Buchem

diseases (14). Sclerostin binds to low-density lipoprotein

receptor-related protein 5 (LRP5) and LRP6 to inhibit Wnt/ß-

catenin signaling (15). Wnt/ß-catenin signaling plays a critical

role in controlling bone mass by promoting the commitment of

mesenchymal progenitor cells into osteoblasts as well as the

proliferation and differentiation of osteoblasts. Furthermore,

Wnt/ß-catenin signaling has been shown to inhibit the

differentiation and activation of osteoclasts (16, 17).

Mechanical signaling was found to suppress the expression of

sclerostin in osteocytes, which promoted bone formation by

enhancing Wnt/b-catenin signaling (4). The mechanosensor

channel Piezo1 has recently been suggested to be involved in

the suppression of Sost expression by mechanical force (18). The

bone anabolic effects of parathyroid hormone (PTH) are also

mediated by the down-regulation of Sost (19).

Osteocytes also regulate osteoclastic bone resorption by

producing RANKL. Mice with the conditional deletion of

RANKL from osteocytes and some mature osteoblasts exhibited

markedly impaired osteoclastic bone resorption after birth,

leading to the osteopetrotic phenotype (6). Therefore, osteocytes

play critical roles in bone homeostasis by controlling the

formation and resorption of bone in postnatal life.
Production and effects of FGF23

As osteoblasts mature into osteocytes, they acquire the

expression of various molecules involved in phosphate

homeostasis, which include the genes responsible for

hereditary hypophosphatemic diseases (1–3, 8). The high

expression of these molecules indicates that osteocytes play

essential roles in the regulation of phosphate metabolism as

well as the control of bone mass.

FGF23, the key regulator in phosphate metabolism, consists

of 251 amino acids including an amino-terminal signal sequence

of 24 amino acids (20). It is mainly produced by osteocytes and

exerts its effects on distant target organs, such as the kidneys. Its

endocrine function is suggested to be conferred by its low

binding affinity to heparin/heparan sulfate (21). In the

kidneys, the main target for FGF23, it increases phosphate

excretion by reducing the expression of type IIa and IIc

sodium/phosphate (Na+/Pi) co-transporters (designated as

NaPi-IIa and NaPi-IIc, respectively) (20). In addition, FGF23

reduces the production of 1,25-dihydroxyvitamin D [1,25

(OH)2D], an active metabolite of vitamin D, by suppressing

the expression of 25-hydroxyvitamin D 1a-hydroxylase and
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inducing that of 24-hydroxylase, which leads to the decreased

absorption of phosphate in the intestines (20). At physiological

concentrations, FGF23 requires a single-pass transmembrane

protein, aKlotho as a co-receptor for its signal transduction

through the FGF receptor (FGFR) (22, 23). FGF23 is inactivated

by proteolytic cleavage between Arg179 and Ser180. This cleavage

is prevented by theO-glycosylation of FGF23 at Thr178, a process

that is mediated by UDP-N-acetyl-a-D-galacosamine:

polypeptide N-acetylgalactosaminyltransferase 3 (GalNAc-

T3) (24).

Figure 1 summarizes the roles of osteocytes in the control of

bone mass and the regulation of phosphate metabolism.
Local regulators of FGF23
production in osteocytes

PHEX, DMP1, and FAM20C are highly expressed in

osteocytes (8). Since inactivating variants of these genes cause

the overproduction of FGF23 in osteocytes (25), these molecules

are considered to function as local negative regulators of FGF23

production in osteocytes.

The PHEX gene is responsible for X-linked hypophosphatemic

rickets (XLH), the most common form of hereditary

hypophosphatemia (9). Although the PHEX protein is

suggested to function as a cell surface-bound, Zinc-dependent

protease based on its structure (26), its physiological substrates

remain elusive, and FGF23 does not serve as its substrate (27).

DMP1 encodes an extracellular matrix protein belonging to the

small integrin-binding ligand, N-linked glycoproteins

(SIBLINGs) family, and its inactivating variants cause

autosomal recessive hypophosphatemic rickets type 1

(ARHR1) (10, 11).
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Studies using Phex-deficient hypophosphatemic Hyp mice

and Dmp1-null mice have suggested that enhanced FGFR

signaling in osteocytes contributes to the increased production

of FGF23 in XLH and ARHR1 (8, 28, 29). In Hyp mice, the

osteocytic expression of Fgf1, Fgf2, Fgfr1–3, and Egr-1, which is a

target gene of activated FGFR signaling, was found to be

markedly up-regulated (8), and the osteocyte-specific deletion

of Fgfr1 partially restored the overproduction of FGF23 and

attenuated hypophosphatemia and mineralization defects (29).

In a culture of bone marrow stromal cells isolated from Dmp1-

null mice, the inhibition of FGFR signaling using SU5402

prevented increases in FGF23 expression levels (28).

Furthermore, mice with the transgenic overexpression of high-

molecular-weight isoforms of FGF2 in osteoblast lineage cells

exhibited elevated FGF23 levels and hypophosphatemic rickets

(30). In humans, osteoglophonic dysplasia caused by activating

variants in FGFR1 is often associated with hypophosphatemia

due to elevated FGF23 levels (31). These findings support

activated FGFR signaling in osteocytes increasing the

production of FGF23.

The FAM20C gene encodes a secreted kinase that

phosphorylates a broad range of substrates, including FGF23

and proteins of the SIBLINGs family, such as DMP1 (32, 33).

Inactivating variants of FAM20C cause Raine syndrome (RNS),

an autosomal recessive disease characterized by neonatal

osteosclerotic bone dysplasia of an aggressive onset and poor

prognosis. Patients with mild RNS may survive and manifest

hypophosphatemic rickets due to elevated FGF23 levels as well

as dental anomalies (12, 34). FAM20C has been shown to

directly phosphorylate FGF23 on Ser180, which inhibits the O-

glycosylation of FGF23 by GalNAc-T3. Therefore, the

inactivation of FAM20C may increase the protein levels of

intact FGF23 by reducing its cleavage (33).
FIGURE 1

Roles of osteocytes in the control of bone mass and the regulation of phosphate metabolism. Osteocytes regulate bone formation and
resorption through the production of sclerostin and RANKL. Sclerostin suppresses bone formation by inhibiting Wnt/b-catenin signaling. FGF23
produced by osteocytes plays central roles in phosphate metabolism by increasing renal phosphate excretion and decreasing the production of
1,25(OH)2D. The production of FGF23 in osteocytes is influenced by various positive and negative regulators.
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Sclerostin may also function as a local regulator of FGF23. A

recent study demonstrated that a treatment with an anti-

sclerostin antibody reduced serum levels of intact FGF23 and

increased serum phosphate levels in wild-type and Phex-

deficient Hyp mice (35). While the serum intact FGF23 levels

were reduced by anti-sclerostin antibody, the levels determined

by C-terminal assay was found to be unchanged. Since the C-

terminal FGF23 assay detects both the intact and cleaved C-

terminal fragments of FGF23, the circulating C-terminal

fragments of FGF23 were likely to be increased after the

treatment with anti-sclerostin antibody (35). Considering a

previous report demonstrating that the C-terminal fragments

of FGF23 may antagonize the action of biologically active intact

FGF23 (36), the elevation in serum phosphate levels following

the treatment with anti-sclerostin antibody might be mediated

by both the reduction in intact FGF23 levels and the increase in

the C-terminal fragments. Although the regulation of FGF23 by

sclerostin may be indirect and mediated by the control of bone

turnover, a cell study using the osteocytic cell line IDG-SW3

suggested the direct stimulating effects of sclerostin on the

synthesis of FGF23 (37). The regulation of FGF23 by

sclerostin is interesting because it suggests a connection

between the two important functions of osteocytes: the control

of bone mass and the regulation of phosphate metabolism.

A clinical study previously demonstrated that the

intravenous administration of pamidronate to patients with

osteogenesis imperfecta rapidly decreased serum intact FGF23

levels (38), which suggested that bone turnover influences serum

FGF23 levels. This concept was supported by a mouse study in

which interleukin-1 (IL-1)-induced local bone resorption caused

elevations in serum intact FGF23 levels without increasing its

mRNA levels, and this elevation in FGF23 was prevented by a

pre-treatment with a bisphosphonate pamidronate (39).

Similarly, in nephrectomized rats with a high bone turnover

renal osteodystrophy, a treatment with a bisphosphonate

risedronate suppressed the elevation of serum intact FGF23

levels (40). These findings indicate that the release of FGF23

produced by osteocytes into the circulation is accelerated in

association with bone resorption.
Systemic regulators of FGF23
production in osteocytes

In addition to the local regulators described above, FGF23

production by osteocytes is influenced by various systemic

factors, some of which are described herein. Among the

systemic regulators of FGF23 production, 1,25(OH)2D appears

to be a principal regulator and increases the expression of FGF23

in osteoblast lineage cells through the vitamin D receptor

(VDR)-mediated transactivation of its gene (41, 42). The

importance of 1,25(OH)2D in the regulation of FGF23 is
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supported by clinical observations showing that patients with

vitamin D deficiency have low levels of serum intact FGF23 (43).

PTH also stimulates the production of FGF23, as suggested

by the elevated serum levels of FGF23 in patients and mouse

models of hyperparathyroidism (44, 45). Elevated serum levels of

intact FGF23 were also reported in patients with Jansen type

metaphyseal chondrodysplasia, a skeletal dysplasia caused by

activating variants in PTH receptor 1 (PTH1R) (46). The

importance of PTH signaling in osteocytes for the regulation

of FGF23 production has been shown in mouse studies

demonstrating that the constitutive activation of PTH1R in

osteocytes using a Dmp1 promoter increased the production of

FGF23 (47).

Phosphate itself also regulates the production of FGF23 in

osteocytes. Previous studies reported that dietary phosphate

loading increased serum intact FGF23 levels in both humans

and mice (48, 49). We recently showed that a 72-hour treatment

of primary mouse osteocytes with high phosphate increased

FGF23 production in vitro, and this increase occurred at the

protein level rather than at the mRNA level (50). Furthermore, a

treatment of osteoblast lineage cells with high phosphate up-

regulated the expression of the Galnt3 gene, which prevented the

cleavage-mediated inactivation of FGF23 (51).

Recent studies demonstrated that insulin signaling

suppressed the osteocytic production of FGF23 through the

activation of the AKT pathway. In clinical settings, negative

correlations were reported between increases in plasma insulin

levels after oral glucose loading and plasma intact FGF23 levels

(52). A treatment of the cultured osteoblastic cell line UMR106

with insulin and insulin-like growth factor 1 (IGF-1) also

suppressed the production of FGF23 through the activation of

the AKT pathway and the inhibition of forkhead box protein 1

(FOXO1) (52). We recently reported that the osteocyte-specific

deletion of phosphatase and tensin homolog deleted from

chromosome 10 (PTEN), the molecule that antagonizes the

insulin-induced activation of AKT, resulted in a decrease in

the production of FGF23 in osteocytes, a reduction in renal

phosphate excretion, and the attenuation of hyperphosphatemia

(53). The knockdown of PTEN expression in UMR1-6 cells

decreased the expression of Fgf23, which was partially restored

by a treatment with rapamycin, suggesting the involvement of

AKT/mechanistic target of rapamycin complex 1 (mTORC1)

(53). These findings suggest that the insulin- and IGF1-induced

activation of AKT in osteocytes inhibit the production of FGF23

through the FOXO1 and mTORC1 pathways.

Iron deficiency increases the production of FGF23 through

the hypoxia-inducible factor 1a (HIF1a)-mediated

transactivation of the gene (54, 55). The activation of the HIF

pathway promotes the production of the hematopoietic

hormone erythropoietin, which has been shown to increase

the production of FGF23 (56).

Increased serum levels of intact FGF23 may be observed in

patients with inflammatory diseases (57), and various
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proinflammatory cytokines, such as tumor necrosis factor a, IL-
1b, and IL-6, have been reported to increase the expression of

Fgf23 (58). Several mechanisms, including the activation of the

HIF pathway, the involvement of NF-kB and signal transducer

and activator of transcription 3, and lipocalin 2-mediated

induction, have been suggested to contribute to inflammation-

associated increases in the production of FGF23 (59–62).

Many other factors have also been suggested to regulate the

production of FGF23, and there are several excellent review

articles on this topic (57, 58). Therefore, the regulation of FGF23

is multifactorial and complex, and has not yet been elucidated

in detail.
Growth-related changes in
osteocytes and alterations in
phosphate metabolism

Serum levels of phosphate are higher in children than in

adults (63), which may be due to the high need for phosphate for

the growth of the skeleton and soft tissues. However, the

mechanisms underlying growth-related changes in phosphate

metabolism remain unclear. Since osteocytes play central roles in

phosphate homeostasis, we recently investigated the relationship

between growth-related skeletal changes and alterations in

phosphate metabolism from youth to adulthood using young

(4-week-old) and adult (12-week-old) mice (50). Although

serum phosphate levels were lower in young mice, serum

intact FGF23 levels and the osteocytic production of FGF23

increased from youth to adulthood and were associated with the
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enhancement of the FGF23-mediated-bone-kidney axis (50). An

analysis of osteocytes isolated from young and adult mice

revealed that the mRNA and protein levels of Dmp1 and

mRNA levels of Phex declined from youth to adulthood. Since

they function in the negative regulation of FGF23 production,

the down-regulation of Dmp1 and Phex may be one of the

mechanisms contributing to growth-related increases in the

production of FGF23 and decreases in serum phosphate levels

(50). In isolated osteoblasts and osteocytes, gene responses to

elevated extracellular phosphate levels were also markedly

altered from youth to adulthood (50). These findings provide

evidence for the critical roles of osteocytes in growth-related

alterations in phosphate metabolism (Figure 2).
Phosphate sensing in osteocytes

To maintain phosphate homeostasis, organisms need to

sense environmental and internal levels of phosphate and

adapt to changes. Although the molecular mechanisms for

phosphate sensing have been extensively investigated in

unicellular organisms, such as bacteria and yeast, as well as in

plants (64–66), the mechanisms by which mammals sense

phosphate levels in individual cells or the whole body

currently remain unknown. Previous studies, including ours,

demonstrated that an elevation in extracellular phosphate

directly exerted its effects on various cell types, including bone

cells, through the activation of signaling pathways, such as the

FGFR and Raf/MEK/ERK pathways (7, 67–70). The

responsiveness of cells to elevated extracellular phosphate
FIGURE 2

Growth-related changes in osteocytes cause a decrease in serum phosphate levels from youth to adulthood. The osteocytic expression of
DMP1 and PHEX declines from youth to adulthood, which leads to an increase in the production of FGF23 and decrease in serum phosphate (Pi)
levels. Gene responses of osteocytes to extracellular Pi are distinct between youth and adulthood (depicted as a shaded bar), suggesting
growth-related differences in the sensitivity to the altered availability of Pi.
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levels indicates that phosphate availability is detectable at the

individual cell level. Since osteocytes play a central role in

phosphate homeostasis, they may sense phosphate availability

in the whole body. This concept appears to be supported by the

close relationship between growth-related changes in osteocytic

gene expression and their responses to phosphate and alterations

in phosphate metabolism from youth to adulthood (50). A

previous study reported that phosphate loading in mice up-

regulated the skeletal expression of Galnt3 by activating FGFR

and increased the production of FGF23, suggesting the

involvement of FGFR in phosphate sensing in mammals (51).

The parathyroid glands also respond to altered levels of

extracellular phosphate. The secretion of PTH is stimulated by

phosphate, and a recent study has suggested that this process is

mediated by a direct action of phosphate on the calcium-sensing

receptor (71). Thus, calcium-sensing receptor may function as a

phosphate sensor in the parathyroids.
Conclusion

Osteocytes embedded in the mineralized bone matrix play

central roles in the regulation of phosphate metabolism as well as

in the control of bone mass. They control bone formation and

resorption by producing sclerostin and RANKL, respectively.

FGF23 produced mainly by osteocytes functions as a key

regulator of phosphate homeostasis, and it increases renal

phosphate excretion and decreases the synthesis of 1,25(OH)

2D. The production of FGF23 in osteocytes is influenced by

multiple local and systemic regulators, and some of the local

regulators, such as PHEX, DMP1, and FAM20C, were found to

be responsible for hereditary hypophosphatemic diseases

associated with the overproduction of FGF23. Serum

phosphate levels are higher in children to meet the high needs

for phosphate during growth. Mouse studies have suggested that

decreases in serum phosphate levels from youth to adulthood are

associated with growth-related increases in the production of

FGF23 in osteocytes, which may be attributed to the down-

regulation of PHEX and DMP1. Since osteocytes govern
Frontiers in Endocrinology 06
phosphate homeostasis, they may be responsible for sensing

phosphate availability in the whole body. Although the

mechanisms by which mammals sense phosphate levels

remain largely unknown, FGFR appears to be involved in the

process. Further clarification of the mechanisms by which

osteocytes sense phosphate availability and regulate the

production of FGF23 will contribute to a more detailed

understanding of the pathogenesis of conditions with

abnormal phosphate metabolism and the development of

effective treatments.
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