
Frontiers in Oncology | www.frontiersin.org

Edited by:
Oliver Diaz,

University of Barcelona, Spain

Reviewed by:
Nguyen Minh Duc,

Pham Ngoc Thach University of
Medicine, Vietnam

Nesrin Dogan,
University of Miami, United States

Daniel Rodriguez Gutierrez,
Nottingham University Hospitals NHS

Trust, United Kingdom

*Correspondence:
Qiang Wang

qiang.wang@ki.se
Kuansheng Ma

kuanshengma@outlook.com

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 08 December 2021
Accepted: 19 April 2022
Published: 19 May 2022

Citation:
Qu C, Wang Q, Li C, Xie Q,

Cai P, Yan X, Sparrelid E, Zhang L,
Ma K and Brismar TB (2022)
A Radiomics Model Based on
Gd-EOB-DTPA-Enhanced MRI

for the Prediction of Microvascular
Invasion in Solitary Hepatocellular

Carcinoma ≤ 5 cm.
Front. Oncol. 12:831795.

doi: 10.3389/fonc.2022.831795

ORIGINAL RESEARCH
published: 19 May 2022

doi: 10.3389/fonc.2022.831795
A Radiomics Model Based on
Gd-EOB-DTPA-Enhanced MRI
for the Prediction of Microvascular
Invasion in Solitary Hepatocellular
Carcinoma ≤ 5 cm
Chengming Qu1, Qiang Wang2,3*, Changfeng Li1, Qiao Xie4, Ping Cai4, Xiaochu Yan5,
Ernesto Sparrelid6, Leida Zhang1, Kuansheng Ma1* and Torkel B. Brismar2,3

1 Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, China, 2 Division of Medical
Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet,
Stockholm, Sweden, 3 Division of Radiology, Department of Clinical Science, Intervention and Technology (CLINTEC),
Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden, 4 Department of Radiology, Southwest Hospital,
Army Medical University, Chongqing, China, 5 Department of Pathology, Southwest Hospital, Army Medical University,
Chongqing, China, 6 Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska
Institutet, Karolinska University Hospital, Stockholm, Sweden

Aim: The aim of this study is to establish and validate a radiomics-based model using
preoperative Gd-EOB-DTPA-enhanced MRI to predict microvascular invasion (MVI) in
patients with hepatocellular carcinoma ≤ 5 cm.

Methods: Clinicopathologic and MRI data of 178 patients with solitary hepatocellular
carcinoma (HCC) (≤5 cm) were retrospectively collected from a single medical center
between May 2017 and November 2020. Patients were randomly assigned into training
and test subsets by a ratio of 7:3. Imaging features were extracted from the segmented
tumor volume of interest with 1-cm expansion on arterial phase (AP) and hepatobiliary
phase (HBP) images. Different models based on the significant clinical risk factors and/or
selected imaging features were established and the predictive performance of the models
was evaluated.

Results: Three radiomics models, the AP_model, the HBP_model, and the AP+
HBP_model, were constructed for MVI prediction. Among them, the AP+HBP_model
outperformed the other two. When it was combined with a clinical model, consisting of
tumor size and alpha-fetoprotein (AFP), the combined model (AP+HBP+Clin_model)
showed an area under the curve of 0.90 and 0.70 in the training and test subsets,
respectively. Its sensitivity and specificity were 0.91 and 0.76 in the training subset and
0.60 and 0.79 in the test subset, respectively. The calibration curve illustrated that the
combined model possessed a good agreement between the predicted and the actual
probabilities.
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Conclusions: The radiomics-based model combining imaging features from the arterial
and hepatobiliary phases of Gd-EOB-DTPA-enhanced MRI and clinical risk factors
provides an effective and reliable tool for the preoperative prediction of MVI in patients
with HCC ≤ 5 cm.
Keywords: radiomics, microvascular invasion, Gd-EOB-DTPA, magnetic resonance imaging, hepatocellular
carcinoma, prediction model
INTRODUCTION

Hepatocellular carcinoma (HCC) is a common gastrointestinal
malignant tumor, ranks sixth in incidence rate, and is the fourth
leading cause of tumor-related mortality worldwide (1). Liver
resection is one of the curative treatments for HCC. Despite
recent advances in surgical techniques and perioperative
management, HCC still bears a poor prognosis with a 5-year
recurrence of 50%–70% after liver resection (2). This also applies
to inpatients with early-stage HCC, where a 5-year recurrence
rate of as high as approximately 60% has been reported (3).

Microvascular invasion (MVI) has been reported as an
independent, well-established risk factor for HCC recurrence
and poor overall survival rate (4). The reported incidence rate of
MVI ranges between 15% and 57% (5). Patients with MVI
experienced an early recurrence compared with those without
MVI with a mean time to recurrence of 12 months versus 42
months (4). Therefore, it is of importance to preoperatively
identify MVI to optimize the treatment strategy and predict
the prognosis. However, the diagnosis of MVI is mainly made
postoperatively by a histopathology exam on the excised tumor,
which has little or no influence on surgical decision-making.
Although radiological features on computed tomography (CT)
or magnetic resonance imaging (MRI) such as rim arterial
enhancement and non-smooth tumor margin are also applied
to predict MVI, a consensus about the efficacy of these features
has not been reached (6, 7).

With the development of modern imaging and computing
techniques, it might be possible to detect subtle changes in the
tumor or its margin. Radiomics, a technique that can extract
high-throughput imaging features from routine biomedical
images for quantitative analysis, has attracted intensive interest
in recent years (8, 9). Because it may provide additional
information, radiomics has turned out to be a promising tool
for accurate tumor detection, diagnosis, grading, and prognosis
prediction in tumors such as rectal cancer and HCC (10–12).

Gd-EOB-DTPA-enhanced MRI is a commonly used modality
in diagnosis and characterization of HCC, and is noted for the
specific hepatobiliary phase. Taking advantage of radiomics on
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Gd-EOB-DTPA-enhanced MRI, it has shown encouraging
results for MVI prediction at HCC (13, 14). However, previous
studies have not limited their data regarding tumor number and
tumor size of HCC (11, 15, 16). With improved imaging and the
use of screening programs, HCC is increasingly detected at an
early stage. The incidence of MVI in HCC ≤ 5 cm, or within
Milan criteria, has been reported to be as high as 40% (17). By
identifying these patients preoperatively, their management and
long-term survival might be improved as alternative treatment
options could be considered. Therefore, the aim of this study was
to develop and validate a radiomics prediction model based on
preoperative Gd-EOB-DTPA-enhanced MRI to predict MVI in
patients with a single HCC ≤ 5 cm in diameter.
MATERIALS AND METHODS

Study Design and Patients
This retrospective study was performed at a single tertiary
medical center, Southwest Hospital of Army Medical
University, Chongqing, China. The research protocol was
approved by the Institutional Review Board of the hospital
(No. 2017KY50), and written informed consent was waived
due to the retrospective nature of the study.

Through a search in the hospital information system, the records
of all patients undergoing liver resection between May 2017 and
November 2020 were retrieved. Patients were considered eligible in
this study according to the following inclusion criteria: (1) patients
undergoing their first liver resection due to HCC, (2) solitary liver
tumor with a diameter ≤ 5 cm on MRI with no macroscopic sign of
vascular invasion, (3) Gd-EOB-DTPA-enhanced MRI exam within 1
month before liver resection, and (4) available pathology report of
MVI status. The exclusion criteria were as follows: (1) previous
antitumor treatment, such as radiofrequency ablation and
transarterial chemoembolization; (2) intra- or extrahepatic
metastasis; and (3) low-quality imaging, not satisfying analysis
requirement. A total of 178 consecutive patients were included in
the final cohort, and they were randomly split into a training subset
and a test subset by a ratio of 7:3. Figure 1 describes the process of
patient selection and Figure 2 supplies the steps of this study.

Clinicopathologic Variables and MVI
Demographic information, blood biochemistry, and pathology
results were retrieved through the hospital information system.
MVI was diagnosed according to the Chinese guidelines for
standardized diagnosis of primary liver cancer (18). According to
the guidelines, MVI is defined as when cancerous emboli can be
May 2022 | Volume 12 | Article 831795
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observed in the vasculature lined with endothelial cells outside
the tumor margin under microscopy (14, 19). In this study, the
tumors with this finding were classified as MVI (+), regardless of
its number or distance from the tumor. Tumors with no
cancerous emboli detected were classified as MVI (−).

Gd-EOB-DTPA-Enhanced MRI Acquisition
All MRI was performed on the same 3.0-T MRI scanner
(Magnetom Trio, Siemens Healthcare) with a 6-channel body
Frontiers in Oncology | www.frontiersin.org 3
coil. The contrast agent Gd-EOB-DTPA (Primovist, Bayer
Pharma) was injected through the anterior cubital vein at a
dose of 0.1 ml/kg with an injection rate of 1.0 ml/s, followed by
an immediate injection of 20 ml of saline at the same rate. After
the injection of Gd-EOB-DTPA, arterial phase scanning was
triggered by the signal intensity at the lower end of the
abdominal aorta, followed by portal phase scanning (60 s),
equilibrium phase scanning (180 s), and hepatobiliary phase
scanning (15 min) with three-dimensional volume interpolated
FIGURE 1 | Flowchart of patient selection in this study.
FIGURE 2 | Workflow of key steps in this study.
May 2022 | Volume 12 | Article 831795
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breath-hold (3D-VIBE) T1WI. The detailed scanning protocol is
provided in the Supplementary Material.

Tumor Segmentation and Volume of
Interest Dilation
Tumor segmentation on arterial and hepatobiliary phases
(hereafter referred to as AP and HBP, respectively) was
conducted by two radiologists (QX and PC with 8 and 20
years’ experience in abdominal radiology, respectively) who
were blinded to the patients’ clinical information. Tumor
delineation was performed manually using the open-source
software ITK-SNAP (version 3.8.0, http://www.itksnap.org/).
The delineated tumor was further expanded at a radius of 10
mm (20, 21) using a topologic algorithm in Python (version 3.8),
and the expansion would cease automatically if it reached the
liver edge for the marginal liver tumors. The expanded volume of
interest (VOI) was then used for radiomics feature
extraction (Figure 3).

Radiomics Feature Extraction
To increase the reliability of the radiomics features, the image
voxel size was resampled into 1×1×1 mm3 (interpolator: B-
spline) and the bin width of the intensity histogram was
discretized into 25. After preprocessing the images, the
following six categories of imaging features were extracted:

1. Shape, including 2D and 3D (n = 14);
2. First-order statistics (n = 18);
3. Gray-level co-occurrence matrix (GLCM)-derived texture

(n = 22);
4. Gray-level run lengthmatrix (GLRLM)-derived texture (n = 16);
5. Gray-level size zone matrix (GLSZM)-derived texture (n =

16); and
6. Gray-level dependence matrix (GLDM)-derived texture

(n = 14).

Imaging features of categories (2) to (6) were also extracted
from transformed images using the wavelet filter (688 features)
and the Laplacian of Gaussian (LoG) filter with a kernel size of
1.0 mm (86 features). Both imaging preprocessing and feature
extraction were performed by using the pyradiomics package
(version 3.0) (22) in Python (version 3.8).
Frontiers in Oncology | www.frontiersin.org 4
Imaging features extracted from AP and HBP were labeled
with the prefix “ap_” and “hbp_” to each radiomics feature name,
respectively. Examples are as follows: “ap_original_firstorder_
Skewness” denotes the skewness of first-order features derived
f rom AP image s wh i l e “hbp_ log - s i gma-1 -0 -mm-
3D_glszm_ZoneVariance” describes the zone variance in
GLSZM features derived from LoG fi lter transferred
HBP images.

To evaluate the reproducibility of the radiomics features and
inter-rater agreement, images of 30 randomly chosen patients
were contoured by both radiologists independently. The
interclass correlation coefficient (ICC) estimates were
determined by using the single-rater, absolute-agreement, 2-
way random-effects model. The features were classified into
“poor-to-moderate” (ICC <0.75) and “good-to-excellent”
reliability (ICC ≥ 0.75), and those features with ICC ≥ 0.75
were selected (for the overlapped 30 patients, the measurements
of the senior radiologist were selected) for model
construction (23).

Radiomics Model Development
and Validation
The AP and HBP imaging features with high reproducibility
were adopted for radiomics model establishment. The feature
analysis was performed by open-source software that is available
at https://github.com/salan668/FAE (24). There was no need for
upsampling or downsampling of the data as the percentage of
MVI (−) and MVI (+) in the training subset was roughly
balanced. The imaging features were first standardized using z-
score normalization (subtract the mean value of each feature and
then divide the difference by its standard deviation), followed by
evaluation of the Spearman correlation coefficient of all features.
Among each pair of features with a correlation coefficient > 0.90,
one was randomly removed. The remaining features were
applied for model construction using a recursive feature
elimination (RFE) algorithm. RFE iteratively constructs the
model using smaller and smaller sets of features and ranks the
features according to their importance for the outcome
prediction. To avoid potential overfitting, a desired number of
features (<20) was applied when establishing the radiomics
model using the RFE-logistic regression approach. A 10-fold
cross-validation was applied to obtain a stable and robust model.
A B C

FIGURE 3 | A representative case of tumor segmentation with MVI (+) with 10-mm dilation from the tumor margin. The red area indicates the intratumoral region and the
yellow area indicates the peritumoral region on the arterial phase (A) and hepatobiliary phase (B). (C) 3D effect of the tumor segmentation with 10-mm expansion.
May 2022 | Volume 12 | Article 831795
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Three radiomics models were constructed using either AP
features (AP_model), HBP features (HBP_model), or a
combination of both AP and HBP features (AP+HBP_model).
Radscore, indicating the relative risk of MVI for each patient, was
calculated using each model according to the following formula:

Radscore = intercept + coefficients * features

The predictive performance of the calculated Radscore from
each model to predict MVI in training and test subsets was
then evaluated.

Construction and Evaluation of
Prediction Models
To establish a clinical model, a univariable logistic regression
analysis of the preoperatively clinicopathologic variables
including age, gender, etiology of chronic liver disease,
cirrhosis status, Child–Pugh grade, tumor size, alpha-
fetoprotein (AFP) level, platelet counts, prothrombin time,
albumin, bilirubin, aspartate transaminase (AST), and alanine
transaminase (ALT) was first applied, with significant risk factors
entering the multivariable regression analysis. A clinical model,
hereafter denoted Clin_model, was constructed using the
significant risk factors observed at the multivariable
regression analysis.

The risk factors in the Clin_model and the Radscore were
integrated into the construction of three combined models, i.e.,
AP+Clin_model, HBP+Clin_model, and AP+HBP+Clin_model.
The efficacy of these models was validated in the test subset.
Calibration curves were plotted to evaluate the predictive
performance of the best model in both training and test
subsets. Decision curve analysis was performed to evaluate the
usefulness of the prediction models.

Statistical Analysis
Continuous variables were expressed as median with range and
tested by Mann–Whitney U test to compare the difference
between MVI (−) and MVI (+) groups. Categorical variables
were presented as number (percentage), and chi-square test or
Fisher’s exact test was used to detect the differences between two
groups. ICC was calculated by using the package “Pingouin” in
Python. The performance of the prediction models was evaluated
by receiver operating characteristic curves (ROCs), and the area
under ROC (AUC), sensitivity, specificity, positive predictive
value, negative predictive value, and accuracy were determined.
p-values < 0.05 were considered statistically significant. Statistical
analyses and randomizations were performed by R software
(version 4.0.4, https://www.R-project.org/).
RESULTS

Clinicopathologic Characteristics of
Patients and Clinical Model
The baseline characteristics of the entire cohort (n = 178), the
training subset (n = 125), and the test subset (n = 53) are
summarized in Table 1. There was no statistically significant
Frontiers in Oncology | www.frontiersin.org 5
difference between the two subsets. The incidence of MVI in the
entire cohort was 45.5%.

After univariable and multivariable regression analyses, two
risk factors in the training subset, AFP and tumor size, were
selected for clinical model construction (Table 2). Although it
was significant in both regression analyses, tumor differentiation
status was excluded for modeling as it was a postoperative risk
factor for MVI prediction. The AUCs of the Clin_model in
training and test subsets were 0.64 (95% CI: 0.54–0.74) and 0.55
(95% CI: 0.38–0.71), respectively (Figure 5A, Table 3).

Feature Selection and Prediction
Model Construction
Out of the 874 imaging features extracted from each Gd-EOB-
DTPA-enhanced MRI phase, 560 features (64%) had sufficient
reproducibility (ICC ≥ 0.75) for radiomics model construction.
After removal of imaging features with high Pearson correlation
coefficient, 10 AP features, 12 HBP features, and 14 features from
a combination of both AP and HBP features with high ranking
selected through the RFE algorithm were used for radiomics
model construction (Figure 4, Supplementary File). The
detailed features and their corresponding coefficients for the
three radiomics models are described in the Supplementary File.
The performance of the three radiomics models is illustrated in
Table 3 and the Supplementary File.

Performance Evaluation of the Models
Compared with the Clin_model, the overall performance of all
three radiomics models was superior, with an AUC above 0.82 in
the training subset and more than 0.56 in the test subset. Among
the three radiomics models, the AP+HBP_model had the highest
AUC, with 0.89 in the training subset and 0.66 in the test subset
(Table 3). When combined with the clinical variables, the AP+
HBP+Clin_model yielded an AUC of 0.90 (95% CI: 0.85–0.95)
and 0.70 (95% CI: 0.55–0.84) in the training and test subsets,
respectively (Figures 5B, C, the formula of the three combined
models is provided in the Supplementary File). The sensitivity,
specificity, positive predictive value, and negative predictive
value were 0.91, 0.76, 0.77, and 0.91 in the training subset, and
0.60, 0.79, 0.71, and 0.69 in the test subset, respectively (Table 3).
The calibration curves illustrated that the predicted probabilities
of MVI were in good agreement with the observed probabilities
with a C-index of 0.89 and 0.70 in the training and test subsets,
respectively (Figures 5D, E). In terms of the clinical usefulness
evaluation, the decision curve analysis illustrates that the
implementation of the AP+HBP+Clin_model to predict MVI
status should be beneficial compared with treating none or all of
the patients as well as compared with the Clin_model or the AP+
HBP_model (Figure 5F).
DISCUSSION

In this study, a radiomics prediction model based on imaging
features extracted from preoperative Gd-EOB-DTPA-enhanced
MRI to predict MVI in patients with a single HCC ≤ 5 cm in
May 2022 | Volume 12 | Article 831795
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diameter was developed and validated. The best performance
was observed when combining imaging features from the arterial
and hepatobiliary phases of Gd-EOB-DTPA-enhanced MRI with
the two clinical risk factors AFP and tumor size. The predictive
value was high, with an AUC reaching 0.90 in the training cohort
and 0.70 in the test cohort.

Due to the liver specificity of Gd-EOB-DTPA visualizing the
hepatocyte function in the so-called HBP, the differences in
texture characteristics between liver tumor and the adjacent
tissue are improved. Our results showed that the performance
of the HBP_model was better than the AP_model, and
hepatobiliary phase features are predominant in the AP+
HBP_model (5 vs. 9 features), which gave a clue that the
imaging features derived from HBP seem to contain more
Frontiers in Oncology | www.frontiersin.org 6
predictive information. This finding is consistent with two
previous studies. In their study, Feng et al. extracted imaging
features only from the HBP of Gd-EOB-DTPA-enhanced MRI
and constructed a radiomics model showing an AUC of 0.83 in
the test cohort, higher than ours (0.83 vs. 0.62) (25). Another
research also explored radiomics features on solely HBP images
and constructed a prediction model with an AUC of 0.8 (26).

In the AP+HBP_model, the majority of imaging features were
derived from wavelet-filtered images, which is in line with previous
research (11, 16, 27). This finding implies that the wavelet filter is a
powerful tool to obtain decomposition and approximation
information of the images. Moreover, most of the imaging
features that were included in the model can be categorized into
first-order statistics (representing the distribution of voxel
TABLE 1 | Clinicopathologic characteristics of the patients.

Characteristics Total (n = 178) Training subset (n = 125) Test subset (n = 53) p-value#

MVI (−) (n = 68) MVI (+) (n = 57) p-value MVI (−) (n = 29) MVI (+) (n = 24) p-value

Age (years) † 50 (28–78) 51 (30–72) 50 (31–78) 0.576 52 (29–73) 45 (28–72) 0.125 0.449
Gender
Female 35 (19.7%) 17 (25.0%) 10 (17.5%) 0.429 4 (13.8%) 4 (16.7%) 1.000 0.428
Male 143 (80.3%) 51 (75.0%) 47 (82.5%) 25 (86.2%) 20 (83.3%)

Etiology
HBV 169 (94.9%) 66 (97.1%) 54 (94.7%) 0.659 27 (93.1%) 22 (91.7%) 1.000 0.454
None/Others 9 (5.06%) 2 (2.94%) 3 (5.26%) 2 (6.90%) 2 (8.33%)

Cirrhosis
Absent 35 (19.7%) 8 (11.8%) 15 (26.3%) 0.063 8 (27.6%) 4 (16.7%) 0.538 0.656
Present 143 (80.3%) 60 (88.2%) 42 (73.7%) 21 (72.4%) 20 (83.3%)

Child–Pugh Grade
A 174 (97.8%) 67 (98.5%) 56 (98.2%) 1.000 28 (96.6%) 23 (95.8%) 1.000 0.583
B 4 (2.25%) 1 (1.47%) 1 (1.75%) 1 (3.45%) 1 (4.17%)

Tumor Size (cm) 3.03 ± 1.09 2.87 ± 1.06 3.29 ± 1.12 0.032* 2.94 ± 1.04 2.98 ± 1.13 0.900 0.564
Tumor Differentiation
Poor 15 (8.43%) 3 (4.41%) 8 (14.0%) 0.013* 2 (6.90%) 2 (8.33%) 0.162 1.000
Moderate 145 (81.5%) 57 (83.8%) 46 (80.7%) 21 (72.4%) 21 (87.5%)
Well 14 (7.87%) 8 (11.8%) 1 (1.75%) 5 (17.2%) 0 (0.00%)
None 4 (2.25%) 0 (0.00%) 2 (3.51%) 1 (3.45%) 1 (4.17%)

Platelet (×109/L)
≤125 77 (43.3%) 34 (50.0%) 26 (45.6%) 0.757 9 (31.0%) 8 (33.3%) 1.000 0.073
>125 101 (56.7%) 34 (50.0%) 31 (54.4%) 20 (69.0%) 16 (66.7%)

Prothrombin time (%)
≤65 5 (2.81%) 2 (2.94%) 2 (3.51%) 1.000 1 (3.45%) 0 (0.00%) 1.000 1.000
>65 173 (97.2%) 66 (97.1%) 55 (96.5%) 28 (96.6%) 24 (100%)

Albumin (g/L)
≤38 31 (17.4%) 10 (14.7%) 11 (19.3%) 0.657 5 (17.2%) 5 (20.8%) 1.000 0.907
>38 147 (82.6%) 58 (85.3%) 46 (80.7%) 24 (82.8%) 19 (79.2%)

Bilirubin (mmol/L)
≤21 133 (74.7%) 50 (73.5%) 41 (71.9%) 1.000 23 (79.3%) 19 (79.2%) 1.000 0.474
>21 45 (25.3%) 18 (26.5%) 16 (28.1%) 6 (20.7%) 5 (20.8%)

ALT (IU/L)
≤42 119 (66.9%) 45 (66.2%) 36 (63.2%) 0.870 21 (72.4%) 17 (70.8%) 1.000 0.472
>42 59 (33.1%) 23 (33.8%) 21 (36.8%) 8 (27.6%) 7 (29.2%)

AST (IU/L)
≤42 135 (75.8%) 52 (76.5%) 40 (70.2%) 0.554 23 (79.3%) 20 (83.3%) 1.000 0.378
>42 43 (24.2%) 16 (23.5%) 17 (29.8%) 6 (20.7%) 4 (16.7%)

AFP (ng/ml)
≤400 142 (79.8%) 60 (88.2%) 41 (71.9%) 0.038* 24 (82.8%) 17 (70.8%) 0.482 0.750
>400 36 (20.2%) 8 (11.8%) 16 (28.1%) 5 (17.2%) 7 (29.2%)
May 2022 | Volume 12 | Articl
Data are present as number (percentage) except otherwise specified. † Data are expressed as median with range. # Between training and test subsets. AFP, alpha fetoprotein; ALT,
alanine transaminase; AST, aspartate transaminase; HBV, hepatitis B virus; MVI, microvascular invasion.
*indicates p < 0.05.
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intensities), such as maximum, minimum, skewness, and robust
mean absolute deviation, indicating that the heterogeneity of the
tumor and its surroundings at MRI is associated with MVI
presence. This is also in agreement with the abovementioned
study by Feng et al., where half of the selected features for
modeling belonged to first-order statistics features (25).
Frontiers in Oncology | www.frontiersin.org 7
As MVI often occurs at the peritumoral area (28, 29), we
expanded the tumor margin by 10 mm and extracted the imaging
features from intratumoral and peritumoral areas, which we
assumed would improve the MVI prediction. The performance
of the radiomics models confirmed that assumption. In a similar
study, which also constructed models using Gd-EOB-DTPA-
TABLE 2 | Clinical risk factors for MVI presence in patients with hepatocellular carcinoma.

Clinical variable Univariable analysis Multivariable analysis

OR (95% CI) p-value OR (95% CI) p-value

Age (years) 0.88 (0.56–1.39) 0.58
Gender
Male vs. Female 0.64 (0.27–1.53) 0.32

Etiology
HBV vs. None/Others 1.83 (0.30–11.37) 0.52

Cirrhosis
Present vs. Absent 2.68 (1.04–6.89) 0.04* 2.39 (0.85–6.74) 0.10

Child–Pugh Grade
B vs. A 1.20 (0.07–19.57) 0.90

Tumor Size (cm) 1.79 (1.05–3.06) 0.03* 2.06 (1.15–3.70) 0.02*
Tumor Differentiation
Moderate vs. Well 0.15 (0.02–1.28) 0.08
Poor vs. Well 3.30 (0.83–13.17) 0.02* 2.47 (0.54–11.17) 0.03*

Platelet (×109/L)
>125 vs. ≤125 0.84 (0.41–1.70) 0.63

Prothrombin time (%)
>65 vs. ≤65 1.20 (0.16–8.80) 0.86

Albumin (g/L)
>38 vs. ≤38 1.39 (0.54–3.55) 0.50

Bilirubin (mmol/L)
>21 vs. ≤21 1.08 (0.49–2.39) 0.84

ALT (IU/L)
>42 vs. ≤42 1.14 (0.55–2.38) 0.72

AST (IU/L)
>42 vs. ≤42 1.38 (0.62–3.07) 0.43

AFP (ng/ml)
>400 vs. ≤400 2.93 (1.15–7.47) 0.02* 3.31 (1.20–9.11) 0.02*
May 2022 | Volume 12 | Article
AFP, alpha fetoprotein; ALT, alanine transaminase; AST, aspartate transaminase; CI, confidence interval; HBV, hepatitis B virus; MVI, microvascular invasion, OR, odds ratio.
*indicates p < 0.05.
A B

FIGURE 4 | Coefficient of the 14 imaging features (A) and the correlation coefficient heatmap (B) in the AP+HBP_model.
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enhanced MRI for patients with HCC ≤ 5 cm, the tumor margin
was dilated in different diameters, i.e., 5 mm and 10 mm, and also
shrunk by 50% (21). The models in that research using features
extracted from a combination of the tumor and the 10-mm
dilated region yielded an AUC ranging from 0.79 to 0.76 for HBP
by two classifiers, random forest and logistic regression, which is
a little higher than our model.

Previous studies have attempted to exploit preoperative
clinical variables and laboratory tests to predict MVI. Tumor
characteristics such as tumor size and tumor number are well-
established risk factors for MVI incidence (17, 19). One study
with 245 HCC patients undergoing liver transplantation
showed that the MVI incidence was 25% in tumors <2 cm,
31% in 2–4 cm tumors, and 50% in tumors >4 cm (30). Another
study conducted by Kim et al. demonstrated that the incidence
of MVI doubles when there are two or more tumors compared
to when there is a solitary HCC (31). Furthermore, the tumor
biomarker, AFP, has also been recognized as a reliable predictor
for MVI (19, 32, 33). Our Clin_model detected tumor size and
AFP as independent risk factors for the prediction model.
However, the clinical model using these two risk factors only
reached a fair AUC of 0.55 in the test subset. As one of the
strategies to improve the performance of a model is to combine
variables from different aspects (34), we integrated the clinical
risk factors into the AP+HBP_model, improving the AUC
to 0.70.

There are some limitations to be acknowledged when interpreting
the results of the current study. To begin with, our study was limited
by its retrospective nature and sample size. Patient selection bias may
thereby have been introduced. Future prospective research should
include a larger number of participants to confirm our findings.
Moreover, external data from other medical centers are also needed
to prove the generalization of our model. Second, although 10-fold
cross-validation was adopted during modeling, overfitting might still
exist, as seen in the sharp drop of the AUC value in the test subset.
Another interpretation for the lower performance in the test subset
may be the limited sample size of the test subset, only 53 cases, which
makes it sensitive to the performance test. Third, as the current study
focused on solitary HCC with a diameter ≤ 5 cm, the generalization
of the model needs to be confirmed among HCC patients with no
limit for tumor number and size. This should be of special interest
when evaluating patients just outside the current transplantation
criteria. Furthermore, there are incidence differences among
populations due to cirrhosis, viral hepatitis, and nonalcoholic
steatohepatitis. This makes it important to validate the model on
different cohorts. Fourth, the optimal dilation of the tumor needs to
be evaluated as we just dilated the tumor VOIs to 10 mm of the
margin as most previously published studies did (20, 21). Future
research can be designed to compare different dilations of the tumor
diameter when predictingMVI. Fifth, we applied an ICC threshold of
0.75, but the impact of different thresholds on model performance
requires further research. Finally, we did not incorporate semantic
imaging features, such as the tumor margins or arterial peri-tumoral
enhancement, into modeling as we thought those features are more
subjective compared with radiomics features. We also did not
incorporate images from the portal venous phase due to the same
reason as its contrast ratio was inferior to arterial phase. An attempt
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to build a more objective model using a deep learning approach
(without the radiologist’s tumor segmentation) is ongoing in
our team.
CONCLUSIONS

Our radiomics-based model combining imaging features from
the arterial and hepatobiliary phases of Gd-EOB-DTPA-
enhanced MRI and clinical risk factors provides an effective
and reliable tool for the preoperative prediction of MVI in
patients with HCC ≤ 5 cm.
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