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Abstract
Background  Vitiligo is an autoimmune disease characterized by loss of pigmentation in the skin. It affects 0.4 to 
2% of the global population, but the factors that trigger autoimmunity remain elusive. Previous work on several 
immune-mediated dermatological disorders has illuminated the substantial roles of the gut microbiome in disease 
pathogenesis. Here, we examined the gut microbiome composition in a cohort of vitiligo patients and healthy 
controls from India, including patients with a family history of the disease.

Results  Our results show significant alterations in the gut microbiome of vitiligo patients compared to healthy 
controls, affecting taxonomic and functional profiles as well as community structure. We observed a reduction in the 
abundance of several bacterial taxa commonly associated with a healthy gut microbiome and noted a decrease in the 
abundance of SCFA (Short Chain Fatty Acids) producing taxa in the vitiligo group. Observation of a higher abundance 
of genes linked to bacteria-mediated degradation of intestinal mucus suggested a potential compromise of the gut 
mucus barrier in vitiligo. Functional analysis also revealed a higher abundance of fatty acid and lipid metabolism-
related genes in the vitiligo group. Combined analysis with data from a French cohort of vitiligo also led to the 
identification of common genera differentiating healthy and gut microbiome across populations.

Conclusion  Our observations, together with available data, strengthen the role of gut microbiome dysbiosis in 
symptom exacerbation and possibly pathogenesis in vitiligo. The reported microbiome changes also showed 
similarities with other autoimmune disorders, suggesting common gut microbiome-mediated mechanisms in 
autoimmune diseases. Further investigation can lead to the exploration of dietary interventions and probiotics for the 
management of these conditions.
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Background
The members of the human gut microbiome have direct 
or indirect interactions with cells in the innate and adap-
tive immune system. Gut bacteria have been implicated 
to play inflammatory and protective roles in many dis-
eases. An imbalance in the gut microbiome, also known 
as dysbiosis, can trigger several autoimmune disorders 
by modulating the immune system [1]. In recent times, 
the gut microbiome has emerged as an important factor 
in understanding the pathobiology of many autoimmune 
diseases like Crohn’s disease (CD), inflammatory bowel 
disease (IBD), type 1 diabetes (T1D), etc [2, 3]. A remark-
able number of studies have shown dysbiosis in vari-
ous dermatological autoimmune disorders like systemic 
lupus erythematosus (SLE), psoriasis, and alopecia areata 
[4–7].

One such important autoimmune disease is vitiligo. It is 
a skin depigmentation disorder characterized by the loss 
of functional melanocytes in the affected areas, which 
leads to the development of non-scaly, chalky white mac-
ules with distinct margins [8]. Vitiligo is classified into 
two major types, Segmental Vitiligo (SV) and Non-seg-
mental Vitiligo (NSV), based on the distribution and pro-
gression pattern of patches on the body. Vitiligo affects 
0.4 to 2% of the world’s population [8–10]. Although the 
disease is not associated with serious health implications, 
pigmentation has psychologically devastating effects on 
the patients. Investigations into genetic determinants and 
disease association studies have also pointed to a higher 
co-occurrence of vitiligo with many serious conditions 
like autoimmune thyroid disease, pernicious anemia, 
Addison’s disease, and SLE, thus making vitiligo patients 
more vulnerable to these diseases [11, 12].

The pathogenesis of vitiligo is largely understood as an 
autoimmune disorder. Tyrosinase, encoded by TYR gene, 
is an important enzyme that catalyzes the rate-limiting 
steps of melanin biosynthesis, it is identified as a major 
autoantigen in generalized vitiligo [8]. Recent work also 
identified the role of CXCR3-B, a chemokine receptor 
variant, in the induction of apoptosis [13]. Additionally, 
various chemokines have been associated with vitiligo, 
playing roles in recruitment of cells towards melanocytes 
[14]. Considerable variations of cytokines in lesional and 
perilesional skin of vitiligo patients have been reported. 
Studies have shown a significant increase in the expres-
sion of cytokines IL-10 (Interleukin 10), IFN-γ (Inter-
feron-gamma), and TNF-α (Tumor necrosis factor alpha) 
in vitiligo when compared to controls [15–19], indicat-
ing that cytokine generation in the epidermis may be 
involved in the development of vitiligo [15, 20–22]. Pres-
ence of polymorphic genes can cause variable immune 
responses in some subjects, which suggests that poly-
morphisms in cytokine genes may reflect or regulate 
the severity and course of different diseases [15]. IL-10 

possesses anti-inflammatory properties, it is also a key 
immunoregulator and mediator of the inflammatory 
process due to its direct capacity to down-regulate the 
production of TNF-α, IL-1, IL-8, and IFN-γ. Addition-
ally, IL-10 is a strong up-regulator of B-cell differen-
tiation and production [23, 24]. The promoter region of 
IL-10 gene is highly polymorphic, this polymorphism is 
correlated with differences in transcription. Two SNPs 
in the promoter region of the IL-10 gene (− 1082G/A 
and − 819 C/T) have been linked to a variety of diseases 
including vitiligo [15].

Recently, many dermatological autoimmune diseases 
have been shown to have gut dysbiosis [5–7, 25]. The 
existence of a gut-skin axis mediated by the immune sys-
tem has been proposed to explain interactions between 
the gut microbiome and skin-associated diseases [26]. 
Previous studies have explored the skin microbiome of 
vitiligo patients, some work on vitiligo gut microbiome 
has also revealed dysbiosis of gut microbiome in French 
and Chinese subjects [27–31]. Furthermore, a study 
reported that antibiotic-mediated dysbiosis in gut exacer-
bated depigmentation in mouse models, showing impor-
tant role of gut microbiome homeostasis in symptom 
progression of vitiligo [32]. Similar observations have 
also been made in psoriasis [7, 33]. As the gut microbi-
ome can play an important role in the regulation of the 
immune system, dysbiosis in the gut can be a potential 
factor in vitiligo pathogenesis. Therefore, studying the 
gut microbiome of vitiligo patients can provide signifi-
cant clues to vitiligo pathogenesis and highlight involve-
ment of gut microbiome in several related autoimmune 
conditions.

In this study, we sequenced and analyzed the gut 
microbiome from an Indian cohort of vitiligo patients 
with age and gender-matched healthy controls using 
16S rRNA amplicon sequencing. We also included the 
information on family history in first-degree relatives as 
a proxy for the genetic risk of vitiligo. We then used pre-
dictive metagenomic profiling in this cohort and identi-
fied several microbial functions differentially abundant 
in the gut microbial communities of vitiligo and controls. 
The co-occurrence network analysis was used to compare 
the community structure of the gut microbiome between 
healthy and vitiligo groups. We also identified common 
genera affected in the gut microbiome of vitiligo patients 
across cohorts, which can act as biomarkers irrespective 
of the population-specific compositional variation. This 
study reports the first data from a non-western cohort 
of vitiligo patients from India. The results suggest the 
important role of gut microbiome in vitiligo and add to 
the growing evidence of gut microbiome dysbiosis in 
many autoimmune dermatological disorders.
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Methods
Study design and subject recruitment
The study cohort comprised two main groups, the first 
group consisted of 10 healthy individuals and the second 
group had 22 vitiligo patients. To rule out the genetic 
propensity of the disease as a factor in affecting the gut 
microbiome, we included patients with and without a 
first-degree relative with the disease, further dividing dis-
ease groups into 12 patients with no family history and a 
second group of 10 patients with a family history of vit-
iligo. The groups were matched for age and gender.

The study participants were accrued in the Depart-
ment of Dermatology at AIIMS Bhopal for a duration of 
two years (2018–2020). The patients were diagnosed by a 
dermatologist in the outpatient department on the indi-
viduals visiting the clinic with complaints of vitiligo or 
skin depigmentation. The diagnosis was made by visual 
inspection of the lesion, and other forms of depigmenta-
tion, such as melasma, were ruled out for confirmation of 
vitiligo. The gender, age, vitiligo onset age, vitiligo type, 
diet type, family history of vitiligo, and vitiligo activity 
state were recorded for all the recruited individuals.

Subject inclusion/exclusion criteria
Participants consenting to participate in the study and 
willing to provide blood or stool samples were inter-
viewed. Participants with confirmed vitiligo lesions were 
recruited. One-time blood and stool collection were 
made from participants matching the inclusion and 
exclusion criteria (Table S1, Fig. S1). Individuals receiving 
antibiotic or steroid treatment were excluded from this 
study. The control group included adult participants who 
were apparently healthy and unrelated to others.

Measurement of T-cell populations
To obtain T-cells subset counts (CD4+, CD8+, and Reg-
ulatory T cells), 100 µL of whole blood in sheath buffer 
(Beckman Coulter) with antibodies targeting CD4, CD8, 
CD25, and CD127 (PathnSitu) was sorted and counts 
were obtained using flow cytometer (Beckman Coulter).

IL-10 genotyping and ELISA
Genotyping of the IL-10 (-1082  A < G) and IL-10 
(819  C < T) SNPs was done using ARMS-PCR assay 
from genomic DNA extracted from the whole blood. An 
amplicon containing the SNP was generated using the 
sense and antisense Primer (Table S1). PCR products 
were run on 1% agarose gels and visualized with UV light 
after ethidium bromide staining in gel documentation 
system to assess the size of the amplified product.

The separated sera stored at -80  °C were used to per-
form ELISA using the ELISA kit (R&D, DuoSet ELISA, 
Catalog Number DY217B-05) following manufacturer 
protocol. Sera samples were first treated with Mouse 

Anti-Human IL-10 Capture Antibody followed by incu-
bation and treatment with Biotinylated Goat Anti-
Human IL-10 detection Antibody and finally immune 
complexes were formed using Streptavidin HRP. The 
samples were washed according to the kit’s protocol and 
then the concentration of marker was determined at 
450 nm using the ELISA Plate reader (Eon BiotekMicro-
plate Spectrophotometer, Winooski VT, USA).

Sample processing and DNA extraction
Whole blood samples were collected in EDTA vacutain-
ers by trained personnel and transported to the labora-
tory for further analysis. Preferably early morning stool 
samples were collected from participants in sterile con-
tainers and were transported to the laboratory for storage 
at -80 °C. The samples were transported in cold chain to 
IISER Bhopal and stored at -80 °C until further process-
ing. The collected fecal samples were processed with the 
QIAamp Fast DNA Stool Mini kit (Qiagen, CA, USA) fol-
lowing the manufacturer’s instructions for metagenomic 
DNA extraction. The metagenomic DNA was quanti-
fied on a Qubit 2.0 fluorometer using a Qubit dsDNA 
High Sensitivity (HS) assay kit (Invitrogen, CA, USA). 
The DNA was stored in -20  °C refrigerator until further 
processing.

Library preparation and sequencing
Approximately 10 ng of extracted metagenomic DNA 
was used to amplify the V3 hypervariable region of 16S 
rRNA for each sample. The primers used were Nextera-
XT adaptor-ligated 341F-ADA-2B and 534R-ADA-2B as 
forward and reverse primers, respectively. The sequences 
are available in table (Table S1) [34]. The amplicons were 
checked on 2% agarose gel electrophoresis, and were 
used to prepare libraries following the Illumina 16S 
metagenomic sequencing library preparation guide. The 
quality of libraries was checked on TapeStation 4150 
using high-sensitivity D1000 ScreenTapes. The libraries 
were quantified on Qubit 4.0 fluorometer using a Qubit 
dsDNA HS assay kit (Invitrogen, CA, USA). Final librar-
ies were sequenced for 150 bp paired-end reads on Illu-
mina NovaSeq 6000 platform (Illumina, CA, USA).

Read processing and data analysis
The reads were quality-filtered using the NGSQC tool-
kit allowing zero ambiguous bases, and high-quality 
reads with 70% bases above Q20 were filtered out (with 
parameters N 1 -l 70 -s 20) [35]. Primer sequences were 
trimmed using Cutadapt v2.10 [36]. After preprocess-
ing, the paired-end reads were imported into QIIME 2 
for further processing. Denoising and chimera detection 
were performed with DADA2, and the resulting feature 
table was filtered for removing low-abundant features 
[37, 38].
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Diversity metrics, namely the number of observed 
features, Pielou’s evenness, Faith phylogenetic diversity 
(Faith’s PD), and Shannon entropy were used to estimate 
alpha diversity in samples. Beta diversity was estimated 
by calculating inter-sample distances using Jaccard, Bray-
Curtis, and UniFrac distances. Taxonomic assignment 
of Amplicon Sequence Variants (ASVs) was carried out 
using the q2-greengenes2 plugin with the Greengenes2 
database [39]. The relative abundance at the phylum, 
genus, and species level was calculated after taxonomic 
assignment. Differentially abundant features were iden-
tified using LEfSe for genus and species-level relative 
abundance [40].

Prediction of metagenomic functions
Prediction of metagenomic functions was carried out 
using PICRUSt2 version 2.5.1 (https://github.com/pic-
rust/picrust2) [41]. The resulting table of functional 
abundance measured as KEGG ortholog abundance was 
further filtered to remove low abundant KOs, only the 
KOs present in relative abundance of more than 0.0001%, 
and present in at least six samples (~ 20% samples) were 
kept for further analysis. Differentially abundant features 
were identified using LEfSe in the same way as done for 
the genus and species level data. The abundance of Meta-
Cyc pathways was also calculated to identify specific 
metabolic pathways.

Network construction
Microbial communities can be represented as complex 
networks of taxa interacting in various ways. The result-
ing co-occurrence networks can be used to describe 
changes in the community structure between healthy 
and disease-state microbiomes [42]. Co-occurrence 
network analysis was carried out separately for control 
and vitiligo groups using genus-level abundances, and 
networks statistics were compared. Pairwise correla-
tions were calculated with sparCC with SCNIC (Sparse 
Cooccurrence Network Investigation for Compositional 
data) (https://github.com/lozuponelab/SCNIC) [43]. We 
implemented sparcc-filter and used 10 iterations for cal-
culating the p-value. Further, the resulting networks were 
summarized into modules using SCNIC with a minimum 
R-value of 0.35.

Supervised learning classification with other vitiligo 
datasets
To identify potential biomarkers and explore any com-
mon patterns in the gut microbiome of vitiligo across 
populations, we used supervised learning to classify 
samples based on their health status. For this analysis, 
we also used publicly available data from a French cohort 
that studied gut microbial composition and diversity 
in patients with vitiligo (n = 10) and respective healthy 

controls (n = 10) [30]. To allow comparability in the two 
datasets (Indian and French), we used close reference 
clustered genus-level feature tables. This approach was 
used to avoid bias due to the use of different amplicon 
regions in the two studies. Further, the table was fil-
tered for genera present in more than 10% of the samples 
and with > 0.001% relative abundance. Using this data, 
we trained a random forest-based supervised classifier 
model to classify vitiligo and healthy samples using the 
q2-sample-classifier plugin with 5-fold cross-validation 
[44]. Further, the most important genera for distinguish-
ing between healthy and vitiligo samples were identified 
using feature selection.

Statistical analysis and data visualization
Alpha and beta diversity metrics were calculated in 
QIIME 2. The significance of differences in alpha diver-
sity in groups was calculated using the Wilcoxon test. The 
significance of differences in beta diversity was calcu-
lated using PERMANOVA (permutational multivariate 
analysis of variance) implemented in R using the adonis2 
function with 999 permutations. Differentially abundant 
features were identified using LEfSe analysis using default 
LDA cutoff of 2.0 [40]. Plots were made using R package 
ggplot2 [45]. Cytoscape version 3.9.1 was used for calcu-
lating network statistics [46].

Results
Study cohort description and sequencing
We collected and sequenced fecal samples for micro-
biome analysis from 32 individuals. Out of those, 10 
were healthy and 22 were diagnosed with vitiligo con-
sisting of family history and non-family history sub-
groups (Table S1). For 32 fecal samples, 74,621,554 
(2,331,923.56 ± 788,259.31, mean ± sd) paired-end reads 
were generated. After quality filtration steps, 67,723,568 
(2,116,361.5 ± 703,127.8, mean ± sd) high-quality reads 
remained, which were used for further processing (Table 
S1).

Immunological measurements
The frequency of alleles from IL-10 genotyping revealed 
variation of SNPs in Indian vitiligo patients and healthy 
controls. No notable differences were observed in T-cell 
subpopulations in the control and vitiligo groups. The 
levels of serum IL-10 were significantly higher in the 
serum of controls than in vitiligo patients (Table S2 and 
Fig. S2).

Amplicon data analysis
After denoising and chimera cleaning in DADA2, 
we detected 14,359 ASVs with a total frequency of 
58,282,407. The resulting feature table was filtered to 
remove low abundant ASVs by removing features with a 

https://github.com/picrust/picrust2
https://github.com/picrust/picrust2
https://github.com/lozuponelab/SCNIC
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total count of < 10 across samples. The final feature table 
with 12,927 ASVs was used for further analysis (Table 
S3).

Alpha and Beta diversity
Alpha diversity for both groups was calculated using 
the number of observed features, Pielou’s evenness, 
Faith PD, and Shannon entropy. Although the median 
observed features and Faith PD values were slightly lower 
for the vitiligo group, there was no significant differ-
ence (p = 0.063 and p = 0.119) in alpha diversity metrics 
between the two groups (Fig.  1[c], Table S5). We found 
no differences in alpha diversity between groups with and 
without a family history of vitiligo.

Comparison of beta diversity between groups with and 
without a family history of vitiligo revealed no significant 
differences in gut microbiome between the two groups 
(Bray-Curtis, p = 0.474, R2 = 0.045), ruling out genetic 

susceptibility of disease in affecting community compo-
sition in the gut (Fig. S4). Additionally, we did not find 
a significant difference in microbiome composition with 
respect to diet and gender groups ruling out effects of 
these covariates (Fig. S4 and Table S5). We did not find 
any correlations between T-cell subpopulations counts 
(CD4+, CD8+, and Treg cells) and serum levels of IL-10 
with alpha diversity metrics (Table S5).

Principal Coordinate Analysis (PCoA) showed sepa-
rate clustering of the control and vitiligo groups. PER-
MANOVA analysis showed significant differences 
between vitiligo and control groups using Bray-Curtis 
distance (PC1 16.05%, PC2 12.99%, p = 0.005, R2 = 0.058) 
and weighted UniFrac distances (PC1 34.86%, PC2 
18.52%, p = 0.004, R2 = 0.0936) (Fig. 1[a], Fig. S3).

Fig. 1  Diversity of the gut microbiome in the control and vitiligo samples. (a) PCoA plot representing beta diversity differences between the control and 
vitiligo samples (PERMANOVA p-value is shown). (b) Average relative abundance (%) of Phyla in both groups. (c) Comparison of alpha-diversity metrics in 
sample groups (Wilcoxon rank sum test p-values are shown). (d) Comparison of Firmicutes to Bacteroides ratio in the control and vitiligo groups
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Taxonomic composition and differentially abundant taxa
Taxonomic annotation using the Greengenes2 resulted 
in the identification of 19 bacterial phyla, 172 families, 
and 504 genera. At the phylum level, the control group 
had Firmicutes_A (39.96%) as the most abundant group, 
this was followed by Bacteroidota (21.70%), Actinobac-
teria (16.72%), Firmicutes_D (7.23%), and Firmicutes_C 
(4.41%). In the vitiligo group, the most abundant phylum 
was Bacteroidota (34.98%), followed by Firmicutes_A 
(24.46%), Actinobacteria (14.03%), Firmicutes_C (7.81%), 
and Firmicutes_D (5.56%) (Fig. 1[b]). The average relative 
abundance of phyla in both groups is given in supple-
mentary data (Table S6).

Change in the ratio of Bacteroides to Firmicutes (F/B 
ratio) is often related to dysbiosis in gut microbiota in 
many diseases. A comparison revealed a significantly 

lower F/B ratio (p = 0.005) in the vitiligo group compared 
to the controls (Fig. 1[d]).

At the genus level, Prevotella (16.24%) was the most 
abundant taxa in the control group, followed by Bifido-
bacterium_388775, Paraclostridium, Collinsella, Fae-
calibacterium, Catenibacterium, Gemmiger_A_73129, 
Agathobacter_164117, Cryptobacteroides, and, 
Clostridium_T. The vitiligo group had Prevotella 
(29.80%), followed by Bifidobacterium_388775, Faeca-
libacterium, Collinsella, Agathobacter_164117, Dialister, 
Catenibacterium, Alloprevotella, Megasphaera_A_38685, 
and Paraclostridium(Fig. 2, Table S6).

Differentially abundant genera in the control and vit-
iligo groups were identified using LEfSe. Prevotella was 
found to be roughly 1.8 times more abundant in the 
vitiligo group. Whereas Eubacterium_B (Anaerovo-
racaceae), Pectobacterium (Enterobacteriaceae), Pyg-
maiobaceter (Ruminococcaceae), Nanosynbacter 
(Nanosynbacteraceae), Exiguobacterium_A (Exigu-
obacteraaceae), Romboutsia_D (Peptostreptococcaceae), 
Pseudomonas_E_647464 (Pseudomonadaceae), Kosa-
konia_683478 (Enterobacteriaceae), Gemella (Gemella-
ceae), Lachnospira (Lachnospiraceae) and many others 
were found to be depleted in the vitiligo group and were 
at higher abundance in the control group (Fig. 3[a], Table 
S7).

We also identified differentially abundant species in 
vitiligo and healthy gut microbiome. At the species level, 
LEfSe identified P. copri and Parabacteroides_B_862066 
merdae to be higher in the vitiligo group. In the control 
group, several taxa were found to be more abundant com-
pared to the disease group, these include Romboutsia_B 
ilealis, Peptostreptococcus stomatis, Parafannyhessea 
umbonate_A, and Bulleidia massiliensis, Anaerobutyri-
cum soehngenii among others (Table S7, Fig. S5).

Predictive metagenomic profiling using PICRUSt-2
It is established that phylogenetically unrelated taxa can 
carry similar genes and contribute to common functions 
in different individuals. We looked at predicted func-
tional profiles of vitiligo and healthy microbiomes. PCoA 
based on Bray-Curtis distance using the relative abun-
dance of functions reflected similar clustering patterns 
and confirmed the results from ASV level clustering 
(Bray-Curtis PC1 = 60.09% and PC2 = 13.32%, p = 0.004, 
R2 = 0.17) (Fig. 3[b]).

LEfSe analysis identified several functions (KOs) dif-
ferentially abundant in the vitiligo and control groups. 
LEfSe identified 39 differentially abundant KOs that 
were at higher abundance in the vitiligo gut microbiome. 
These KOs included genes associated with carbohydrate 
metabolism (5), glycan biosynthesis and metabolism (5), 
lipid metabolism (3), metabolism of amino acids (1), 
metabolism of cofactors and vitamins (1), biosynthesis 

Fig. 2  (a) Composition and relative abundance (%) of microbes in the 
controls and vitiligo groups at the phylum level. (b) Composition and rela-
tive abundance (%) of microbes in the control and vitiligo groups at the 
genus level, only genera with more than 1% relative abundance are shown
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of other secondary metabolites (1), antimicrobial drug 
resistance (3), etc., these KOs were mainly enzymes (19) 
and transporters (11) (Table S8, Fig. S6).

Interestingly, K12373 (HEXA_B; hexosaminidase), 
K01206 (FUCA; alpha-L-fucosidase), K05970 (SIAE; 
sialate O-acetylesterase), and K02429 (fucP; MFS trans-
porter, FHS family, L-fucose permease) were highly 
abundant in the vitiligo gut microbiome (Fig. 4 [a]). The 

above-mentioned KOs have potential involvement in 
mucosal barrier loss by glycan degradation.

Along with these, we found K09808 (lolC_E; lipo-
protein-releasing system permease protein), K12373 
(HEXA_B; hexosaminidase), K07107 (ybgC; acyl-CoA 
thioester hydrolase), K00677 (lpxA; UDP-N-acetylglucos-
amine acyltransferase), K01897 (ACSL, fadD; long-chain 
acyl-CoA synthetase) were higher in vitiligo compared 

Fig. 3  (a) Differentially abundant genera identified by LEfSe analysis in the control and vitiligo groups. (b) PCoA plot based on Bray-Curtis distance using 
KO abundance data
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to the control group. These genes have potential roles 
in lipid metabolism, SCFA biosynthesis, LPS (Lipopoly-
saccharide) biosynthesis, and lipid transport (Fig.  4 [b], 
Table S8).

LEfSe analysis identified 21 KOs to be higher in the 
control group. These included genes of various types 
of transporters involved in transport of sugar, peptides, 
amino acid, iron, and sulfur. Many transcription factors 
were also higher in the control group. Additionally, genes 

for the biosynthesis of amino acids, and carbohydrate 
metabolism (2) were also observed. The functional anno-
tation of genes (KOs) in each group is given in the table 
(Table S8).

Network analysis
Based on the pairwise correlation calculated using genus-
level abundance tables, two co-occurrence networks 
were generated for vitiligo and control group. The con-
trol network had 405 nodes and 11,330 edges, whereas 
in the vitiligo networks, there were 340 nodes and 3,169 
edges. The control network had a higher average number 
of neighbors, clustering coefficient, and network density. 
A higher network density in healthy network suggests a 
more tightly connected community that is potentially 
robust to environmental perturbations. A high clustering 
coefficient in controls also indicates a more closely con-
nected community.

The vitiligo network showed a higher number of mod-
ules, a higher network diameter, a longer characteristic 
path length, and a higher expected distances between two 
connected nodes, all suggesting relatively loose connec-
tivity in the community. Characteristic path length which 
indicates the expected distance between connected nodes 
was higher in vitiligo. In brief, network analysis showed 
that topological characteristics of the vitiligo network 
were different from those of controls, suggesting altered 
community structure, which might have an influence on 
gut microbiome community assembly and its robustness 
in response to perturbations (Table S9).

Supervised learning classification with other vitiligo 
datasets
We used combined data from two populations, and uti-
lized a random forest classifier to classify samples as 
healthy or vitiligo. The model trained on cross-cohort 
data from Indian and French populations could accu-
rately predict the health status of samples with high 
accuracy (81.81% accuracy) using genus abundance data. 
Bifidobacterium and Lactobacillus genera and several 
Lachnospiraceae family members (Bariatricus, Anaero-
butyricum, Lachnospira, Howardella, etc.) were among 
the most important genera identified in cross-cohort 
analysis (Fig.  5, Table S11). These genera represent the 
key differences between the healthy and vitiligo gut 
microbiome that are robust to population-specific dif-
ferences in microbiome composition. Thus, it is apparent 
that the analysis of gut microbiome dysbiosis can provide 
valuable insights into the disease mechanisms.

Discussion
There has been extensive research into the role of 
human gut microbiota in a variety of health conditions, 
diets, populations, etc. However, studies from Western 

Fig. 4  (a) Relative abundance of genes related to possible role in mucus 
degradation identified by LEfSe analysis in the control and vitiligo groups. 
(b) Relative abundance of genes involved in Fatty acid and lipid metabo-
lism functions identified by LEfSe in the control and vitiligo group
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populations continue to be overrepresented, with very 
few studies from non-Western populations such as India 
and Africa. This lack of representation also extends to 
autoimmune disease microbiome research [34, 47–51]. 
The interaction of the gut microbiome with the immune 

system is becoming increasingly important in under-
standing autoimmune diseases. Widely studied diseases 
like IBD and Coeliac disease also show skin co-mor-
bidities like dermatitis and psoriasis [52, 53]. There is 
accumulating evidence on the role of gut microbiota in 

Fig. 5  (a) Receiver operating characteristic plots for random forest classifier trained on cross-cohort data. (b) Plot of recursive feature extraction showing 
changes in accuracy with the number of features used. (c) Heatmap of disease predictions based on genus abundance data
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various immune-mediated dermatological diseases like 
psoriasis and AD, the existence of a gut-skin axis has also 
been proposed [7, 53]. Previously, antibiotic-driven gut 
dysbiosis has been shown to increase depigmentation in 
mice [32]. There are also case reports where fecal micro-
biota transplant (FMT) mediated restoration of the gut 
microbiome led to the reversal of symptoms in Alopecia 
areata, showing the importance of a healthy gut microbi-
ome in pathogenesis [54, 55]. These observations suggest 
the potential role of microbiome dysbiosis in the patho-
genesis of vitiligo (Fig S7). The gut microbiota may exert 
its influence through systemic effects of the immune sys-
tem or through secreted metabolites. Studying the gut 
microbiome in these diseases can provide insights into 
their pathogenesis and possibly lead to novel therapeutic 
strategies.

In this study, we explored the changes in taxonomic 
and functional composition of gut microbiome in an 
Indian cohort of vitiligo patients and healthy controls. 
We observed a decrease in the Firmicutes to Bacteroide-
tes ratio (F/B ratio) in the vitiligo group. Similar shifts 
have been observed in IBD and autoimmune dermato-
logical diseases like SLE and psoriasis in different popu-
lations [7, 56, 57]. Although, it must be noted that these 
findings remain inconsistent across studies. Our obser-
vations of F/B ratios are also contrasting with previous 
reports of vitiligo in French and Chinese subjects [29, 
30]. Reported differences in the F/B ratio in the popula-
tion may be confounded by dietary differences in West-
ern and non-Western populations.

The observation of a higher abundance of Prevotella in 
the disease group is similar to many studies in psoriasis, 
it has also been known to exacerbate inflammatory phe-
notype in RA [33, 58, 59]. However, it should be noted 
that most of these studies come from western popula-
tions. As Prevotella is the most abundant genera with P. 
copri as the dominant species in the gut microbiome of 
the Indian population, the observed increase in the dis-
ease group should be looked at with caution (Table S7 
and Table S10). Strain level variability in Prevotella needs 
to be explored to identify any vitiligo associated Pre-
votella strains for further insights. Also, it is tempting to 
speculate that the reduction in the abundance of several 
healthy gut commensals in Indian vitiligo patients as dis-
cussed in the following paragraph could be the driver for 
the further increase in abundance of P. copri, which is the 
most abundant species in a healthy Indian gut microbi-
ome [48–50]. Thus, the observed increased abundance of 
P. copri could be a result of the depletion of other com-
mensals and may not be associated with vitiligo. Further, 
an increase in this species was not noted in the analysis 
of the Chinese and French gut microbiome studies [29, 
30, 60].

The vitiligo group showed a substantially reduced 
abundance of numerous microorganisms commonly 
linked to healthy gut microbiomes. Genera like Lach-
nospira, Romboutsia (R. hominis and R. ilealis), Eubac-
terium, and Anaerobutyricum (A. soehngenii) have been 
consistently associated with healthy gut microbiome in 
phenotype comparisons [61]. Lachnospira, Anaerobutyr-
icum, and Howardella are members of the family Lach-
nospiracea and are important butyrate-producing taxa. 
Butyrate production is associated with epithelial cell 
health and the maintenance of mucous barrier function 
[62–64]. Similarly Eubacterium members have also been 
shown to have healthy effects and explored as a potential 
probiotic [65, 66]. Their positive influence on gut micro-
biota can be attributed to SCFA production capabilities, 
which serve as important energy sources for intestinal 
epithelial cells [61, 67, 68]. SCFAs can also enhance regu-
latory capacity of Tregs which contribute to immune sup-
pression, thus having critical role in autoimmune disease 
[1].

Interestingly, many taxa associated with healthy gut 
microbiome were also among the most important fea-
tures for classification of healthy or disease in the 
cross-cohort dataset, these included many members of 
Lachnospiraceae (Table S11). The changes in the genus 
and species abundance show similarities to previous 
reports of other diseases, differences in these observa-
tions can also be attributed to confounders like popula-
tion, age, diet, and disease severity.

With increase in availability of genome data for bac-
terial species, the accuracy of prediction of functional 
potential using PICRUSt2 is improving. The observation 
of several genes related to mucin degradation in LEfSe 
selected differentially abundant features suggests micro-
bially mediated degradation of the gut mucosal layer. 
Mucin-degrading bacteria have sialidases and fucosidases 
to degrade terminal residues of mucin glycoproteins. 
Degradation of mucin by the activity of gut microbiota 
can result in a compromised intestinal mucosal barrier, 
which can lead to increased intestinal permeability lead-
ing to translocation of antigens in systemic circulation 
[69]. This loss of intestinal permeability in vitiligo has 
been confirmed by another study utilizing zonulin-based 
assays [70].

Previous work on serum metabolomics has shown 
the role of fatty acid metabolic pathways in vitiligo. For 
example, the serological level of alpha-linolenic acid 
(ALA) was upregulated and also had positive correla-
tions with disease severity in vitiligo [29, 71]. The obser-
vation of a higher abundance of fatty acid and lipid 
metabolism-related functions in vitiligo in this work 
also suggests similar changes. The presence of free fatty 
acids in serum has also been confirmed in other diseases 
with intestinal dysbiosis [56]. It is important to explore 
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microbial metabolism of free fatty acids (FFA) as they 
can be active players in the modulation of the immune 
system by gut bacteria [72]. We also found an increased 
abundance of folate biosynthesis gene folK (K00950) in 
the vitiligo group, which has been previously reported to 
be high in vitiligo [73]. Interestingly, a higher abundance 
HEXA_B; hexosaminidase (K12373) in the vitiligo group 
was observed, HEXA_B has been reported to play pro-
tective roles in intestinal inflammation by modulating 
T-cell populations [74]. Additionally, a comparison of 
co-occurrence networks also revealed structural differ-
ences in the community assembly of vitiligo and control 
groups. Such changes can have effects on the robustness 
of the gut microbial community in scenarios of environ-
mental perturbations like disease, stress, and antibiotic 
consumption [42].

Further, the model trained on cross-cohort data of 
genus abundance from Indian and French populations 
could accurately classify samples as healthy or vitiligo 
samples and identified differentiating taxa similar to the 
observations made by the microbiome analysis, affirming 
the presence of key differences between the healthy and 
vitiligo gut microbiome. Among the genera that showed 
predictive capacity for healthy or vitiligo samples, Bifido-
bacterium emerged as the most important genus, which 
is also a widely distributed commensal in human gut. 
Different strains of Bifidobacterium species are known 
to modulate the immune system by regulating suppres-
sive regulatory T cells. The absence or reduction of this 
genus has been linked to autoimmune and inflamma-
tory conditions like CD. Bifidobacterium is also a potent 
acetate producer and its metabolites can affect the com-
munity structure by modulating cross-feeding relations 
in the community [75]. Presence of several other SCFA 
producers including Lachnospira, Anaerobutyricum, and 
Roseburia, in cross cohort datasets also supported the 
observation of reduced SCFA producing bacteria in vit-
iligo [76]. Such machine learning-based approaches can 
help identify protective and risk factors in microbiome 
data that are consistent across cohorts and are less prone 
to confounders of lifestyle factors, population origin, and 
diet.

Conclusions
In conclusion, this study examined the gut microbi-
ome data from the Indian cohort of vitiligo patients and 
showed alteration in taxonomic composition, functional 
composition, and community structure of gut microbi-
ome in vitiligo patients. Several genera associated with 
healthy gut microbiome in many phenotype compari-
sons on the GMrepo database were depleted in the gut 
microbiome of the vitiligo group compared to the healthy 
group. These genera might be involved in beneficial 
activities such as production of SCFA that have positive 

protective effects by maintaining the epithelial layer [61]. 
The findings also suggest potential functional alterations 
in the gut microbiome of vitiligo patients which might 
have roles in modulating immune system, thus affect-
ing the pathophysiology of the disease. The inherent 
mechanisms can be further investigated in future studies. 
The results also strengthen the possible roles of the gut 
microbiome in the pathogenesis of vitiligo and provide 
clues to explore the dietary interventions and probiotics 
for its management by modulating the gut microbiome 
[26].
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