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Abstract

Histone H3K36 methylation is well-known for its role in active transcription. In Saccharomyces cere-

visiae, H3K36 methylation is mediated solely by SET2 during transcription elongation. In metazoans,
multiple H3K36-specific methyltransferases exist and contribute to distinct biochemical activities and
subsequent functions. In this review, we focus on the H3K36-specific histone methyltransferases in
metazoans, and discuss their enzymatic activity regulation and their roles in antagonizing Polycomb
silencing and safeguarding transcription fidelity.
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INTRODUCTION

Chromatin features, including DNA modifications, his-
tone modifications, histone variants, nucleosome occu-
pation, and chromatin organization, regulate the
regional accessibility of chromatin and thus modulate
various chromatin-based biological processes, including
replication, transcription, and repair. Histone acetylation
and methylation at lysine residues are two of the most
studied histone modifications, and they have interesting
differences. Histone acetylation generally promotes
active transcription by altering the positive charge at the
lysine residues and the interactions between DNA and
histone tails. Therefore, with few exceptions, the
majority of histone acetyltransferases and deacetylases
display broad substrate specificity and function for
multiple lysine residues on various histones (Kouzar-
ides 2007b). In contrast, histone lysine methylation
does not change the charge at the histone tails and these
methylated lysine moieties function by recruiting
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downstream reader proteins that are involved in gene
activation or repression. The reader proteins generally
display site-specificity due to the recognition of neigh-
boring residues. This is probably the reason that histone
methyltransferases and demethylases have co-evolved
to have specific lysine site preferences (Kouzarides
2007a).

Histone H3K36 methylation is a hallmark of active
transcription. Pioneer studies on budding yeast SET2,
the first H3K36 methyltransferase (Strahl et al. 2002),
have established a paradigm for the recruitment of SET2
and the function of H3K36 methylation: SET2 is
recruited by Ser-2-phosphorylated Pol II during elon-
gation to deposit H3K36me3, which functions as a
docking site for the Rpd3S histone deacetylase complex
to suppress cryptic transcription initiation (Venkatesh
and Workman 2013). In metazoans, the characterization
of multiple H3K36-specific methyltransferases has
expanded the function of H3K36 methylation from
transcription elongation to developmental gene regula-
tion (Wagner and Carpenter 2012). In metazoans,
SETD2 (also known as HYPB) is the sole enzyme
responsible for H3K36me3 (Edmunds et al. 2008; Yuan
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et al. 2009); MES-4 (maternal-effect sterile 4) in C. ele-
gans and Drosophila and its mammalian homologs, the
NSD (nuclear receptor-binding SET domain) family
proteins (including NSD1, NSD2, and NSD3), are the
main contributors of global H3K36me2 (Bell et al. 2007;
Bender et al. 2006; Kuo et al. 2011; Li et al. 2009b);
Ash1 (absent, small and homeotic-1) in Drosophila and
its mammalian homolog Ash1L (Ashl-like) can also
produce H3K36me2, but they are limited more to the
active Hox genes (An et al. 2011; Huang et al. 2017;
Miyazaki et al. 2013; Schmahling et al. 2018; Tanaka
et al. 2007; Yuan et al. 2011). MES-4 and Ash1l play
critical roles in maintaining developmental gene
expression, and the mutations and deregulation of
human NSD family proteins and AshlL are linked to
various developmental diseases (Bennett et al. 2017;
Rogawski et al. 2016; Wagner and Carpenter 2012).
Moreover, the recent discoveries that “oncohistones”
with H3K36M/I mutations can drive chondroblastoma
tumorigenesis by inhibiting H3K36 methyltransferases
and reprogramming the H3K36 methylation landscape
further underscore the functional significance of H3K36
methylation (Fang et al. 2016; Lu et al. 2016). In vitro,
H3K36 methylation directly inhibits PRC2, which cat-
alyzes repressive H3K27 methylation (Schmitges et al.
2011; Yuan et al. 2011). In vivo, the genomic landscape
of H3K36 and H3K27 methylation are anti-correlated
(Gaydos et al. 2012; Lu et al. 2016; Papp and Muller
2006; Popovic et al. 2014; Yuan et al. 2011). These
findings clearly underscore the role of H3K36 methy-
lation in antagonizing Polycomb silencing. On the other
hand, the distinct regulation of each H3K36-specific
methyltransferase remains unclear. Here, we summarize
the recent progress regarding the regulation of H3K36
methyltransferase activity and their roles in transcrip-
tion. Notably, H3K36 methylation also participates in
other aspects of chromatin events such as DNA repair
and mRNA splicing, discussion of which is beyond the
scope of this review, but has been reviewed by others
(Fahey and Davis 2017; Li 2013; McDaniel and Strahl
2017; Wagner and Carpenter 2012).

AUTO-INHIBITION IS A CONSERVED REGULATORY
MECHANISM OF H3K36 METHYLTRANSFERASES

Studies reporting the characterization of the substrate
specificity of H3K36-specific methyltransferases, espe-
cially dimethylases, displayed quite a number of dis-
putes. After years of study, chromatin researchers have
adopted the common belief that SETD2 is the sole
enzyme responsible for H3K36me3, NSD family
enzymes are the main contributors of H3K36me2, and

© The Author(s) 2018

Ash1/Ash1L is an enzyme governing H3K36me2 at
specific regions (An et al. 2011; Dorighi and Tamkun
2013; Edmunds et al. 2008; Huang et al. 2017; Kuo et al.
2011; Li et al. 2009b; Miyazaki et al. 2013; Qiao et al.
2011; Streubel et al. 2018; Tanaka et al. 2007; Yuan
et al. 2009, 2011). One likely explanation for the initial
conflicting observations is that most H3K36-specific
methyltransferases are nucleosome-specific enzymes;
these methyltransferases are highly specific for
H3K36 methylation at nucleosome substrates, but they
display weak non-specific activities for non-nucleosomal
histones (An et al. 2011; Byrd and Shearn 2003; Gre-
gory et al. 2007; Li et al. 2009b; Tanaka et al.
2007; Yuan et al. 2009). The structural basis for the
nucleosome-specific  activities of H3K36-specific
methyltransferases has not yet been resolved, and the
exact molecular mechanisms of how nucleosomes con-
fine the specificity and stimulate the catalytic activity of
H3K36-specific methyltransferases remain unclear.
Nevertheless, the structures of the catalytic domains of
all three sub-types of H3K36 methyltransferases have
been resolved, and interestingly, all of them share a
conserved auto-inhibitory mechanism (Fig. 1) (An et al.

SETD2-H3K36M

Fig. 1 Auto-inhibitory loop is a shared feature of H3K36 methyl-
transferases that undergoes dynamic changes during catalysis.
Structures of the catalytic domain of Ash1L (PDB code: 30PE) (A),
NSD1 (PDB code: 300I) (B), SETD2 (PDB code: 4H12) (C), and
SETD2 bound with the H3K36 M peptide (PDB code: 5J]Y) (D) are
shown with arrowheads indicating the auto-inhibitory loop. Note
that the side chain of S2259(Ash1L)/C211(NSD1)/R1670(SETD2)
within the inhibitory loop occupies the positioning pocket of
H3K36. In the SETD2-H3K36 M complex, R1670 flips out and
allows the catalytic center to accommodate substrate binding
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2011; Qiao et al. 2011; Zheng et al. 2012). A loop at the
post-SET region occupies the binding channel for the
histone H3 tail, thus blocking the access of lysine 36 to
the catalytic center. Obviously, this loop must undergo a
conformational change to remove this steric hindrance
upon activation. Indeed, a half-opened conformation of
the inhibitory loop was observed in SETD2, indicating
the dynamic nature of this loop (Yang et al. 2016).
Furthermore, when engaged with a K36M-mutated H3
peptide, which mimics the methylated product but
cannot be released from the catalytic center, a fully
opened state was observed (Fig. 1D) (Yang et al. 2016).
In addition, biochemical studies suggest that nucleoso-
mal DNA may act as an allosteric effector for NSD pro-
teins (Li et al. 2009b), and computational docking and
simulation suggest that the inhibitory loop of NSD1 may
come into contact with the DNA and lead to lysine
binding channel widening (Qiao et al. 2011). Therefore,
it is reasonable to speculate that the engagement of
nucleosome substrates with H3K36-specific methyl-
transferases may alter the auto-inhibitory loop to a
conformation that favors H3K36 methylation catalysis.

Auto-inhibition is also an intrinsic characteristic of
E(z), the catalytic subunit of the H3K27 methyltrans-
ferase PRC2. While E(z) alone is inactive (Antonysamy
et al. 2013; Wu et al. 2013), engagement with two other
core subunits of PRC2—EED and SUZ12—alters the
configuration of its catalytic center and transforms it
into an active conformation (Brooun et al. 2016; Jiao
and Liu 2015; Justin et al. 2016). Therefore, another
interesting speculation is that certain interaction part-
ner(s) may induce a conformational change and activate
H3K36-specific methyltransferases. SETD2 and Ash1/
Ash1L have stable interaction partners (Huang et al
2017; Schmahling et al. 2018; Yuan et al. 2009). In
human cells, SETD2 interacts stably with HnRNP-L,
which facilitates H3K36me3 deposition in vivo. How-
ever, HnRNP-L does not stimulate the enzymatic activity
of SETD2 in vitro, which suggests that HnRNP-L does
not function as a catalytic activator of SETD2 (Yuan et al.
2009). Recently, we and others demonstrated that
Drosophila Ashl and human AshlL form stable com-
plexes with Mrg15 (or human Morf4L1/2) and Nurf55
(or human RbAp46/48) (Huang et al. 2017; Schmahling
et al. 2018). Interestingly, MRG domain-containing
proteins, including Mrgl5 and human Morf4L1/2,
stimulate the catalytic activity of Ash1l/Ash1L signifi-
cantly. It will be interesting to determine whether
Mrgl5 activates Ashl by inducing a conformational
change that eliminates the blockage of the catalytic
center by the auto-inhibitory loop of Ash1. Although the
exact mechanism of induction remains to be deter-
mined, this is the first case of allosteric activation
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directed by an interaction partner among H3K36-
specific methyltransferases.

In addition to the positive regulation of catalytic
activities, all three sub-types of mammalian H3K36-
specific methyltransferases are inhibited directly by
H2A ubiquitination (Yuan et al. 2013). Whether such
negative regulation involves the stabilization of the
auto-inhibitory loop is an interesting question for future
exploration.

The physiological roles of this auto-inhibition remain
unclear, but this process has been proposed to protect
enzymes from hyperactivation (Wang et al. 2015). An
intriguing hypothesis is that auto-inhibition and its
bypass are ideal interfaces for additional regulation,
such as signaling events. Thus, the catalytic process of
H3K36-specific methyltransferases is subject to intri-
cate regulations directed by both intrinsic and external
mechanisms.

DIVERSIFIED CHROMATIN RECRUITMENT

OF H3K36-SPECIFIC METHYLTRANSFERASES
ASSIGNS DISTINCT PHYSIOLOGICAL FUNCTION
TO H3K36 METHYLATION

In Saccharomyces cerevisiae, SET2 generates all forms of
H3K36 methylation, with trimethylation being the pri-
mary effective mark; however, H3K36me2 can work as
efficiently as H3K36me3 in recruiting Rpd3S and sup-
pressing cryptic initiation (Li et al. 2009a), suggesting
indiscriminate roles of di- and trimethylation under this
context. In metazoans, ChIP-sequencing showed that
H3K36me2 demarcates chromatin differently from
H3K36me3: within genic regions, H3K36me2 is prefer-
entially enriched proximal to the transcription start sites
and gradually decays downstream into the H3K36me3-
enriched 3’ region; in addition, the large amount of
H3K36me2 spread across intergenic regions implies a
role at distal regulatory elements (Kuo et al. 2011).
Although SETD2 preserves the capacity to generate all
three states of methylation, SETD2 depletion affects only
H3K36me3, not H3K36mel/2, at the bulk level (Ed-
munds et al. 2008; Yuan et al. 2009), indicating the
specific assignment of trimethylation for transcription
elongation. Moreover, the evolvement of several methyl-
transferases specific for H3K36me2 and the fact that
mutations and deregulation of these enzymes cause
varied developmental diseases further suggest that
H3K36me2 may have a function distinct from that of
H3K36me3. In convergence, these di-methyltransferases
are recruited to chromatin differently from SETD2 (see
discussion below), which expands the H3K36 methyla-
tion territory and diversifies the function of H3K36
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methylation. H3K36 also exists in mono-methylated
state. However, as an intermediate product of methyla-
tion reactions catalyzed by the aforesaid di- and
tri-methyltransferases, the chromatin distribution and
functional role of H3K36me1 remain poorly characterized.

SET2/SETD2 and H3K36me3: recruited
by elongating Pol II to safeguard transcription
fidelity

As mentioned, in Saccharomyces cerevisiae, SET2 is
recruited by the Ser-2-phosphorylated C-terminal
domain (CTD) of elongating RNA polymerase I, and it
deposits H3K36 methylation at the gene bodies of active
genes (Krogan et al. 2003; Li et al. 2002, 2003; Xiao et al.
2003). Successive transcription may cause histone
hyperacetylation in gene bodies, which allow cryptic
transcription initiation. To prevent such deleterious
events, transcription elongation-coupled H3K36 methy-
lation serves as a docking site for the histone deacetylase
complex Rpd3S, which restores the repressive chromatin
environment following Pol II passage to prevent cryptic
transcription initiation (Carrozza et al. 2005; Joshi and
Struhl 2005; Keogh et al. 2005; Li et al. 2007).

Transcription elongation-coupled SETD2 recruitment
and H3K36me3 deposition are conserved in mammals,
as well as the role of H3K36me3 to prevent aberrant
transcription initiation; however, whether the repres-
sive environment promoted by H3K36me3 depends on
histone deacetylases remains unexplored. Intriguingly,
in mammals, the PWWP domain containing de novo
DNA methyltransferases DNMT3A/B is recruited by
H3K36me3 to methylate intragenic DNA, which may, in
turn, recruit methylated DNA-binding proteins and his-
tone deacetylases (Jones 2012; Neri et al. 2017), to
safeguard transcription initiation. Indeed, mouse ES
cells lacking DNA methylation exhibited intragenic
transcription initiation (Neri et al. 2017).

Overall, SETD2 deposits H3K36me3 in gene bodies to
recruit downstream machineries to restore the non-
permissive chromatin state following Pol II passage and
to maintain transcription fidelity at the genome level.

H3K36me2 methyltransferases and H3K36me2:
demarcating active chromatin by antagonizing
silencing

Loss-of-function studies in multiple species, including C.
elegans, Drosophila, and mammalian cells, indicate that
NSD family proteins are responsible for bulk chromatin
H3K36me2 levels (Bell et al. 2007; Bender et al. 2006;
Kuo et al. 2011), implying the widespread distribution
of these enzymes.

© The Author(s) 2018

In C. elegans, MES-4, a homolog of mammalian NSD
proteins, is vital for germ cell viability (Bender et al.
2006) and is highly abundant in H3K36me2-enriched
autosomes, but not in the H3K27me3-enriched X chro-
mosome in germline cells (Bender et al. 2006; Fong
et al. 2002). Moreover, an MES-4 ChIP-chip analysis of
early embryos revealed that MES-4 is distributed
around the gene bodies of approximately 20% of genes,
among which germline-specific genes are highly enri-
ched (Rechtsteiner et al. 2010). MES-4 signals arise near
TSS regions, peak proximally, and gradually decrease
towards the 3’ end of gene bodies, correlating well with
the pattern of H3K36me2 at genic regions (Rechtsteiner
et al. 2010).

In Drosophila, MES-4 is also enriched at the 5’ end of
target genes (Bell et al. 2007). Importantly, dMES-4 is
recruited by an insulator-binding protein to promote
the transcription of flanking genes by antagonizing the
spread of H3K27 methylation from nearby regions
(Lhoumaud et al. 2014); this finding revealed the
functional role of the MES-4/NSD family of enzymes at
the intergenic cis-regulatory regions.

In mammals, there are three NSD family proteins, and
their chromatin localization has not been thoroughly
analyzed. Knocking down NSD1 in ESC cells reduces
H3K36me2 levels throughout the genome—at gene
promoters, gene bodies, and intergenic regions (Streu-
bel et al. 2018). NSD2 localizes to active transcripts,
with a greater preference for elongating regions and
distal regulatory regions (Ram et al. 2011). Consistently,
in multiple myeloma, t(4;14) chromosomal transloca-
tion resulting in NSD2 overexpression led to the aber-
rant accumulation of H3K36me2 at both the intragenic
and intergenic regions, supporting the widespread tar-
geting of NSD2 (Kuo et al. 2011; Popovic et al. 2014).
The distribution of full-length NSD3 has not been
reported, but a short isoform of NSD3 possessing the
PWWP domain localizes preferentially to enhancers and
promoters (Shen et al. 2015). Importantly, in chon-
droblastomas, recurrent H3K36M mutations repro-
grammed the transcriptome through inhibiting and
sequestering H3K36 methyltransferases, resulting in a
global reduction in H3K36 methylation; in this process,
intragenic and intergenic H3K36me2 were mediated
largely by NSD proteins (Fang et al. 2016; Lu et al
2016). These findings further underscore the physio-
logical significance of the broad targeting of NSD
proteins.

NSD proteins can interact with nuclear receptors,
suggesting their recruitment by transcription factors
(Huang et al. 1998); however, the general targeting
mechanism remains unknown, especially for the inter-
genic regions. Notably, NSD proteins contain multiple
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chromatin reader modules, including the PWWP and
PHD domains, which may contribute to the spread of
NSD proteins (He et al. 2013; Sankaran et al. 2016).
Overall, the NSD family of proteins targets numerous
genes involved in many development pathways and
extensive intergenic regions.

Different from the MES-4/NSD family of enzymes, the
other H3K36me2-specific methyltransferase Ashl
functions as a trithorax protein in Drosophila to main-
tain the expression of a small collection of develop-
mental genes, the HOX genes. ChIP analysis showed that
Ash1 is distributed throughout its target genes (Huang
et al. 2017; Schwartz et al. 2010). A subset of cis-
regulatory elements in the Drosophila genome that can
recruit Trithorax/Polycomb group proteins was identi-
fied and defined as Trithorax/Polycomb response ele-
ments (TRE/PRE) (Ringrose and Paro 2007). Transgenic
TRE/PREs can recruit Trithorax/Polycomb proteins
ectopically to maintain the active/repressive states of
reporter genes, underscoring their significance in
Trithorax/Polycomb recruitment. Importantly, the
sequences of TRE/PREs are the same in different cell
types, but Trithorax and Polycomb proteins, including
Ash1, have different locations in each cell type, sug-
gesting additional regulators beyond DNA sequences.
Moreover, Ash1 cooperates with other Trithorax group
members to maintain Hox gene expression, among
which Trithorax and Kismet may directly promote
the chromatin recruitment of Ashl: Ashl and the
N-terminus of Trithorax display an interdependency on
chromatin localization (Schwartz et al. 2010); knocking
down Kkismet, a CHD family chromatin remodeler,
greatly reduces the chromatin retention of Ashl
(Srinivasan et al. 2008), suggesting that chromatin
accessibility directed by a chromatin remodeler also
affects Ashl recruitment. Given that the Ashl protein
also contains multiple chromatin binding domains,
including Bromo, BAH, and PHD, and that its partner
protein Mrgl5 also contains a Chromo domain that
recognizes H3K36 methylation, it is natural to expect
that the recognition of a combination of histone modi-
fications will contribute another regulatory layer to
Ash1 recruitment. Taken together, DNA elements, tran-
scription factors, and the chromatin environment may
function coordinately to shape the binding profile of
Ash1. The recruitment of Ash1L in mammalian systems
is not well studied, and PREs/TREs are not defined in
mammals. Despite this, Ash1L also regulates the HOX
genes in mammals, indicating the conservation of the
recruitment and function of AshlL (Miyazaki et al.
2013).

Overall, NSD proteins and Ash1L are associated with
active transcription, the malfunction of which leads to
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gene inactivation. Mechanistically, H3K36me2 /3 inhibits
the catalytic activity of PRC2 (Schmitges et al. 2011;
Yuan et al. 2011), and the mutually exclusive distribu-
tion of H3K36 methylation and H3K27 methylation
along chromatin has been observed in many biological
systems (Gaydos et al. 2012; Lu et al. 2016; Papp and
Muller 2006; Popovic et al. 2014; Yuan et al. 2011).
While the anti-silencing mechanisms of NSD proteins
and Ashl1L are similar, it would be of great interest to
uncover their distinct recruitment mechanisms, which
will help in the understanding of the biological impact
of these distinct enzymes.

SUMMARY AND PERSPECTIVES

In higher eukaryotes, in addition to its conservative role
in transcription elongation, H3K36 methylation has an
additional function: anti-silencing. In addition to tar-
geting certain developmental genes, PRC2-mediated
transcription silencing through H3K27 methylation
seems to establish and maintain a default repressive
state for most of the inert genome. PRC2 may be
recruited initially by cis-elements and then propagate
along chromatin through a reinforced spreading mech-
anism (Wang et al. 2018). On the other hand, active
genes and regulatory regions have adapted multiple
mechanisms, including installation of H3K4 and H3K36
methylation, as well as an open chromatin status, which
are all repulsive substrates for PRC2 catalysis, to over-
come the silencing effect (Schmitges et al. 2011; Yuan
etal 2011, 2012). Both H3K36me2 and H3K36me3 can
inhibit PRC2 activity efficiently in vitro (Schmitges et al.
2011; Yuan et al. 2011). However, they may antagonize
PRC2 in different ways in vivo: PRC2 generally targets
promoters and enhancers, but not gene bodies, for the
initiation of silencing, so protecting these cis-elements
with H3K36me2 via NSD/Ash1L may abolish the initial
recruitment of PRC2; in addition, the general
H3K36me2 enrichment and the gene body-enriched
H3K36me3 at active genes may inhibit the spread of
H3K27 methylation from adjacent regions (Fig. 2).
Taken together, we propose that NSD/Ash1L-mediated
H3K36me2 may act as the primary effector to actively
repel PRC2 silencing at developmental genes, thus
maintaining their expression.

Although we attempt to dissect the specific roles of
each H3K36 methyltransferase and the different forms
of H3K36 methylation to clarify their intrinsic biological
functions, they often work in concert and affect each
other in many cases. For instance, the transcription of
genes maintained by the NSD family proteins/Ash1L
will certainly upregulate SETD2 and H3K36me3, and
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Fig. 2 Working model of H3K36-specific methyltransferases and H3K36 methylation in mammalian gene transcription regulation

the loss of the NSD family proteins/Ash1L, resulting in
transcription inactivation, will surely cause the loss of
SETD2 and H3K36me3.

Now two decades old, our knowledge of H3K36-
specific methyltransferases and H3K36 methylation is
still expanding. The links between the deregulation of
H3K36-specific methyltransferases and various biologi-
cal outcomes in diseases have not been fully established.
Hopefully, a thorough understanding of the mechanism
and function of H3K36-specific methyltransferases will
help to pave the way for designing specific and rational
targeting strategies for these diseases in the future.
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