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Abstract

Given multiple source datasets with labels, how can we train a target model with no labeled

data? Multi-source domain adaptation (MSDA) aims to train a model using multiple source

datasets different from a target dataset in the absence of target data labels. MSDA is a cru-

cial problem applicable to many practical cases where labels for the target data are unavail-

able due to privacy issues. Existing MSDA frameworks are limited since they align data

without considering labels of the features of each domain. They also do not fully utilize the

target data without labels and rely on limited feature extraction with a single extractor. In this

paper, we propose MULTI-EPL, a novel method for MSDA. MULTI-EPL exploits label-wise

moment matching to align the conditional distributions of the features for the labels, uses

pseudolabels for the unavailable target labels, and introduces an ensemble of multiple fea-

ture extractors for accurate domain adaptation. Extensive experiments show that MULTI-EPL

provides the state-of-the-art performance for MSDA tasks in both image domains and text

domains, improving the accuracy by up to 13.20%.

Introduction

Given multiple source datasets with labels, how can we train a target model with no labeled
data? Large training data are essential for training deep neural networks. Collecting abundant

data is, unfortunately, an obstacle in practice; even if enough data are obtained, manually label-

ing those data is prohibitively expensive. Using other available or much cheaper datasets

would be a solution for these limitations; however, indiscriminate usage of other datasets often

brings severe generalization error due to the presence of dataset shifts [1]. Unsupervised

domain adaptation (UDA) tackles these problems where no labeled data from the target

domain are available, but labeled data from other source domains are provided. Finding out

domain-invariant features has been the focus of UDA since it allows knowledge transfer from

the labeled source dataset to the unlabeled target dataset. There have been many efforts to

transfer the knowledge from a single source domain to a target one. Most recent frameworks

minimize the distance between two domains by deep neural networks and distance-based

techniques such as discrepancy regularizers [2–4], adversarial networks [5, 6], and generative

networks [7–9].
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While the above-mentioned approaches consider a single source, we address multi-source

domain adaptation (MSDA), which is very crucial and more practical in real-world applica-

tions as well as more challenging. MSDA is able to bring significant performance enhancement

by virtue of accessibility to multiple datasets as long as multiple domain shift problems are

resolved. Previous works have extensively presented both theoretical analysis [10–15] and

models [14, 16–20] for MSDA. MDAN [14], DCTN [16], and MDDA [18] build adversarial

networks for each source domain to generate features domain-invariant enough to confound

domain classifiers. However, these approaches do not encompass the interactions among

source domains, counting only shifts between source and target domain. M3SDA [17] adopts a

moment matching strategy but makes the unrealistic assumption that matching the marginal

probability p(x) would guarantee the alignment of the conditional probability p(x|y). Most of

these methods also do not fully exploit the knowledge of the target domain, imputing to the

inaccessibility of the labels. Furthermore, these methods require individual deep neural net-

works for each source domain as described in Fig 1, which have great redundancy and signifi-

cantly increase the overall model complexity. LtC-MSDA configures prototypes of the features

from each domain and learns the interaction between multiple domains deploying GCN.

However, summarizing each domain into only one prototype cannot fully represent the fea-

ture distributions of the domain and therefore deteriorates the performance.

In this paper, we propose MULTI-EPL (Multi-source domain adaptation with Ensemble of

feature extractors, Pseudolabels, and Label-wise moment matching), a novel MSDA frame-

work that mitigates the limitations of these methods of not explicitly considering conditional

probability p(x|y), and having great redundancy in their models. MULTI-EPL is illustrated in

Fig 2. MULTI-EPL aligns the conditional probability p(x|y) by utilizing label-wise moment

matching. We employ pseudolabels for the inaccessible target labels to maximize the usage of

the target data. Moreover, we generate an ensemble of features from multiple feature extractors

to capture rich information about labels. Extensive experiments show the superiority of

MULTI-EPL (see Fig 3).

Our contributions are summarized as follows:

• Method. We propose MULTI-EPL, a novel approach for MSDA that effectively and efficiently

obtains domain-invariant features from multiple domains by matching conditional proba-

bility p(x|y), utilizing pseudolabels for inaccessible target labels to fully exploit target data,

Fig 1. Overall model structure of MDDA and MULTI-EPL. To handle 3 source domains, most existing methods deploy 3 different sets of deep neural

networks, while one single set is enough for MULTI-EPL. This allows MULTI-EPL to use ensemble learning without an excessive cost of model

complexity.

https://doi.org/10.1371/journal.pone.0255754.g001
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handling all the source domains with one single neural network, and using an ensemble of

multiple feature extractors for further enhancement. It allows domain-invariant features to

be extracted, capturing the intrinsic differences of labels.

• Experiments. We conduct extensive experiments on image and text datasets. We show that

1) MULTI-EPL provides the state-of-the-art performance, and 2) each of our main ideas sig-

nificantly contributes to the superior performance.

In the rest of this paper, we first introduce the related works and describe our proposed

method. Then, we experimentally evaluate the performance of MULTI-EPL and its competitors.

The code for MULTI-EPL can be found in https://github.com/snudatalab/MultiEPL. Frequently

used symbols are summarized in Table 1.

Related works

Single-source domain adaptation

Given a labeled source dataset and an unlabeled target dataset, single-source domain adapta-

tion aims to train a model that performs well on the target domain. The challenge of single-

source domain adaptation is to reduce the discrepancy between the two domains and to obtain

appropriate domain-invariant features. Various discrepancy measures such as Maximum

Mean Discrepancy (MMD) [2–4, 21, 22] and KL divergence [23] have been used as regulari-

zers. Inspired by the insight that the domain-invariant features should exclude the clues about

its domain, constructing adversarial networks against domain classifiers has shown superior

performance. [7] and [9] deploy GAN to transform data across the source and target domains,

Fig 2. Illustration of MULTI-EPL. MULTI-EPL consists of 2 pairs of feature extractors and label classifiers, and one final label classifier. Colors and

symbols of the markers indicate domains and class labels of the data, respectively. The networks with the solid line are used for inference while the ones

with the dashed line are used only for training.

https://doi.org/10.1371/journal.pone.0255754.g002
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while [5] and [6] leverage the adversarial networks to extract common features of the two

domains. Unlike these works, we focus on multiple source domains.

Multi-source domain adaptation

Single-source domain adaptation should not be naively employed for multiple source domains

due to domain shifts. Many previous works have tackled Multi-source Domain Adaptation

(MSDA) problems theoretically. [11] establishes distribution weighted combining rule that the

weighted combination of source hypotheses is a good approximation for the target hypothesis.

Fig 3. Accuracy of MULTI-EPL and its competitors on 3 cases with Digits-Five datasets.

https://doi.org/10.1371/journal.pone.0255754.g003

Table 1. Table of symbols.

Symbols Definition

N Number of source domains.

X Data space.

C Label set.

mD Data distribution of the domain D.

lD Labeling function of the domain D.

Si ¼ ðmSi
; lSi Þ i-th source domain.

T ¼ ðmT ; lT Þ Target domain.

nSi
Number of instance in i-th source dataset.

nT Number of instance in the target dataset.

XSi
¼ fðxSi

j ; y
Si
j Þg

nSi
j¼1

i-th source dataset. xSi
j : j-th instance in XSi

, ySi
j : label of xSi

j .

XT ¼ fxT
j g

nT

j¼1
Target dataset. xT

j : j-th instance in XT .

https://doi.org/10.1371/journal.pone.0255754.t001
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The rule is further extended to a stochastic case with joint distribution over the input and the

output space in [13]. [12] proposes a general theory of how to sift appropriate samples out of

multi-source data using expected loss. Efforts to find out transferable knowledge from multiple

sources from the causal viewpoint are made in [24]. There have been salient studies on the

learning bounds for MSDA. [10] finds the generalization bounds based on HDH-divergence,

which are further tightened by [14].

Frameworks for MSDA have been presented as well. [14] proposes learning algorithms

based on the generalization bounds for MSDA. DCTN [16] resolves domain and category

shifts between source and target domains via adversarial networks. TMDA [25] aligns multiple

domains utilizing clustering and adversarial training. M3SDA [17] associates all the domains

into a common distribution by matching the moments of the feature distributions of multiple

domains. In [26], attempts to find out the common latent space of source and target domains

are made, focusing on the visual sentiment classification tasks. MDDA [18] employs Wasser-

stein distance to figure out which data from which source domains are closely related to the

target data. In LtC-MSDA [19], the interactions among multiple domains are learned by con-

structing a knowledge graph. However, most of these methods do not consider multimode

structures [27] that differently labeled data follow distinct distributions, even if they are drawn

from the same domain. Also, the domain-invariant features in these methods contain the label

information for only one label classifier which leads these methods to miss a large amount of

label information. Differently from these methods, our framework fully considers the multi-

mode structures, handles the data distributions in a label-wise manner, and minimizes the

label information loss considering multiple label classifiers.

Moment matching

Moment matching strategy has been used to minimize the discrepancy between source and

target domains in domain adaptation. MMD regularizer [2–4, 21, 22] can be interpreted as the

first-order moment matching while [28] addresses second-order moment maching of source

and target distributions. [29] investigates the effect of higher-order moment matching.

M3SDA [17] demonstrates that moment matching yields remarkable performance also with

multiple sources. While previous works have focused on matching the moments of marginal

distributions for single-source adaptation, we handle conditional distributions in multi-source

scenarios.

Methods

In this section, we describe our proposed method, MULTI-EPL. We first formulate the problem

definition and describe our main ideas. Then, we elaborate on how to match label-wise

moment with pseudolabels and extend the approach by adding the concept of ensemble learn-

ing. Fig 2 shows the overview of MULTI-EPL.

Problem definition

Given a set of labeled datasets from N source domains S1; . . . ;SN and an unlabeled dataset

from a target domain T , we aim to construct a model that minimizes the test error on T . We

formulate source domain Si as a tuple of the data distribution mSi
on data space X and the

labeling function lSi : Si ¼ ðmSi
; lSiÞ. Source dataset drawn with the distribution mSi

is denoted

as XSi
¼ fðxSi

j ; y
Si
j Þg

nSi
j¼1

, where nSi
is the number of instance in XSi

. Likewise, the target domain

and the target dataset are denoted as T ¼ ðmT ; lT Þ and XT ¼ fxT
j g

nT

j¼1
, respectively, where nT is
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the number of instance in XT . We narrow our focus down to homogeneous settings in classifi-

cation tasks: all domains share the same data space X and label set C.

Overview

We propose MULTI-EPL based on the following observations: 1) existing methods focus on

aligning the marginal distributions p(x) not the conditional ones p(x|y), 2) knowledge of the

target data is not fully employed as no target label is given, 3) existing methods that require

separate neural networks for each source domain have considerable inefficiency in model size,

and 4) there is a large amount of loss in label information since domain-invariant features are

extracted for only one label classifier. Designing a method to solve these limitations entails the

following challenges:

1. Matching conditional distributions. How can we align the conditional distribution, p(x|

y), of multiple domains, not the marginal one, p(x)?

2. Exploitation of the target data. How can we fully exploit the knowledge of the target data

despite the absence of the target labels?

3. Maximization of the model efficiency. How can we maximize the model efficiency and

performance?

We propose the following main ideas to address the challenges:

1. Label-wise moment matching. We match the label-wise moments of the domain-invariant

features so that the features with the same labels have similar distributions regardless of

their original domains. This improves not only adaptation but also classification perfor-

mance compared to the previous methods, which align features not considering labels and

therefore cannot clearly separate differently labeled instances.

2. Pseudolabels. We use pseudolabels as alternatives to the target labels. While the existing

MSDA methods have made only limited use of target data, this allows the intrinsic proper-

ties related to the label prediction of each target instance to be better reflected.

3. Ensemble of feature representations. We integrate multiple neural networks, each of

which handles each source domain, into one neural network. For further improvement, we

propose a variant of ensemble learning to concatenate features from multiple feature extrac-

tors. This enhances model performance without an extreme increase in model size, whereas

the existing methods have significantly increased model size for better performance.

Our model MULTI-EPL consists of two pairs of feature extractor and label classifier, (fe,1,

flc,1) and (fe,2, flc,2), and one final label classifier, flc,final as shown in Fig 2. The feature extractors

distill the domain-invariant features, which are aligned to have similar distributions regardless

of their domains. Then, the label classifiers take the features from the corresponding feature

extractor as inputs and predict their labels. Meanwhile, the features from fe,1 and fe,2 are

concatenated and fed into the final label classifier flc,final. The label prediction of flc,final is used

for the final inference.

Label-wise moment matching with pseudolabels

We describe how MULTI-EPL matches conditional distributions p(x|y) of the features from

multiple distinct domains. In MULTI-EPL, a feature extractor fe and a label classifier flc lead the

features to be domain-invariant and label-informative at the same time. The feature extractor

fe extracts features from data, and the label classifier flc receives the features and predicts the
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labels for the data. We train fe and flc, according to the losses for label-wise moment matching
and label classification, which make the features domain-invariant and label-informative,

respectively.

Label-wise moment matching. To achieve the alignment of domain-invariant features,

we define a label-wise moment matching loss as follows:

Llmm;K ¼
1

jCj
1

N

XK

k¼1

XN

i¼1

X

c2C

�
�
�
�
�

1

nSi ;c

X

j;ySij ¼c

feðx
Si
j Þ

k
�

1

nT ;c

X

j;yTj ¼c

feðx
T
j Þ

k

�
�
�
�
�

2

; ð1Þ

where K is a hyperparameter indicating the maximum order of moments considered by the

loss, and nD;c is the number of data labeled as c in XD. We introduce pseudolabels to determine

the label c for the target data, which are determined by the outputs of the model currently

being trained, to manage the absence of the ground truths for the target data. In other words,

we compute flcðfeðxT ÞÞ using flc and fe trained up to the previous iteration step to give the pseu-

dolabels to the target data xT .

The L2 norm term in Eq 1 measures how much k-th order moments of the features labeled

as c are different when it comes to the source domain Si and the target domain T . The sum of

the term for every possible c, i, and k gives the discrepancy of the feature distributions between

the source domains and the target domain. By minimizing Llmm;K , the feature extractor fe aligns

data from multiple domains by bringing consistency in distributions of the features with the

same labels. The data with distinct labels are aligned independently, taking account of the mul-

timode structures that differently labeled data follow different distributions.

Label classification. The label classifier flc gets the features projected by fe as inputs and

makes the label predictions. The label classification loss is defined as follows:

Llc ¼
1

N

XN

i¼1

1

nSi

XnSi

j¼1

Lceðflcðfeðx
Si
j ÞÞ; y

Si
j Þ; ð2Þ

where Lce is the softmax cross-entropy loss. Minimizing Llc separates the features with differ-

ent labels so that each of them becomes label-distinguishable.

Ensemble of feature representations

In this section, we introduce ensemble learning for further enhancement. Features extracted

with the method described in the previous section contain the label information for a single

label classifier. However, each label classifier leverages only limited label characteristics, and

thus the conventional scheme to adopt only one pair of feature extractor and label classifier

captures only a small part of the label information. Our idea is to leverage an ensemble of mul-

tiple pairs of feature extractors and label classifiers in order to make the features to be more

label-informative.

We train two pairs of feature extractor and label classifier in parallel following the label-

wise moment matching approach explained in the previous section. We denote the two (fea-

ture extractor, label classifier) pairs as (fe,1, flc,1) and (fe,2, flc,2), and the resultant features from

each feature extractor as feat1 and feat2 respectively. After obtaining two different feature map-

pings, we concatenate the two into one vector featfinal = concat(feat1, feat2). The final label clas-

sifier flc,final takes the concatenated feature as input and predicts the label of the feature.
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MULTI-EPL: Accurate multi-source domain adaptation

Our final model MULTI-EPL consists of two pairs of feature extractor and label classifier, (fe,1,

flc,1) and (fe,2, flc,2), and one final label classifier, flc,final. We train the model in an iterative man-

ner where each iteration is composed of two steps. We first train the entire model except for

the final label classifier with the loss L:

L ¼
X2

n¼1

ðLlc;n þ aLlmm;K;nÞ; ð3Þ

where Llc;n is the label classification loss of the classifier flc,n, Llmm;K;n is the label-wise moment

matching loss of the feature extractor fe,n, α is a hyperparameter that weights each of the loss

term, and K is the hyperparameter for the maximum order of moments in Llmm;K;n. Then, the

final label classifier is trained with respect to the label classification loss Llc;final using the

concatenated features from the multiple feature extractors. We repeat these two steps over and

over until the number of iterations reaches the predetermined number of epochs.

Experimental results

We conduct experiments to answer the following questions.

Q1 Accuracy. How well does MULTI-EPL perform in classification tasks?

Q2 Ablation Study. How much does each component of MULTI-EPL contribute to perfor-

mance improvement?

Q3 Effects of Degree of Ensemble. How does the performance change as the number of the

pairs of the feature extractor and the label classifier increases?

Q4 Parameter Efficiency. What is the parameter efficiency of MULTI-EPL compared to the

other methods?

Experimental settings

Datasets. We use three collections of datasets, Digits-Five, Office-Caltech10 [30], and

Amazon Reviews [31], listed in Table 2. Digits-Five consists of five datasets for digit recogni-

tion: MNIST [32], MNIST-M [33], SVHN [34], SynthDigits [33], and USPS [35]. We set one

of them as a target domain and the rest as source domains. Following the conventions in prior

works [16, 17], we randomly sample 25000 instances from the source training set and 9000

instances from the target training set to train the model except for USPS for which the whole

training set is used. The entire test set is exploited to evaluate the performance. Office-Cal-

tech10 is for image classification with 10 categories that Office31 dataset and Caltech dataset

have in common. It involves four different domains: Amazon, Caltech, DSLR, and Webcam.

We double the number of instances by data augmentation and exploit all the original instances

and augmented instances as training and test sets, respectively. Amazon Reviews contains cus-

tomers’ reviews on 4 product categories: Books, DVDs, Electronics, and Kitchen appliances.

The instances are encoded into 5000-dimensional vectors and are labeled as being either posi-

tive or negative depending on their sentiments. We set each of the four categories as a target

and the rest as sources. For all the domains, 2000 instances are sampled for training, and the

rest of the data are used for the test.
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Competitors. We use 5 MSDA algorithms, DCTN [16], M3SDA, M3SDA-β [17], MDDA

[18], and LtC-MSDA [19] with state-of-the-art performances as baselines. All the frameworks

share the same architecture for the feature extractor and the label classifier for consistency. For

Digits-Five, we use convolutional neural networks based on LeNet5 [32]. For Office-Caltech10,

ResNet50 [36] pretrained on ImageNet is used as the backbone architecture. For Amazon

Reviews, the feature extractor is composed of three fully-connected layers each with 1000, 500,

and 100 output units, and a single fully-connected layer with 100 input units and 2 output

units is adopted for the label classifier. With Digits-Five, LeNet5 [32] and ResNet14 [36] with-

out any adaptation are additionally investigated in two different manners: Source Combined
and Single Best. In Source Combined, multiple source datasets are simply combined and fed

into a model. In Single Best, we train the model with each source dataset independently and

report the result of the best performing one. Likewise, ResNet50 and MLP consisting of 4

fully-connected layers with 1000, 500, 100, and 2 units are investigated without adaptation for

Office-Caltech10 and Amazon Reviews, respectively.

Training details. We train our models for Digits-Five with Adam optimizer [37] with β1

= 0.9, β2 = 0.999, and the learning rate of 0.0004 for 100 epochs. All images are scaled to

32 × 32 and the mini-batch size is set to 128. We set the hyperparameters α = 0.01, and K = 1.

For the experiments with Office-Caltech10, all the modules comprising our model are trained

with the SGD-momentum optimizer with the weight decay of 0.001 and the momentum factor

of 0.9. The learning rate for the feature extractors and the label classifiers are 0.0001 and 0.001,

respectively. We scale all the images to 224 × 224 and set the mini-batch size to 48. All the

other hyperparameters are kept the same as in the experiments with Digits-Five. For Amazon

Reviews, we train the models for 50 epochs using Adam optimizer with β1 = 0.9, β2 = 0.999,

and the learning rate of 0.0001. We set α = 0.1, K = 2, and the mini-batch size to 100.

Performance evaluation

We evaluate the performance of MULTI-EPL against the competitors. We repeat experiments

for each setting five times and report the mean and the standard deviation. The results are

summarized in Tables 3–5. In the tables, SC and SB indicate Source Combined and Single Best,
respectively. Note that MULTI-EPL provides the best accuracy in all the datasets, showing its

superiority in both image datasets (Digits-Five and Office-Caltech10) and text datasets

Table 2. Summary of datasets.

Datasets Features Class# Training Test

Digits-Five MNIST 1x28x28 10 60000 10000

MNIST-M 3x32x32 10 59001 9001

SVHN 3x32x32 10 73257 26032

SynthDigits 3x32x32 10 479400 9553

USPS 1x16x16 10 7291 2007

Office-Caltech10 Amazon 3x300x300 10 958 958

Caltech Variable 10 1123 1123

DSLR 3x1000x1000 10 157 157

Webcam Variable 10 295 295

Amazon Reviews Books 5000 2 2000 4465

DVDs 5000 2 2000 3586

Electronics 5000 2 2000 5681

Kitchen appliances 5000 2 2000 5945

https://doi.org/10.1371/journal.pone.0255754.t002
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(Amazon Reviews). The enhancement is remarkable especially when MNIST-M is the target

domain in Digits-Five, improving the accuracy by 13.20% compared to the state-of-the-art

methods. It is also notable that MULTI-EPL consistently achieves successful adaptation of multi-

ple domains, while other state-of-the-art methods sometimes fail to adapt and even deteriorate

the performance. The failure appears to be attributable to negative transfer [38], but we leave

this issue as a future work.

Table 3. Classification accuracy on Digits-Five with and without domain adaptation.

Method !T !M !S !D !U

LeNet5 (SC) 97.6±0.2 61.7±1.4 75.2±0.8 80.3±0.7 81.6±1.5

ResNet14 (SC) 98.2±0.3 63.5±0.8 79.1±1.6 92.9±0.5 94.5±0.3

LeNet5 (SB) 97.1±0.1 51.1±1.9 76.8±0.6 79.9±0.5 83.3±0.9

ResNet14 (SB) 97.1±1.0 49.5±1.3 81.4±0.7 91.8±0.5 91.5±2.7

DCTN 99.3±0.1 72.0±1.6 78.3±1.1 91.6±0.7 98.4±0.2

M3SDA 98.8±0.1 67.8±0.7 81.8±0.6 88.5±0.3 97.2±0.2

M3SDA-β 99.0±0.1 72.5±0.2 81.4±0.3 89.5±0.4 97.4±0.2

MDDA 98.8±0.4 78.6±0.6 79.3±0.8 89.7±0.7 93.9±0.5

LtC-MSDA 99.1±0.1 78.9±1.8 79.8±2.2 91.7±0.3 98.3±0.1

MULTI-EPL 99.4±0.1 92.1±0.2 85.4±0.3 95.1±0.1 98.2±0.1

The letters T, M, S, D, and U stand for MNIST, MNIST-M, SVHN, SynthDigits, and USPS, respectively. For MDDA,

we report the performances in [18, 19].

https://doi.org/10.1371/journal.pone.0255754.t003

Table 4. Classification accuracy on Office-Caltech10 with and without domain adaptation.

Method !A !C !D !W

ResNet50 (SC) 95.47±0.25 91.59±0.51 99.36±0.78 99.26±0.37

ResNet50 (SB) 95.03±0.48 89.05±0.88 99.87±0.28 98.24±0.61

DCTN 95.05±0.24 90.60±0.71 100.0±0.00 99.46±0.62

M3SDA 95.14±0.31 93.59±0.40 99.49±0.53 99.86±0.19

M3SDA-β 94.36±0.26 91.70±0.71 99.75±0.35 99.39±0.15

LtC-MSDA 95.68±0.84 92.34±0.61 100.0±0.00 99.86±0.19

MULTI-EPL 96.23±0.13 93.52±0.49 100.0±0.00 99.93±0.16

The letters A, C, D, and W stand for Amazon, Caltech, DSLR, and Webcam, respectively.

https://doi.org/10.1371/journal.pone.0255754.t004

Table 5. Classification accuracy on Amazon Reviews with and without domain adaptation.

Method !B !D !E !K

MLP (SC) 79.76±0.70 82.18±0.59 84.42±0.27 87.23±0.51

MLP (SB) 79.00±0.92 80.38±0.61 84.76±0.45 87.46±0.36

DCTN 78.92±0.56 81.22±1.01 83.56±1.52 86.47±0.71

M3SDA 78.97±0.79 80.51±0.99 83.63±0.68 85.99±0.85

M3SDA-β 80.26±0.43 81.80±0.72 85.02±0.34 86.99±0.56

LtC-MSDA 76.73±0.79 78.03±1.92 79.51±2.09 81.49±2.38

MULTI-EPL 81.00±0.53 83.42±0.31 86.53±0.44 88.64±0.53

The letters B, D, E, and K stand for Books, DVDs, Electronics, and Kitchen appliances, respectively.

https://doi.org/10.1371/journal.pone.0255754.t005
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We also illustrate the summary of the results in Fig 4 using CD (critical difference) diagram

[39]. We tackled every single source and target scenario, and the five adaptation methods

DCTN, M3SDA, M3SDA-β, LtC-MSDA, and MULTI-EPL. It demonstrates that MULTI-EPL

gives significant performance enhancement compared to the existing methods.

Ablation study

We perform an ablation study on Digits-Five to identify what exactly enhances the perfor-

mance of MULTI-EPL. We compare MULTI-EPL with three of its variants: MULTI-0, MULTI-PL,

and MULTI-PL-DED. MULTI-0 aligns moments regardless of the labels of the data. MULTI-PL

trains the model without ensemble learning. MULTI-PL-DED consists of four feature generators

and four label classifiers, each of which is dedicated to each source domain.

The results are shown in Table 6. By comparing MULTI-0 with MULTI-PL, we observe that

considering labels in moment matching plays a significant role in extracting domain-invariant

features. The remarkable performance gap between MULTI-PL and MULTI-EPL verifies the

effectiveness of ensemble learning. The overall accuracy of MULTI-PL-DED is much lower than

that of MULTI-PL or MULTI-EPL; it demonstrates that the existing methods that assign individ-

ual networks for each source domain deteriorate not only the performance but also the model

efficiency.

Effects of ensemble

We evaluate the performance on Digits-Five while varying the number n of pairs of feature

extractor and label classifier. The results are summarized in Table 6. While an ensemble of two

pairs gives much better performance than the model with a single pair, using more than two

pairs does not bring remarkable improvement, except for the case of SVHN being the target

dataset. We presume that the overfitting due to the excessive number of parameters has

Fig 4. CD Diagram with various adaptation methods: DCTN, M3SDA, M3SDA-β, LtC-MSDA, and Multi-EPL.

https://doi.org/10.1371/journal.pone.0255754.g004

Table 6. Experiments with MULTI-EPL and its variants.

Method !T !M !S !D !U

MULTI-0 98.8±0.1 67.8±0.7 81.8±0.6 88.5±0.3 97.2±0.2

MULTI-PL 99.3±0.1 90.2±0.5 83.7±0.4 94.4±0.2 98.0±0.2

MULTI-PL-DED 99.4±0.1 65.5±3.8 29.4±0.7 41.0±1.3 98.6±0.2

MULTI-EPL (n = 2) 99.4±0.1 92.0±0.2 85.4±0.3 95.1±0.1 98.2±0.1

MULTI-EPL (n = 3) 99.3±0.1 91.6±0.9 85.9±0.7 95.2±0.2 98.5±0.1

MULTI-EPL (n = 4) 99.3±0.1 91.5±1.2 86.9±0.9 95.1±0.1 98.5±0.1

https://doi.org/10.1371/journal.pone.0255754.t006
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hindered the further improvement. We leave the task of figuring out proper regularization

methods for the ensembles as a future work.

Parameter efficiency

We compare the number of parameters and performance of MULTI-EPL with other state-of-the-

art methods to demonstrate MULTI-EPL’s efficient usage of the model complexity. Fig 5 illus-

trates the number of model parameters and the average accuracy of each method that are evalu-

ated with the Digits-Five dataset. Multi-PL is the variation of MULTI-EPL that does not exploit

the ensemble technique. Comparing Multi-PL and LtC-MSDA, the superiority of the proposed

method is proved under the fair model complexity. On the other hand, the significant perfor-

mance enhancement that the ensemble learning technique has made in MULTI-EPL demon-

strates that MULTI-EPL greatly benefits from the additional model parameters, while MDDA has

made little performance improvement even though it requires much more model parameters.

Visualization

We visualize the features from distinct adaptation methods using T-SNE [40] to verify the

effect of label-wise moment matching. Fig 6 shows the feature distributions when no

Fig 5. The number of parameters and the model accuracy of the MSDA methods.

https://doi.org/10.1371/journal.pone.0255754.g005
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adaptation method, M3SDA, and MULTI-EPL are applied, respectively. All the experiments are

conducted with Digits-Five with MNIST-M as the target dataset. Each color in Fig 6 stands for

a label.

Note that MULTI-EPL clearly separates features with different labels, while other do not; this

explains the outstanding performance of MULTI-EPL.

Conclusion

We propose MULTI-EPL, a novel framework for the multi-source domain adaptation problem.

MULTI-EPL overcomes the problems in existing methods of not directly addressing conditional

distributions of data p(x|y), not fully exploiting the knowledge of target data, and having

redundancy in model networks. MULTI-EPL aligns data from multiple source domains and the

target domain considering the data labels, and exploits pseudolabels for unlabeled target data.

MULTI-EPL further enhances the performance by generating an ensemble of multiple feature

extractors. Our framework exhibits superior performance on both image and text classification

tasks. Considering labels in moment matching and adding ensemble learning are shown to

bring remarkable performance enhancement through ablation study. Future works include

extending our approach to other tasks such as regression, which may require modification in

the pseudolabeling method.
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