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The structure of a β2-microglobulin fibril suggests a
molecular basis for its amyloid polymorphism
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All amyloid fibrils contain a cross-β fold. How this structure differs in fibrils formed from

proteins associated with different diseases remains unclear. Here, we combine cryo-EM and

MAS-NMR to determine the structure of an amyloid fibril formed in vitro from β2-micro-

globulin (β2m), the culprit protein of dialysis-related amyloidosis. The fibril is composed of

two identical protofilaments assembled from subunits that do not share β2m’s native tertiary

fold, but are formed from similar β-strands. The fibrils share motifs with other amyloid fibrils,

but also contain unique features including π-stacking interactions perpendicular to the fibril

axis and an intramolecular disulfide that stabilises the subunit fold. We also describe a

structural model for a second fibril morphology and show that it is built from the same

subunit fold. The results provide insights into the mechanisms of fibril formation and the

commonalities and differences within the amyloid fold in different protein sequences.
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Amyloid fibrils are fascinating protein assemblies that play
a central role in many devastating diseases1. They also
have functional roles from microbes to man2,3 and

offer the opportunity to generate novel materials with new
properties4–6. Despite these varied functions, all amyloid fibrils
have a common architecture based on a cross-β structure7.
Despite the first identification of the cross-β motif more than 50
years ago8, the structure of amyloid eluded high-resolution
structural definition for all but the smallest of peptide assem-
blies9. This raised the question of how many structures conform
to the canonical cross-β fold; how different sequences can
assemble into this same fold family; and how the structure of
amyloid fibrils generated in vitro relate to their counterparts
formed in situ. Recent developments in magic angle spinning
(MAS)-NMR and cryo-EM have seen an end to this impasse, with
high-resolution structures of fibrils formed from Aβ42 and
α-synuclein in vitro, and tau fibrils ex vivo being reported in the
last year10–14. These proteins are all intrinsically disordered in
their native, functional states, and hence amyloid assembly
involves peptide ordering into the cross-β fold. Of the >50 cur-
rently known amyloid precursors, however, almost half are
initially folded, including light chains, serum amyloid A, prions,
and β2-microglobulin (β2m)15. How the amyloid structure(s) of
these proteins relate to the structures of their folded, functional
forms and to the architecture of amyloid fibrils assembled from
intrinsically disordered precursors remained unclear.

In its native, functional state, β2m forms a canonical, seven
β-stranded immunoglobulin fold that chaperones the folding and
assembly of class 1 major histocompatibility complex (MHC-1).
MHC-1 is found on the surface of all nucleated cells and is
essential for immunity16. Following dissociation from MHC-1,
β2m is normally cleared by the kidneys, but in patients with
impaired kidney function who are undergoing long-term hae-
modialysis, serum levels of β2m rise as much as 40-fold17. This
leads to aggregation of β2m and its deposition as amyloid fibrils in
the joints18. The associated disease, dialysis-related amyloidosis
(DRA), is marked by debilitating arthritis and bone damage17.
The major protein component of amyloid deposits in DRA is
wild-type β2m (~70%), together with several truncation products,
the most prominent of which involves deletion of six amino acids
from the N-terminus of the protein, generating the highly amy-
loidogenic variant, ΔN6 (~30%)19. Fibrils formed from β2m
in vitro have been shown to disrupt membranes20,21, perturb
endosomal–lysosomal trafficking22, and reduce the viability and/
or function of monocytes, chondrocytes, osteoblasts, and osteo-
clasts23, implicating fibril deposition in disease.

The formation of amyloid fibrils from β2m in vitro at phy-
siological pH requires partial unfolding, specifically involving the
cis–trans isomerisation of Pro32, and the formation of an
unstable, non-native state that nonetheless retains its immu-
noglobulin fold24,25. Retention of the single disulfide bond which
links residues Cys25 and Cys80 in the native state is also required
for amyloid formation in vitro26, and this disulfide is intact in
fibrils in vivo27. Despite being the major component of amyloid
fibrils in DRA deposits, wild-type β2m is resistant to aggregation
in vitro unless the protein is first unfolded by lowering the pH or
adding co-solvents or other additives. Fibrils generated at low pH
in vitro bind collagen, glycosaminoglycans, and serum amyloid P
component, akin to their biological counterparts28,29 and possess
similar secondary structure as judged by FTIR30. However,
despite this plethora of studies, including preliminary analysis
using MAS-NMR31, the structure of β2m amyloid remained
unsolved, leaving unanswered questions as to how the initially all
anti-parallel β-sheet structure of the native protein is remodelled
when forming an amyloid fibril. Here, we created fibrils from β2m
at low pH in vitro and, by combining assignment and distance

constraints obtained using MAS-NMR with cryo-EM analysis, we
solved their structure to near-atomic resolution. The results reveal
the conformational changes that occur as the protein forms
amyloid, and show how different packing of the same subunit
fold generates β2m fibril polymorphism.

Results
β2m fibrils contain a single subunit fold. MAS-NMR and
electron paramagnetic resonance (EPR) studies can both provide
precise distance constraints to describe the structural properties
of proteins in solution32,33. Previous MAS-NMR and EPR studies
have shown that the N-terminal ~10 residues of β2m in fibrils
generated at low pH in vitro are highly flexible31,34,35, consistent
with limited proteolysis36, and H/D exchange data37. To gain
more insight into the conformation of β2m within the core of
these amyloid fibrils, we conducted an extensive series of 2D and
3D MAS-NMR studies on fibrils grown from β2m monomers
labelled specifically or uniformly with 15N and 13C (Methods).
Using these different labelling strategies, we were able to assign
>90% of the heavy atoms for residues F22–S88 consistent with
these residues forming the ordered core of β2m in the fibrillar
state (Fig. 1). Crucially, with the exception of T68, a single set of
resonances was detected for residues within this core region
(Fig. 1b–d and Supplementary Figure 1), unambiguously showing
that the fibrils contain β2m subunits that have a single well-
defined tertiary structure.

Cryo-EM structure of β2m amyloid fibrils. β2m fibrils generated
under identical conditions were also analysed by cryo-EM. The
resulting images revealed untangled, long, and straight fibrils
(Fig. 2). Despite the unambiguous evidence from MAS-NMR for
a single conformation of β2m in the fibrillar state, when visualised
directly the fibrils display a broad range of morphologies, char-
acterised by different widths and crossover lengths. The most
common type observed (56% of the fibrils analysed (Supple-
mentary Table 1)), had easy-to-identify crossovers and appeared
to be formed from two protofilaments (Fig. 2a). Computational
averaging of >90,000 segments generated classes that displayed
the 4.8 Å repeat characteristic of stacked β-strands in amyloid
(Fig. 2a (inset)). The fibrils exhibit poor helical order with large
variations in pitch. This is exhibited by large variations in
crossover distances (the distance between the points where a
visible cross-over is observed in the twisting fibril (equal to half
the true helical pitch)), of between 100 and 150 nm. This varia-
tion is observed both within individual fibrils and between dif-
ferent fibrils in the same preparation, consistent with previous
observations38. After extensive 2D and 3D classification to pro-
duce a dataset of fibril segments with consistent crossover length,
followed by 3D refinement with helical symmetry in
RELION39,40, we generated a cryo-EM structure for a two pro-
tofilament fibril at 3.9 Å resolution (Fig. 2b and Methods).

The β2m amyloid fibril has two protofilaments. The cryo-EM
density revealed that the β2m fibril is comprised of two proto-
filaments arranged in parallel (Fig. 3b) and is built from discrete
layers of density. Each layer is related by a twist of −0.608° and
rise of 4.83 Å, giving the fibril a left-handed twist, which was
verified using scanning electron microscopy (SEM) (Supple-
mentary Figure 2). Each layer contains two β2m molecules (one
per protofilament) resulting in a mass-per-length of 53.3 kDa/nm,
consistent with previous scanning (STEM) and tilted beam (TB-
TEM) electron microscopy measurements38,41. The quality of the
EM density was sufficient to build an atomic model for the
ordered core of the β2m subunit (Fig. 3). The subunits in each
protofilament have an identical conformation that is related by a
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180° rotation along the fibril long axis (C2 symmetry). The sub-
units within the two protofilaments are therefore stacked in-
register with each other. The β2m subunits have an ordered,
L-shaped core formed by residues 22–85 (Fig. 3d). This con-
formation is consistent with the MAS-NMR data, including a
total of 1157 unique distance constraints (Fig. 3e; Supplementary
Figure 3; Supplementary Tables 2–5). These data provide an
orthogonal validation of the cryo-EM structure of the amyloid
subunits presented here, including the length and position of β-
strands (Fig. 4a–c). These constraints include intra-residue con-
tacts (tabulated in Supplementary Table 2), as well as contacts
between atoms in adjacent residues in the primary sequence
(green in Fig. 3e; Supplementary Table 3), between atoms in
residues close in the primary sequence (2–4 residues apart; orange
in Fig. 3e; Supplementary Table 4), and between atoms in residues
far apart in the primary sequence (>5 residues; red in Fig. 3e;
Supplementary Table 5). Overall, these results show that in the
fibril, the 100-residue β2m molecule contains a dynamic region
(M0 to ~V9), a region containing residues with intermediate
flexibility (Y10–N21 and Q89–M99) and a rigid core (F22–S88),
consistent with previous EPR35, N-ethylmalemide-labelling35, H/
D exchange19,37, and proteolysis19,36 studies.

Similar secondary structure elements build distinct tertiary
folds. In its native functional state, β2m has an immunoglobulin
fold that contains seven anti-parallel β-strands (A–G; Fig. 4a, c)42.
By contrast, each β2m molecule in the fibril has six β-strands
(strands 1–6; Fig. 4b, c) which are stacked parallel and in-register
in the fibril core, consistent with previous MAS-NMR31 and
EPR35 data. Remarkably, these β-strands correspond extremely
well in position to β-strands B–F in the native protein, although
the length of the fibrillar β-strands 1 and 2 are shorter than the
corresponding β-strands B and C in the native β2m fold (Fig. 4b,
c). Thus, the fibrillar conformation is built from substantially the
same secondary structural elements as the native conformation.
Interestingly, recent MAS-NMR studies of a naturally-occurring
variant of β2m (D76N), which causes systemic amyloid disease in
the absence of kidney failure43, has a different number and
location of its β-strands44. This suggests that the fibrils formed
from D76N monomers, and perhaps those of other variants such
as ΔN634, may adopt fibrillar structures different from those
presented here for the wild-type protein. This is further supported
by the fact that whilst D76N and ΔN6 β2m assemble rapidly into
fibrils at pH 6–7, low pH was used here to generate fibrils from
the wild-type protein since this sequence does not aggregate at
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Fig. 1MAS-NMR spectra of β2m fibrils show a single subunit structure. a Excerpt of a 2D 13C–13C MAS spectrum of uniformly [13C/15N]-labelled β2m fibrils
using 15ms PAR mixing recorded at a field strength corresponding to ω0H/2π= 900MHz, T= 268 K, and ωr/2π= 20 kHz. τmix= 15 ms, with an 83 kHz 1H
decoupling field applied during acquisition. b, c, d Cα–Cβ correlations of Ser/Thr residues in samples differentially labelled with 13C, as indicated for each
plot. For each Ser and Thr only one correlation should be present in a monomorphic sample. Since β2m has 5 Thr and 9 Ser residues, a total of 14
resonances should be observed. For Ser, 6/9 expected peaks (S28, S52, S55, S57, S61, and S88) are observed. S33 is not resolved, since its Cα and Cβ

chemical shifts are identical, i.e. the cross-peak overlaps with the diagonal peak. S11 is unobserved since it is part of the region of intermediate flexibility.
We observed a weak peak that is not connected to any other residues and is believed to stem from S20. For threonine, 4 cross-peaks are expected (T68,
T71, T73, T86), since T4 is part of the very flexible N-terminus and is not observed. However, 5 cross-peaks are observed. The cross-peak of T68 exhibits
doubling, presumably reflecting local structural perturbations for different polymorphs (see main text). Grey peak designations are included as a reference
for missing peaks in this spectrum or which lie below the plotting level used. These differences are a result of the different labelling schemes and mixing
efficiencies
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neutral pH unless destabilised by the addition of metal ions,
detergents, or co-organic solvents45. In accord with this view,
previous results have shown that β2m fibrils formed at low pH
rapidly depolymerise by shedding oligomers from their ends
when the pH is raised46, presumably because the deprotonation
of E44 and D76 in the fibril core destabilises the parallel in-
register stacking of its β-strands. The N-terminal 22 residues and
C-terminal 14 residues are disordered in the cryo-EM structure
(Fig. 4d), and β-strands A and G in the native structure which lie
in these regions are not seen at high resolution in the cryo-EM
structure. However, additional weak density corresponding to
these regions is observed, consistent with the residues involved
being poorly ordered, but localised close to the fibril surface
(Fig. 4d).

Molecular interactions stabilising the subunit and fibril. The
MAS-NMR and cryo-EM data collectively allowed us to build and

validate a unique structural model for the fibrillar subunit of β2m
that reveals details of both the intra- and inter-subunit interac-
tions that stabilise the protofilament and fibril structures (Fig. 5).
Features found in other amyloid fibrils were observed10–14, as
well as interactions unique to β2m fibrils. The canonical, parallel
in-register cross-β structure is maintained down the fibril long
axis by networks of hydrogen bonds between backbone atoms in
the β-strands, supported by extensive π-stacking interactions
between the aromatic residues Phe22, Tyr26, Phe30, Phe56,
Trp60, Phe62, Phe70, and Tyr78 along the length of the
core (Supplementary Figure 4), as observed in other amyloid
fibrils10–14,47–49. The β-strand-containing regions (strands 2 and
5) in the foot of the subunit (for nomenclature, see Fig. 3d) are
stabilised by a classic steric zipper formed by residues
Trp60–Leu39–Phe62–Val37–Leu64–Ile35 (Fig. 5a) in which the
surface shape complementarity50 is as high as that seen in zippers
formed from small peptides (Sc= 0.80–0.869; Supplementary
Figure 5). This zipper is capped on each end by hydrophobic
pairings between Phe56/Leu40 and Leu65/Phe70 (Fig. 5a). The
adjacent ‘toe’ region of the subunit (residues 46–54) is stabilised
by hydrophobic interactions between Ile46, Val49, and Leu54
(Fig. 5b). The ‘leg’ (residues Thr71–Arg68 and Phe22–Ser33,
including β-strands 1 and 6) contains the intramolecular disulfide
bond (Cys25–Cys80) that is found in the native protein and is
required for fibril formation in vitro51 and in vivo52. This region
is further stabilised by hydrophobic interactions between Phe30,
Val27, and Tyr78 (Fig. 5c). Residues Glu44 and Asp76 which will
be protonated at the pH at which these fibrils were grown, are
packed in the core of the fibril, while other charged side chains
are solvent exposed. Residue Pro32, which is in a cis conforma-
tion in the native β2m fold, is in a trans conformation in the fibril,
in accordance with the MAS-NMR data32. Finally, each subunit is
stabilised by an unusual face-to-face, three-ring π-stack (Tyr63,
Tyr66, and Tyr67) perpendicular to the fibril axis which kinks the
polypeptide backbone in the region where the protofilaments
meet (Fig. 5c). The average centroid–centroid distance between
rings of Tyr63/Tyr66 and Tyr66/Tyr67 is ~4.8 Å. This perpen-
dicular π-stacking not only stabilises each subunit, but provides
additional stabilising interactions between protofilaments, which
associate via the heels of two subunits, forming an interface that is
unlike that seen for any other amyloid fibril to date. The main
stabilising interaction appears to be an inter-molecular H-bond
between Tyr67 and Glu69 (Glu69 is protonated at low pH),
facilitated by the kinked conformation of the polypeptide chain
(Fig. 5c). The distance between Tyr67 rings across the
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Fig. 2 The cryo-EM structure of a two protofilament β2m amyloid fibril.
a Raw cryo-EM image of a β2m fibril in vitreous ice. The scale bar is 50 Å in
length. Inset: an average of fibril segments shows periodicity which is
perpendicular to the fibril long axis with a ~4.8 Å spacing. b One turn of the
β2m amyloid fibril, with the two protofilaments coloured red and blue. See
also Supplementary movie 1

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06761-6

4 NATURE COMMUNICATIONS |          (2018) 9:4517 | DOI: 10.1038/s41467-018-06761-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


protofilament interface is ~7.6 Å, suggesting that π-stacking (and
perhaps π-amide) interactions across the interface would make
only a minor contribution to overall fibril stability (Supplemen-
tary Table 6). However, given that this small stabilisation would
be multiplied by the enormous number of these interactions
running down the fibril axis, its contribution is likely to be
significant.

β2m fibrils have a wide range of morphologies. Detailed analysis
of the cryo-EM dataset enabled at least six different fibril
morphologies with varying diameters and twists to be identified
within the same sample (Supplementary Table 1, Fig. 6a–f),
despite only a single set of resonances being observed by MAS-
NMR (Fig. 1). However, this underestimates the true extent of
heterogeneity, since many further examples were observed by

cryo-EM in which all fibril types were twisted together or inter-
twined (Supplementary Figure 6), including large-scale aggregates
which are also observed on the EM grids. Such heterogeneity
defies classification beyond ‘higher order aggregate’. To explore
the molecular basis for the different morphological classes
observed, we determined 3D reconstructions (see Methods) for a
second fibril morphology, although at much lower resolution
owing to greater heterogeneity and the relative scarcity of this
fibril type in the dataset. These thin fibrils (Fig. 6a) have the same
L-shaped subunit cross-section described above (Fig. 6g, h) and
are formed from a single protofilament. The resolution of this
structure is difficult to assess, owing to the very high symmetry
applied during reconstruction and the lack of features which are
resolvable in the fibril structure at intermediate resolution.
However, the gap between the two β-strands within a subunit is
poorly resolved, suggesting a resolution of ~10 Å. Kinetic studies
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of fibril growth using AFM showed that these fibrils are able to
assemble into thicker fibrils on an hour-to-day timescale (Sup-
plementary Figure 7). The thicker fibrils (Fig. 6d–f) appear to be
formed by the intertwining of two fibrils of type C described
above (i.e. they create a four protofilament fibril). The rarity of
these fibril types precluded structural modelling in more detail.
However, given that a single NMR resonance is observed for each
residue in the fibril core all polymorphs must be built from the
same canonical, L-shaped building block. Notably, the Cα–Cβ

resonance of Thr68 is the only resonance that is doubled in the
NMR spectra (Fig. 1b–d). This residue lies in the kinked region at
the heel of the subunit (Fig. 2d) and presumably reports on local
perturbations at this site in the different fibril polymorphs.

Discussion
Comparing the β2m fibril structure presented here with other
recent high-resolution structures of amyloid fibrils (Fig. 7 and
Supplementary Table 7)10,12–14,47–49,53–55 highlights both com-
monalities in structure between members of the amyloid fold
family, as well as key distinctions that reflect the disparate protein
sequences involved. The latter may underlie the different loca-
tions of fibril deposition in vivo, and hence the different diseases
caused by amyloid deposits formed from the same protein
precursor1,15. Despite the lack of any sequence similarity, the β2m
fibrils described here bear a marked resemblance to the paired
helical and straight filaments (PHF and SF) of Tau11 with their C-
shaped subunits (Fig. 7), which contrasts markedly with the
straight stacked β-strand architecture seen in fibrils formed from

short 5–10 aa peptides9. Similar convoluted C-shaped subunits
have been seen in fibrils formed from Aβ42 and α-synuclein
(Fig. 7). However, the ordered core of β2m subunits is L-shaped,
and stabilised by different interactions than those seen in other
fibrils. For example, the toe of the Tau PHF subunit is formed by
a β-helix, but in β2m fibrils this region involves a turn stabilised
by hydrophobic packing of Ile46, Val49, and Leu54 (Fig. 5). β2m
amyloid fibrils contain a steric zipper motif, in common with all
high-resolution amyloid fibril structures to date, which contain
steric zipper53,56 or zipper-like48,49 motifs, although these differ
in length and sequence. However, of all fibrils structures solved to
date only β2m fibrils are stabilised by a disulfide bond (Fig. 5d).
Interestingly, reduced β2m cannot form canonical long, straight
amyloid fibrils in vitro51,57, and reducing agents do not dis-
aggregate preformed fibrils27, consistent with the buried location
of the disulfide bond in the structure presented here.

Also unique to the β2m fibrils is the ladder of six tyrosine
residues (Tyr63, Tyr66, and Tyr67 from each protofilament) that
form an extended π-stack perpendicular to the fibril axis (Fig. 5c).
This six ring π-stack at the interprotofilament interface is also
different from the interfaces found in other fibrils, which involve
steric zippers (α-synuclein12,13 and Aβ40/Aβ4210), and backbone
hydrogen bonding or coordination of the disordered terminus in
different polymorphs of Tau in Alzheimer’s disease (Supple-
mentary Table 7)11. Although π-stacking down the fibril long axis
is common in these amyloid fibrils, we know of no other exam-
ples of fibrils with perpendicular π-stacks in this manner. An
analysis of the available structures in the RCSB PDB suggests that
stabilisation of interchain interfaces by π-stacking is uncommon.
Indeed, an analysis of 136,162 structures (Supplementary
Tables 8, 9) showed that the only interchain interactions invol-
ving four or more face-to-face aromatic rings were found stacked
along the fibril axis of other amyloid fibrils (Supplementary
Table 9, Supplementary Figure 8b). Even intrachain, face-to-face
π-stacks containing four or more rings were rare; only found
running down the axes of β-helices (Supplementary Figure 8a), in
an unnamed motif common to lectins (Supplementary Figure 8c),
and a formyltetrahydrofolate deformylase (PDB 3nrb) which has
a unique face-to-face stack made up of tyrosine and phenylala-
nine residues (Supplementary Figure 8d).

The molecular details of the β2m fibril structure presented here
allow interpretation of previous mutagenesis data, particularly in
light of the regions involved in stabilising the subunit structure
and protofilament interface. The E-strand (residues
Phe62–Phe70) of native β2m has long been identified as a region
of high amyloidogenicity35,58. Accordingly, short peptides derived
from this region rapidly assemble into amyloid-like fibrils while
other β2m-derived peptides are not able to do so, or form fibrils
with structures unrelated to those formed by the full-length
protein59. These results are consistent with the central role that
the E strand sequence plays in the fibril subunit structure and
interprotofilament interface revealed here. For example, the
F62A, Y63A, Y67A triple mutant protein is unable to form fibrils
at low pH, and the L65A and F70A variants of β2m are severely
compromised both in their ability to form fibrils and to elongate
wild-type seeds58, presumably because they disrupt the stability of
the inter-protofilament interface, as well as the core subunit
structure itself. The L40R variant is poor at elongating wild-type
seeds, but is able to form fibrils on its own58. This residue is
involved in the steric zipper stabilising the subunit of the wild-
type fibril, suggesting the possibility of the L40R variant forming a
different fibril morphology. Finally, the natural variant D76N that
forms a systemic amyloidosis of the viscera43 is found in the
subunit core in a region stabilised by an array of hydrophobic
interactions. This raises the possibility that D76N fibrils form a
different structure to that presented here for the wild-type

g h

fedcba

Fig. 6 Variety in fibril morphology. Six different morphologies were
identified in the non-entangled fibrils constituting the cryo-EM dataset.
These range in size from apparent single protofilaments (a), through a
series of apparent two protofilament fibrils (b–d), the structure of one of
which has been described here at 3.9 Å resolution (panel c), to assemblies
of multiple protofilaments (e, f). Each panel (a–f) is 500 Å wide. Side view
(g) and cross-section through (h) a low-resolution reconstruction of
morphology (a) showing density consistent with an L-shaped subunit. Each
scale bar in panels (g) and (h) is 50 Å in length
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protein, consistent with MAS-NMR data of the location of β-
strands in D76N fibrils formed in vitro44; that cross-seeding wild-
type β2m monomers with D76N results in fibrils distinct from
those formed by polymerisation of wild-type protein alone60 and
that co-polymerisation of D76N and wild-type β2m does not
occur in heterozygous individuals with D76N amyloidosis43.

Common pathways of aggregation via nucleated assembly
underlie amyloid formation in a diverse range of unrelated
proteins61,62, including more than 50 sequences involved in
human amyloid disease1. The first glimpses of the amyloid fold
family from recent MAS-NMR and cryo-EM studies have also
revealed remarkable similarities in the helical, cross-β, multi-
protofilament architecture of amyloid fibrils, despite wide dis-
parities in the protein sequences involved. The β2m fibril
described here shows several of the structural motifs found in
other fibrils solved to date: a cross-β architecture, parallel in-
register stacking of β-strands, two protofilaments, subunit stabi-
lisation by hydrophobic packing, and steric zippers. However, the
β2m fibril also contains features that are strikingly different:
protofilament interfaces stabilised by inter-sidechain H-bonds,
subunit stabilisation by extensive π-stacking interactions and an
essential disulfide bond. We also show that different fibril poly-
morphs can be formed from a common subunit structure, as
shown previously for different fibril structures formed from short
peptide fragments of antibody light chains63 and transthyretin64.
There are thus multiple mechanisms by which a sequence can
achieve a stable cross-β architecture. Understanding the details of
the resulting structures may provide insights into how amyloid
fibril formation relates to disease65, as well as providing
inspiration for the development of small molecules that interact
with aggregation to impede or accelerate the formation of indi-
vidual fibril types66.

Methods
Preparation of β2m fibrils. β2m was recombinantly-expressed in Escherichia coli.
Samples for cryo-EM were grown in LB medium38, while isotopically labelled
samples used for MAS-NMR were grown in M9 or HCDM1 medium with a single
carbon and nitrogen source. All MAS-NMR samples used for this study were
uniformly 15N labelled using 15NH4Cl (Cambridge Isotope Laboratory (CIL)). A
total of 5 samples were generated using different carbon sources: (1) [u-13C, u-
15N]-β2m using [13C6]-glucose, (2) [1,6-13C2, u-15N]-β2m using [1,6-13C2]-glucose,
(3) [1,3-13C2, u-15N]-β2m using [1,3-13C2]-glycerol, (4) [2-13C1, u-15N]-β2m using
[2-13C1]-glycerol, and (5) [13C-VYL, u-15N]-β2m using [13C, 15N]-VYL. Fibrils for
cryo-EM were formed by dissolving purified, monomeric β2m in buffer containing
25 mM sodium phosphate, 25 mM sodium acetate pH 2.5, and 0.03% (w/v) NaN3

at 0.25 mg/mL (21 µM) β2m and incubating quiescently for 5 weeks at 37 °C. For
MAS-NMR, de novo wild-type β2m fibrils were generated by re-suspending lyo-
philised protein in 25 mM sodium phosphate, 25 mM sodium acetate buffer at pH

2.5, containing 50 mM NaCl, 0.02 % (w/v) NaN3 at a concentration of 83 μΜ.
Several samples of 1 mL were incubated each in 2 mL Eppendorf tubes at 37 °C
with 200 rpm orbital shaking for 14 days. The samples were collated and trans-
ferred to a single tube and fibrils then pelleted by 30 min centrifugation at 14,000g
using a bench-top centrifuge. Control experiments using MAS-NMR showed that
identical spectra were obtained when fibrils were grown in the presence of 50 mM
NaCl. The long, straight morphology of each fibril preparation was confirmed
using EM and/or AFM.

MAS-NMR experiments. Isotopically labelled samples were individually packed
into a 3.2 mm Bruker rotor (Bruker BioSpin, Billerica, MA) using a home-built
centrifugal packing tool. Typically, ∼30 mg of hydrated β2m fibrils were needed for
a fully packed rotor.

Chemical shift assignment. 13C and 15N chemical shifts of the resonances arising
from residues in the fibril core of β2m were assigned using multi-dimensional
assignment spectra conducive to backbone sequential walks as previously pub-
lished53. Briefly, a set of 3D NCACX, 3D NCOCX, and 3D CONCA spectra were
acquired on a Cambridge Instruments 750MHz spectrometer operating under
RNMR (courtesy of Dr. David Ruben). The spectra were recorded at ωr/2π= 12.5
kHz and regulated to ±10 Hz using a Bruker MAS I spinning frequency controller.
DARR mixing was used for the 3D NCACX (τmix= 60 ms) and 3D NCOCX
(τmix= 80 ms). Additionally, 3D NNCα experiments were acquired on Bruker 800
and 900MHz AVANCE III spectrometers equipped with a 3.2 mm triple channel
HCN Bruker probe (Bruker Biospin, Billerica, MA). Spectra were recorded at ωr/
2π= 20 kHz and regulated to ±10 Hz using a Bruker MAS II spinning frequency
controller. The 15 ms 15N–15N PAR mixing used radio frequency (RF) fields of
ω1H/2π= 55.4 kHz and ω15N/2π= 32.2 kHz. Spectra recorded at ω0H/2π=
750MHz were processed with the NMRPipe software package, while spectra
recorded at ω0H/2π= 800 and 900MHz were processed using TopSpin 3.2. All
spectra were analysed in Sparky. 13C and 15N chemical shifts were referenced using
the published shifts of adamantine relative to DSS for 13C referencing and the
IUPAC relative frequency ratios between DSS (13C) and liquid ammonia (15N). A
list of acquisition and processing parameters with additional references can be
found in Supplementary Tables 10 & 11. All experiments were conducted at 268 K.

Distance constraints from MAS-NMR spectroscopy. A total of 1157 contacts
were observed, of which 399 were classified as intra-residue, 385 as sequential, 229
as medium-range, and 144 as long-range contacts. These contacts were extracted
from a total of 19 2D 13C–13C and 13C–15N correlations. We recorded 13C–13C-
PDSD, 13C–13C-PAR, 13C–13C-RFDR, and 13C–15N-PAIN spectra on almost all
isotopically labelled samples. A full list of acquisition and processing parameters
with additional references can be found in Supplementary Tables 10, 11.

Cryo-EM grid preparation. β2m fibrils were diluted 1:10 with fibril buffer to a final
concentration of 0.025 mg/mL (2.1 µM) monomer equivalent concentration. A 300
mesh copper EM grid with Quantifoil R3.5/1 carbon film (Electron Microscopy
Services) was glow discharged in a Cressington 208 carbon evaporator fitted with a
glow discharge unit for 1 min at 10 mA power. Four microlitres of the sample was
applied to the grid, which was then blotted with Whatman #40 filter paper and
plunge-frozen in liquid ethane using an EM-GP plunge freezer (Leica).

EM data collection. EM images were collected using a Titan Krios (ThermoFisher)
electron microscope operating at 300 keV and recorded on an energy filtered K2

Aβ1-42 α-synucleinTau - SFTau - PHFβ2-microglobulin

a b c d e

Fig. 7 Inter-protofilament interactions in cryo-EM structures of amyloid fibrils. Comparisons of the subunit structures (upper) and interfaces between
protofilaments (boxes) of a β2m, Tau variants11 that form b paired helical filaments (PHF) and c straight filaments (SF), d Aβ1–4210 and e α-synuclein13. The
β-strands present in each structure are coloured blue. Fibrils were analysed from the following PDB files: Tau PHF (5o3l), Tau SF (5o3t), Aβ1–42 (5oqv), and
α-synuclein (6h6b)
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direct detector (Gatan) with a pixel size of 1.06 Å/pixel. 5549 micrographs were
recorded in two sets with total electron doses of 42.3 and 35.8 e−/Å2. The dose was
fractionated into 40 frames for per frame doses of 1.05 and 0.89 e−/Å2 respectively.
Of the 5549 micrographs collected, 2012 (~36%) contain fibrils.

Data processing. Frames 3–40 of each micrograph movie were motion-corrected,
dose weighted67, and merged using motioncor268. The contrast transfer function
(CTF) for each micrograph was determined using gCTF69 on motion-corrected,
but non-dose weighted, micrographs.

Helical reconstruction. All reconstruction was performed using Relion2.140. As
the micrographs contained multiple fibril morphologies, fibrils with a similar gross
morphology were first selected by eye. The selected fibrils were segmented into
300 × 300 pixel boxes overlapping by 90% (270 px). One round of 2D classification
was performed; only class averages showing an obvious β-sheet repeat (Fig. 1a—
inset) were retained. An initial round of 3D classification was performed using a
previous, low-resolution structure of β2m fibrils (EMD-161338) filtered to 60 Å as a
reference. Multiple rounds of 3D classification were then performed with the best
model from the previous iteration filtered to 40 Å as a reference. Initial helical
symmetry parameters were estimated from measurements of the fibril and refined
with local symmetry searches. The possibility of the fibrils having a 21 screw axis
symmetry was also explored; after initial helical symmetry parameters were
determined, a new set of local symmetry searches were performed using the
equivalent 21 screw axis helical parameters. In all cases, this resulted in lower
resolution structures with obvious artefacts from the application of incorrect
symmetry (Supplementary Figure 9). Exhaustive symmetry searches were per-
formed around the initial symmetry parameters to further refine the helical sym-
metry. There is some anisotropy in the Z dimension of the reconstruction which
means we cannot completely preclude the possibility of the refinement having
converged to a local optimum or having slightly symmetry parameters.

When no further improvement was observed in the classes generated from 3D
classification the particles that contributed to the best class were traced back to
their original micrographs and those fibrils containing long runs of contributing
segments were re-segmented using the original parameters. Multiple rounds of 3D
classification were then again used to generate an optimised particle stack for the
final refinement.

All 3D classification was performed using a T value39 of 4. A previous fibril
reconstruction11 reported the necessity of using higher T values to separate fibril
morphologies but this was not found to be necessary for this dataset.

One round of refinement with the helical symmetry parameters of 4.83 Å rise
and −0.608° twist yielded the initial fibril map at 4.2 Å resolution. The final map
was generated using the same helical parameters with an additional C2 symmetry
applied across the fibril axis, giving a final model at 3.9 Å resolution by gold
standard FSC70. Classification and refinement were performed using 30% for the
‘helical_z_percentage’ parameter40, and final post-processing was performed with a
value of 10%.

A lower resolution reconstruction of the single protofilament fibril polymorph
was made using the above methods, except a T value of 20 was used for 3D
classification, the backtracking and re-extraction steps were omitted, and no post-
processing was performed. The absolute handedness off the low-resolution
reconstruction was not determined, and the fibril was assumed to be left-handed.
The resolution of this reconstructions was estimated to be 6.7 Å by analysis of
correlation between neighbouring Fourier pixels using the program rmeasure71,
although the overall appearance the reconstructions, judged by the features that can
be resolved suggests these resolution estimates are substantially overestimated due
to the high symmetry applied.

Model building and refinement. A single chain of β2m was built and manually
refined using COOT72 and 7 copies of the resulting model fit into the EM map
using UCSF Chimera73 to preserve nearest neighbour interactions during sub-
sequent refinement steps. The resulting stack of 8 subunits was then subjected to
multiple rounds of real space refinement with NCS restraints in Phenix74. Initial
refinement iterations were performed with no secondary structure restraints, the
results of each round of refinement were analysed with STRIDE75 to detect sec-
ondary structure elements. Distance restraints obtained from the MAS-NMR
experiments were used to restrain backbone torsion angles during the final stages of
refinement. All refinements were performed using map information to 4.0 Å
resolution. For final statistics of the refined model, see Supplementary Table 12.
Surface complementarity of the steric zipper within this model was calculated using
the program SC using default parameters.

Searching the PDB for π-stacking interactions. A python script was written to
analyse all of the structures deposited in the RCSB PDB and search for π-stacking
interactions similar to those found in the fibril structure. The ring centre for Phe
and Tyr residues was defined as the point central to the six atoms that make up the
ring (CG, CD1, CD2, CE1, CE2, and CZ) and the ring centre for Trp was defined as
the point central to atoms CD2 and CE2. A ‘face-normal’ vector was used to define
the orientation of each ring, calculated as the cross product of the centre to CG and
centre to CD1 vectors for Phe/Tyr and centre to CD1 and centre to CD2 for Trp

(Supplementary Figure 10). Two residues were defined to have a face-to-face π-
stacking interaction if the centre-to-centre distance was less the 6 Å and difference
between face normal vectors 0 ± 20° or 180 ± 20°. The script was then run on all of
the structures deposited in the PDB, downloaded on the 17th of January, 2018. The
resulting π-stack interactions predicted to involve greater than 5 rings were
manually examined and curated.

Scanning electron microscopy. β2m fibrils were adsorbed onto a copper EM grid
coated with a layer of amorphous carbon and lightly stained with 1% (w/v) uranyl
acetate. The fibril morphology was confirmed using transmission electron micro-
scopy (TEM) and then SEM imaging conducted with a Hitachi SU-8230 cold field
emission scanning electron microscope (CFE-SEM) operated at 3.5 keV with beam
deceleration of 1.5 keV. Images were recorded at a nominal magnification of
250,000× yielding a pixel size of 3.9 Å/px.

Fibril sample preparation for AFM studies. Fibril seeds were prepared by stirring
a sample (500 μL) of lyophilised wild-type β2m re-suspended in a buffer of 10 mM
sodium phosphate pH 2.0 containing 50 mM NaCl at a concentration of 120 μΜ, in
a 1.5 mL glass vial containing a PTFE magnetic stirrer. Stirring was performed in a
custom made magnetic stirrer built by the Department of Physics and Astronomy
(University of Leeds) at 1000 rpm in room temperature for 2 days. To monitor the
time course of fibril elongation, lyophilised wild-type β2m was re-suspended in the
same buffer at a concentration of 120 μΜ with 10% (v/v) of seeds added. At various
timepoints during fibril elongation, fibrils were deposited on mica surfaces. To
ensure uniform coverage and dispersion of the entire surface, the sample was
diluted to 0.4 μΜ with freshly made sterile filtered deionised water. A drop of 20 μL
sample was deposited on the mica surface followed by incubation for 5 min. The
surface was washed by pipetting quickly 1 mL of sterile water and was then
immediately dried by applying a gentle steam of N2 gas.

Atomic force microscopy. Tapping-mode atomic force microscopy was per-
formed utilising a Dimension 3100 Scanning Probe Microscope (Veeco Instru-
ments) and PPP-NCLR silicon cantilever probes (Nanosensors, Neuchatel,
Switzerland). The images collected were 10 × 10 μm in each dimension (1024 ×
1024 pixels) in height trace mode (scan rate was constant at 0.80 Hz). Acquisition
of the image was followed by processing using the NanoScope 6.13rl software to
remove surface tilt and scanner bow (by application of a 3rd order polynomial
planefit).

Analysis of AFM images. AFM images were analysed using scripts61 written in
MATLAB (Mathworks). Briefly, only fibrils that do not interfere with the image
boundaries, do not overlap with neighbouring fibrils, are 4–7 pixels in width and at
least 4 pixels in length were unambiguously traced. The length distribution that is
biased towards shorter fibrils was then bias-corrected76. A Weibull probability
density function, found to best describe such a distribution was applied to fit the
bias-corrected data and thus length parameters could be calculated. At least 300
fibrils were analysed for each elongation time-point.

Code availability. The script for analysis of PDB files for π-stacking interactions is
available at https://github.com/attamatti/findpi.

Data availability
The structures of the single and double protofilament β2m amyloid structures were
deposited in the Electron Microscopy Data Bank with accession numbers EMD-
0021 and EMD-0014, respectively. In addition, the atomic model built into the 3.9
Å double protofilament reconstruction (EMD-0014) was deposited in the Protein
Data Bank with the PDB-ID 6gk3. The raw cryo-EM data has been deposited in the
EMPIAR database (EMPIAR-10207). All data that support the findings of this
study are available from the corresponding authors upon reasonable request.
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