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Hybrid two‑mode squeezing 
of microwave and optical fields 
using optically pumped graphene 
layers
Montasir Qasymeh1* & Hichem eleuch2,3

A measurable quadrature of a squeezed quantum state manifests a small uncertainty below the 
Heisenberg limit. this phenomenon has the potential to enable several extraordinary applications 
in quantum information, metrology and sensing, and other fields. Several techniques have been 
implemented to realize squeezed electromagnetic states, including microwave fields and optical 
fields. However, hybrid squeezed modes (that incorporate both microwave and optical fields) have 
not yet been proposed despite their vital functionality to combine the two worlds of quantum 
superconducting systems and photonics systems. In this work, for the first time, we propose a novel 
approach to achieve two-mode squeezing of microwave and optical fields using graphene based 
structure. the proposed scheme includes a graphene layered structure that is driven by a quantum 
microwave voltage and subjected to two optical fields of distinct frequencies. By setting the optical 
frequency spacing equal to the microwave frequency, an interaction occurs between the optical and 
microwave fields through electrical modulation of the graphene conductivity. We show that significant 
hybrid two-mode squeezing, that includes one microwave field and one optical field, can be achieved. 
Furthermore, the microwave frequency can be tuned over a vast range by modifying the operation 
parameters.

Microwave fields with squeezed states hold promises for realizing quantum communication  systems1 and fault-
tolerant quantum  computation2 and for connecting quantum  computers3. Additionally, such fields can enable 
many unprecedented applications, including quantum radar and  navigation4–6, quantum  metrology7, and weak 
classical signal  detection8. Moreover, squeezed optical fields, which are equally functional to all above applica-
tions, are also used in gravitational wave  detection9, laser system  stabilization10, achieving accurate gyroscope 
 systems11, detecting single-molecule12, and to realize quantum  memory13, just to mention few.

Mainly three configurations have been successfully implemented to achieved squeezed microwave fields. 
These are Josephson parametric amplifiers (JPAs)14, superconductor  resonators15, and electromechanical 
 resonators16. Microwave squeezing with JPAs is based on using the JPA nonlinear response to form nonlinear 
 resonators17. A typical squeezing gain of approximately 10 dB over a few MHz bandwidth is  achieved18. Extended 
designs including Josephson traveling wave amplifiers with a squeezing gain of 20 dB and a bandwidth up to a 
few GHz have also been  reported19. However, phase matching is  required20. In contrast, microwave squeezing 
with gain up to 8 dB is achieved using superconductor resonators by implementing dissipation engineering to 
a coupled microwave  field21,22. Squeezing with electromechanical resonators has been reported by using the 
radiation pressure force of the interacting  field23. Squeezing gains up to 8 dB over a few tens of MHz are typi-
cally  achieved24. However, the operation is temperature dependent, and the performance degrades for higher 
microwave frequencies. Similarly, squeezed optical fields have been achieved with gain of more than 15 dB either 
by implementing optical nonlinear  materials25 or by incorporating optomechanical  systems26. Optical squeezing 
utilizing nonlinear optical materials are conducted by means of wave mixing or parametric down-conversion27, 
while optical squeezing utilizing optomechanical systems is realized by coupling the light photons to mechanical 
motion via incorporating mechanical resonator in an optical  cavity28.
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In this work, we propose a novel scheme for hybrid two-mode squeezing of microwave and optical fields. The 
proposed scheme utilizes an electro-optic interaction obtained by electrically modulating the graphene conduc-
tivity. A microwave field (of frequency ωm ) drives the graphene layers. The graphene layers are subject to two 
optical fields with frequencies ω1 and ω2 . The interaction between the microwave and optical fields is enabled by 
setting ω1 − ω2 = ωm . A quantum mechanics model is developed to describe the electro-optic interaction. The 
microwave and optical fields are determined in the steady state, in which the time rate changes of their averages 
are zero. The operator fluctuations are evaluated by calculating the squeezing spectrum. The microwave field is 
conceived as the signal, while the optical fields at ω1 and ω2 are considered as the pump and the idler, respectively. 
We show that hybrid two-mode squeezing—that includes microwave field (i.e., the signal) and optical field (i.e., 
the idler)—can be achieved with a peak squeezing gain of 36 dB over about 2 MHz fluctuation spectrum band-
width. Furthermore, the squeezed microwave frequency can be tuned over a wide range by modifying the optical 
frequency spacing. Achieving a hybrid two-mode squeezing paves the way towards merging the superconducting 
quantum systems with photonics systems. It then ultimately leads to hybrid systems that leverage the advantages 
of  both29. Furthermore, the advantages of our proposed squeezing scheme include its simple structure (with no 
phase matching or SQUID insertion required), moderate cryogenic operation temperature, and tunability over 
a vast microwave frequency range.

Results
Model. The proposed structure is composed of periodic graphene layers connected in an interdigital con-
figuration and electrically driven by a transmission line, as shown in Fig. 1. The graphene layers have periodicity 
a and cross-sectional area Ar and are filled with a dielectric material of permittivity ε . The transmission line is 
used to electrically drive the graphene layers by a microwave b̂in voltage operator of frequency ωm . The transmis-
sion line is connected to every other graphene layer, while the middling graphene layers are grounded. Thus, 
the graphene layers can be considered as (N − 1) identical shunted capacitors, each of C = εε0

a  per unit area 
 capacitance30. Electrically, the graphene layers are equivalent to a capacitor of CT = (N − 1)C per unit area 
capacitance, as shown in Fig. 2. Here, N is the number of graphene layers. In this work, the intrinsic impedance 
of the transmission line is considered to be much smaller than the capacitor impedance of the graphene layers, 
yielding total microwave reflection. Thus, the total microwave voltage driving the graphene layers is given by 
b̂ = b̂out + b̂in , where b̂out and b̂in are the reflected and incident microwave voltage operators, respectively.

Additionally, two optical fields û1 and û2 are launched normally to the graphene layers. The optical fields 
have distinct frequencies ω1 and ω2 , respectively. By setting ω1 − ω2 = ωm , interaction of the optical and 
microwave operators is enabled by electrically controlling the graphene conductivity. Optically, the graphene 
layers can be described by the concept of the effective permittivity, which can be obtained from the disper-
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 is the graphene conductivity, q rep-

resents the electron charge, � denotes Planck’s constant, τ is the scattering relaxation time in graphene, KB 
represents the Boltzmann constant, and T is the temperature.

Figure 1.  Proposed graphene layered structure driven by a b̂ microwave field and subject to û1 and û2 optical 
input fields.
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Following a similar perturbation approach to that developed in our previous work (see Supplementary Mate-
rial 1)30,32, the quantum Hamiltonian Ĥ = Ĥ0 + Ĥ1 is given by:

where Ĥ0 and Ĥ1 are the free and interaction Hamiltonians, respectively, g = ε′′
√

ω1ω2
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 represents the graphene conductivity perturbation, 
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√
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c = �Vf
CT

q
√
πn0

 is the chemical potential perturbation, 
and n0 represents the electron density. The equations of motion can obtained by substituting the Hamiltonian 
into the Heisenberg equation of motion, that is, ∂ ô

∂t = i
�
[Ĥ, ô] . Losses can be taken in to account by incorporating 

the decay coefficients in the equations of motion. The optical decay rate includes the mode attenuation and layers 
transmittance, while the microwave field decay rate can be derived from electrical  dissipation30. Importantly, 
according to the fluctuation-dissipation theorem, the Langevin forces ( which represent the noise in the micro-
wave and optical fields as the feed-back of the environment to the system) need to be included. Consequently, 
by implementing the standard rotation approximation, the equations of motion are given by:

where α1 is the classical component of the optical mode at frequency ω1 , Ŵj = 2vg Im(βj)+ vg
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∂ û2

∂t
=− Ŵ2

2
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Figure 2.  Equivalent electrical circuit of the graphene layer structure.
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Langevin noise operator, T0 indicates the medium transmittance (calculated using the transfer matrix  method33), 

t0 is the time of flight over a single layer block, Rg = Re( 1
σs
) , and ν =

(

�ωm
CTAr

)
1
2

b̂ describes the classical coun-

terpart of the quantum microwave annihilation operator. The quantum Langevin noise operator obeys the rela-
tions [n̂j(t1), n̂j(t2)†] = δ(t1 − t2) and �n(t1)†n(t2)� = 1

exp(�ω/kBT)−1
δ(t1 − t2) . We remark here that the optical 

mode at frequency ω1 is composed of quantum component and classical component. This is similar to having a 
strong pump component and weak field component. Analytically, this is taken into account by substituted û1 + α1 
instead of û1 in the Heisenberg equation to achieve Eqs. (3)–(6). The classical component α1 undertakes the role 
of the optical pumping.

By expressing the interacting operators in terms of their averages and fluctuations, i.e., ô =
〈

ô
〉

+ δô , and then 
substituting them into the equations of motion in Eqs. (3)–(6), we obtain a set of rate equations for the operator 
averages and another set for the  fluctuations23. The rate equations for the averages are given by:

It is worth mentioning that the average 
〈

û1
〉

 and α1 are essentially different. The average 
〈

û1
〉

 is time dependent 
and governed by the equation of motion (8). In contrary, α1 is an intensive classical quantity that is independent 
of time and subject only to dissipation. Our calculations show that 

〈

û1
〉

 tends to zero value at steady state for 
large α1 value. The rate equations for the fluctuations are given by:

The averages can be solved in the steady state for a given decay coefficient, i.e., Ŵj , and classical field component, 
i.e., α1 . Thus, the fluctuations, i.e., δô , can be solved in the frequency domain (as shown in “Methods” section).

According to the incident-reflected relation in a transmission line, b̂ = b̂out + b̂in for the case of total reflec-
tion. It then follows that the microwave output fluctuation is given  by34:

The optical output fluctuations δûout2  and δb̂ can be evaluated by solving Eqs. (7)–(12). The squeezing of the 
hybrid two-modes can be quantified by calculating its fluctuation correlation. The spectrum of this fluctuation 
correlation (named the squeezing spectrum) is given by:
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is Fourier transform.
The squeezing spectrum is less than unity for two-mode squeezed  quadrature36,37.

numerical estimations. In this section, numerical estimations are presented to study the viability of the 
proposed scheme. As detailed in Eq. (26), the squeezing spectrum is dependent on g (the coupling rate) and on 
Ŵ1 , Ŵ2 , and Ŵm (the decay coefficients). Our numerical simulations show that squeezing is achieved for specific 
combination of decay coefficients and coupling rate. Upon setting a = πc

2ω1

√
ε
 , Ŵ1 and Ŵ2 slightly change with the 

microwave frequency (as the optical fields are off-resonant with the layered graphene medium). Thus, under this 
condition, squeezing can be extended to over a larger microwave frequency range by controlling the coupling 
rate against the microwave frequency. The coupling rate can be electrically modified by disturbing the effective 
electron density of graphene with a DC bias. Hereby, wideband microwave squeezing is achieved.

In the following simulations, we consider a cryogenic temperature T = 3 mK and a silicon filling material 
with ε = (3.5)2.

First, we evaluate the coupling rate versus different graphene design parameters. In Fig. 3, the coupling rate 
is evaluated versus the graphene electron density. Several medium lengths are considered. The coupling rate can 
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be set over a wide range by controlling the electron density and the medium length (i.e., the number of layers). 
Moreover, in Fig. 4, the conversion rate versus the electron density is displayed considering different graphene 
cross-sectional areas. Figures 3 and 4 demonstrate the feasibility of controlling the coupling rate by altering the 
graphene layer properties.

Upon finding the average values in the steady state, the squeezing spectrum can be evaluated. In Fig. 5, the 
squeezed spectrum SX and squeezing gain 

(

defined by GX = −10log10[SX ]
)

 of the output two-mode quadrature 
are shown for ωm

2π
= 10 GHz. Here, g = 20.24× 106 Hz, and α1 = 708 . The averages in the steady state are 

〈

b̂
〉

= 200 , 
〈

û1
〉

= 0 , and 
〈

û2
〉

= 7 . The optical decay coefficients calculated from the dispersion relation are 
Ŵ1 = Ŵ2 = 8× 1011 Hz, and the microwave decay coefficient is Ŵm = 1.02× 109 Hz. These values were defined 
by carrying out significant numerical investigations. As seen, squeezing with significant gain is achieved over a 
bandwidth of almost 2 MHz with a peak of approximately 37 dB at ω = 0 . Here, ω is the frequency spectrum of 
the fluctuations.

Our simulations show that by setting a = πc
2ω

√
ε
= 0.11 µm , the decay coefficients change very slightly over 

the 10–100 GHz microwave frequency range. However, the coupling rate is function of the microwave frequency. 
Nonetheless, the coupling rate can be controlled by modifying the electron density of the graphene layers. It then 
follows squeezing can be extended against the microwave frequency range for proper combinations of ωm and 
effective electron density. For instance, if the coupling rate is constant (against the microwave frequency) at 
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Figure 3.  Coupling rate g versus graphene electron density. Several medium lengths are considered.
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g = 20.24× 106 Hz, then the squeezing in Fig.  5 can be extended over the entire microwave frequency range 
from 10 to 100 GHz. In Fig. 6, the coupling rate is evaluated against the microwave frequency. Different electron 
densities are considered. As can be observed, the coupling rate can be maintained at g = 20.24× 106 Hz over 
the entire microwave frequency range by adjusting the electron density from 3.5× 1014 m−2 to 14× 1014 m−2 . 
The effective electron density can be modified by applying a DC electrical voltage as  follows38:

where n0 is the intrinsic electron density and Vdc is the DC bias voltage. The effective electron density is displayed 
in Fig. 7 against the DC bias voltage. As shown in Fig. 7, the effective electron density can be controlled over the 
required range, from 3.5× 1014 m−2 to 14× 1014 m−2 , by varying the DC bias from 0.1 to 0.6 m V for intrinsic 
electron density n0 = 1× 1014 m−2.

Furthermore, we evaluate the squeezing gain against the temperature. In Fig. 8, the squeezing gain spectrum 
is evaluated for T = 3 mK, T = 60 mK, and T = 90 mK. The other parameters are the same as in Fig. 5. We 
observe that the squeezing gain can be maintained even up to moderate cryogenic temperatures. For example, 
for T = 90 mK, a squeezing gain can be obtained for an up to tens of kHz frequency bandwidth with a peak of 
17 dB at ω = 0 . Our numerical investigations show that the graphene conductivity slightly changes with the 
temperature over this range. However, the squeezing limitations are attributed to the thermal noise contribu-
tion. This is a further advantage of the proposed scheme since operations at moderate cryogenic temperatures 
is practical requirement for quantum  processors39.
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Finally, we evaluate the optical pump power needed to achieve squeezing, given by p = 1
2
ε0
√
ε′ArAα1 , where 

Aα1 =
(

�ω1

ε0ε′ArL

)
1
2 α1 is the associated electric field intensity. For α1 = 708 , the optical pump power is p = 577 

mWThis is a moderate optical power value that can be supported by an off-the-shelf optical source.

Discussion
A novel modality for hybrid two-mode (microwave and optical) squeezing is proposed and thoroughly investi-
gated utilizing graphene layered structure. The graphene layers are driven by a quantum electrical voltage and 
subjected to two optical fields. We have shown that by setting the frequency spacing between the optical fields 
equal to the microwave frequency and properly designing the classical component of the optical pump field, 
significant hybrid two-mode squeezing can be achieved. Inherited from the microwave photonics features, the 
proposed scheme exhibits several major advantages. First, the proposed scheme lays the ground to achieve hybrid 
quantum systems that leverage the advantages of both superconducting and photonic systems. Second, the struc-
ture is simple and requires only two optical fields with controlled frequency. Third, the microwave frequency can 
be simply tuned by controlling the optical frequency spacing and the coupling rate. Furthermore, the proposed 
scheme has a mild parametric temperature dependence, while the temperature limitations are attributed to the 
fluctuation–dissipation-type-induced thermal contribution. These properties open the way for practical imple-
mentation of squeezed hybrid modes in quantum microprocessors and other applications.
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Methods. For simplification, we consider the following fields transformations:

where � is a random phase angle. It then follows that the equations of motions are given by:

Similar to Eqs. (7)–(12), one can obtain rate equations for operators’ averages and fluctuations.
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Û1

〉

 , 
〈

Û†
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| g |
Ŵm

〈

Û†
2

〉

1+ 4|g|2
ŴmŴ1

〈

Û†
2

〉〈

Û2

〉

(23)
〈

Û1

〉

= −4α1
| g |2
ŴmŴ1

〈

Û†
2

〉〈

Û2

〉

1+ 4|g|2
ŴmŴ1

〈

Û†
2

〉〈

Û2

〉

(24)GR = N ,
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2 (ω)
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†
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(26)

G =





























iω + Ŵm
2

0 | g |
�

Û†
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2

0 | g |
�
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�
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�
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Û1

�

| g |
�

B̂†
�

0 iω + Ŵ2

2
0

| g | α∗
1+ | g |

�

Û†
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For instance, the solution for the microwave annihilation operator is given by:

where Tl,k = G−1(l, k) , �N(ω1)
†N(ω2)� = 2π

exp(�ω/kBT)−1
δ(ω1 + ω2) , and �N(ω1)N(ω2)

†� = 2π + �N(ω1)
†
N(ω2)� . 

The solution for the other operators can be obtained in a similar way.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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