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Abstract. Cancer‑related deaths remain a challenging and 
devastating obstacle to defeat despite the tremendous advances 
in cancer treatment. Cancer metastasis is the major cause of 
these cancer‑related deaths. Metastasis involves sequential 
steps during cancer cells' journey to a new site. These steps are 
coordinately regulated by specific intracellular regulators and 
cellular interactions between the cancer cells and the supporting 

microenvironment of the different organs. The develop‑
ment of aptamer‑based therapeutics is a promising strategy 
to fight cancer metastasis as it holds potential advantages. 
Oligonucleotide and peptide aptamers are short sequences of 
single‑stranded nucleic acids or amino acids, respectively, that 
target proteins, genetic materials, and cells. Antimetastatic 
aptamer‑based therapeutics exert their pharmacological effect 
by direct interaction with the signaling pathways inside the 
cancer cells or the communications between cancer cells and 
the tumor microenvironment. In addition, aptamers have been 
utilized as a guiding ligand to deliver a therapeutic moiety to 
cancer cells or the supporting microenvironment. The selected 
aptamer possesses high specificity since it is designed to 
recognize and interact with its target. This review summarizes 
recent advances in the development of aptamer‑based thera‑
peutics targeting mediators of cancer metastasis. In addition, 
potential opportunities are discussed to inspire researchers 
in the field to develop novel aptamer‑based antimetastatic 
treatments.
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1. Introduction

Cancer consists of more than 200 types with incomplete 
knowledge of the origin, tumorigenesis, and progression (1‑3). 
According to the most recent statistics, approximately 19.3 
million cases of new patients have been diagnosed with cancer, 
and a fatality of approximately 10 million (4). The majority 
of these massive numbers of deaths are caused by cancer 
metastasis (5). Cancer metastasis involves the process of 
tumor cells spreading from a primary tumor mass to different 
sites through blood and lymphatic vessels. It involves a series 
of events known as the cancer metastasis cascade (Fig. 1). 
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First, the epithelial cancer cells in primary tumors invade the 
extracellular matrix (ECM) and stromal cell layers within the 
site and enter into the lumina of the blood vessels. After that, 
cancer cells deal with several unfavorable conditions during 
their transport in the circulation until they arrive at specific 
organs. Next, cancer cells extravasate into the parenchyma of 
these organs, survive in these new microenvironments and 
initiate micrometastases. Finally, cancer cells restart their 
proliferative ability at the metastatic sites, thereby generating 
neoplastic growths known as ‘metastatic colonization’ (6).

During the last few decades, cumulative scientific 
discoveries that have been made in the field of molecular 
and cellular oncology have transformed clinical practice. For 
instance, the precise detection of cancer at an earlier stage and 
tailoring a therapeutic approach toward tumor type‑specific 
intervention have been improved significantly (7). Molecular 
phenotypes associated with cancer metastasis have been 
extensively studied which has led to identifying potential 
metastasis‑associated targets. The design of molecular‑targeted 
therapies that specifically interact with those targets, whether 
they are components of a specific intracellular pathway 
or cell‑cell communication signaling, have demonstrated 
potential benefits by overcoming systemic toxicities associated 
with traditional treatments such as chemotherapy and radiation 
therapy as well as improving the pharmacokinetics and 
pharmacodynamics of these traditional treatments (8,9).

One of the most recently developed molecular‑targeted 
therapy is short sequences of single‑stranded nucleic acids 
(ssDNA or RNA) or amino acids which are known as oligo‑
nucleotide or peptide aptamers, respectively (Fig. 2). Aptamers 
mimic antibodies in which they possess high selectivity when 
they bind with the selected targets. The first observation of the 
binding capability of aptamers was reported when researchers 
found that a subpopulation of isolated RNA molecules was able 
to bind specific ligands. An in vitro technique called SELEX 
(Systemic Evolution of Ligands by Exponential Enrichment) 
was introduced as a procedure to generate these oligonucle‑
otide aptamers (10,11). The three‑dimensional structure of 
a short sequence (20‑100 bases long) RNA or ssDNA gives 
aptamers the capability to interact specifically with particular 
ligands with selectivity and affinity similar to those of anti‑
bodies. However, aptamers are more favorable compared to 
antibodies due to their cheap and rapid synthesis (12,13). A 
few years after oligonucleotide aptamers had been introduced, 
a research study demonstrated that designing a short peptide 
(5 to 20 amino acids long) then embedding it in a protein 
scaffold generated a protein with high specificity to a selected 
target. Therefore, a new concept launched for this type of 
aptamer is called peptide aptamer (14‑16). To date, peptide 
and oligonucleotide aptamers have been developed and 
exploited for different diagnostic and therapeutic purposes. 
Aptamers have been employed for diagnostic applications in 
cancer detection and imaging (17) and infectious disease (18). 
For therapeutic purposes, aptamers have been utilized to 
treat different diseases such as cancer (17,19), infectious 
diseases (18,20), coagulation disorders (21), diabetic nephrop‑
athy (22) and ocular vascular diseases (23). This review aims 
to summarize recent advances in utilizing aptamers as a 
treatment strategy against cancer metastasis specifically and 
highlight key mediators and molecular factors involved during 

different metastasis stages. Moreover, potential opportunities 
to improve aptamer‑based antimetastatic therapeutics are 
discussed. We used Web of Science and PubMed databases to 
retrieve the most recent information in this review.

2. Cancer metastasis cascade

Local invasion. Local invasion is the access of the cancer 
cells that were contained within the primary tumor into 
the surrounding stroma, and then into the adjoining normal 
parenchymal tissue. To enter the stroma, the carcinoma cells 
modify the ECM, which has a significant function in arranging 
epithelial tissues. The integrins (transmembrane proteins) 
bind to the ECM and form the integrin‑mediated cell‑matrix 
adhesions (24). This binding initiates several pathways leading 
to signal transduction events within the carcinoma cells that 
leads to disturbances in cell polarity, proliferation, invasive‑
ness, and survival (25).

A majority of the carcinomas have the ability to invade 
as cohesive multicellular units known as a collective inva‑
sion. However, a single cancer cell may attack through two 
different mechanisms: integrin‑dependent (mesenchymal 
invasion) and integrin‑independent, Rho/ROCK‑dependent 
(amoeboid invasion) pathways (26). It may be noted that the 
cancer cells may interconvert between these mechanisms 
due to the change in the microenvironment (27). While 
the patterns of cancer cell invasion are classified as collec‑
tive and individual cell migration (28), the individual cell 
invasion mechanism is not compatible with an important 
element of epithelial tissue organization, specifically the 
E‑cadherin‑mediated intercellular junctions that lead to the 
development of the epithelial cell sheets and remain associ‑
ated with the surrounding epithelial cells. To attenuate tight 
junctions and cellular polarity, carcinoma cells may undergo 
epithelial‑mesenchymal transition (EMT). EMT is vital for 
different facets of normal embryonic morphogenesis which 
ultimately help to liberate cancer cells from epithelial cell 
sheets (29). Several transcription factors, namely Slug, Snail, 
Twist, zinc finger E‑box‑binding homeobox 1 (ZEB1), and 
ZEB2 play significant roles in EMT. They trigger mesen‑
chymal entry by downregulating the expression of E‑cadherin 
and other epithelial markers such as cytokeratin, zonula 
occludens‑1 (ZO‑1), laminin‑1, and α1(IV) collagen (29). 
In addition, other regulatory non‑coding genes, such as 
microRNAs (miRNAs/miRs), govern EMT. The miR‑200 
family regulates EMT programs by post‑transcriptionally 
suppressing the expression of ZEB1 and ZEB2, while on 
the other hand, ZEB1 and ZEB2 inhibit the transcription 
of the miR‑200 family. Such a relationship establishes a 
double‑negative‑feedback loop that operates as a bistable 
switch controlling the fate of cancer cells to go in either the 
mesenchymal or epithelial state (29). The debilitation of the 
ECM is further aggravated by active proteolysis activated by 
the matrix metalloproteinases (MMPs), which promotes the 
invasion of carcinoma cells to the stromal compartment. As 
the stroma becomes more chronically inflamed upon tumor 
progression, cancer cells are challenged by fibroblasts, endo‑
thelial cells, adipocytes, mesenchymal stem cells from the 
bone marrow, macrophages, and other immune cells (30). 
These stromal cells further influence the aggressiveness of 
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carcinoma cells via different types of heterotypic signaling. 
For example, the invasiveness of breast cancer is stimulated 
by IL‑6 secreted by the adipocytes (31). Similarly, it has also 
been demonstrated that the cathepsin protease activity in 
tumor‑associated macrophages is activated by the secretion 
of IL‑4, which fuels the invasiveness of carcinoma cells (32).

Intravasation. Intravasation occurs when the carcinoma 
cells enter into the lumina of lymphatic or blood vessels. 
This process is normally observed in human tumors and 
signifies a vital prognostic marker for its progression; 
dissemination through blood vessels is the key mecha‑
nism for the spread of metastatic carcinoma cells (33). 
Intravasation is enhanced by molecular variations that 
increase the capacity of carcinoma cells to penetrate the 
microvessels that are composed of pericyte and endothelial 
cells. Intravasation is influenced by the vascular endothe‑
lial growth factors (VEGFs) secreted by the tumor cells 
which enhance the generation of new blood vessels within 
their local microenvironment through neoangiogenesis. In 
comparison to the normal blood vessels, the neovasculature 
developed by carcinoma cells is prone to leakiness and is 
subjected to continuous reconfiguration (34). Furthermore, 
it has been reported earlier that cyclooxygenase‑2 (COX‑2), 
epiregulin (EREG), MMP‑1, and MMP‑2 synergistically 
promote breast carcinoma intravasation due to their capacity 
to stimulate neoangiogenesis (35).

Survival in the circulation. After the intravasation has been 
achieved, the carcinoma cells are widely transported through 
the systemic circulation, known as circulating tumor cells 
(CTCs). Before reaching other organs, the CTCs deal with 
different types of stresses for its survival, such as the absence 
of the integrin‑dependent adhesion to ECM components that 
is required for cell survival. Consequently, the epithelial cells 
undergo anoikis, which is a form of apoptosis that is activated 
by the loss of attachment to the substratum (36). However, 
the tyrosine kinase TrkB has been observed to suppress 
anoikis (37). Additionally, the tumor cells also face potential 
damage due to the hemodynamic shear forces and the innate 
immune system, specifically natural killer cells. These chal‑
lenges have been observed to be evaded simultaneously 
through the formation of large emboli through the interactions 
with blood platelets (regulated by the tissue factor and/or L‑ 
and P‑selectins by the carcinoma cells) (30). In this way, the 
platelet‑coated tumor cells escape immune detection until they 
are arrested at distant organ sites.

Arrest and extravasation at a distant organ site. Despite the 
capacity of the CTCs to spread to a wide range of distant 
organ sites, it has been previously observed that specific 
carcinoma types metastasize to specific organs which leads 
to the proposal of the ‘seed and soil hypothesis’ (6). Seed and 
soil hypothesis suggests that cancer cells (seed) disseminated 
from the primary tumor spread to all organs, but only specific 

Figure 1. Metastasis cascade and molecular factors involved. Six stages of metastasis and molecular factors involved in the metastasis as discussed in the 
text. These stages are local invasion, intravasation, survival in the circulation, arrest and extravasation at a distant organ site, micrometastasis formation, and 
metastatic colonization. In addition, molecular factors that are involved during cancer metastasis cascade can be transcriptional factors, secreted proteins 
and cellular pathways mediators as discussed in the text. The figure was created with BioRender.com. ZEB1, zinc finger E‑box‑binding homeobox 1; ZEB2, 
zinc finger E‑box‑binding homeobox 2; ZO‑1, zonula occludens‑1; IL, interleukin; VEGFs, vascular endothelial growth factors; COX‑2, cyclooxygenase‑2; 
EREG, epiregulin; MMP, matrix metalloproteinase; TrkB, tropomyosin receptor kinase B; Angptl4, angiopoietin‑like‑4; LOX, lysyl oxidase; SDF‑1, stromal 
cell‑derived factor 1; TICs, tumor‑initiating cells.
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microenvironments (fertile soil) that support metastatic tumor 
formation in specific organs. Once the cancer cells reach the 
suitable organs, the organ microenvironment supports the 
attachment and seeding of cancer cells in the specific organ. 
This is because some carcinoma cells depend on specific adhe‑
sive interactions in particular tissues that assist their trapping. 
For example, the generation of metadherin in breast cancer 
cells initiates the spread of carcinoma cells to the lungs through 
increased binding to the pulmonary vasculature (38). In addi‑
tion, it has been observed that a proinflammatory environment 
in the liver causes Kupffer cells to secrete chemokines which 
upregulate vascular adhesion receptors and ultimately enable 
adhesion of the circulating colorectal and lung carcinoma cells 
to the liver microvasculature (39). Then, the trapped cancer 
cells grow inside the vasculature and develop a microcolony 
that ultimately penetrates through the surrounding vessels, 
resulting in the straight contact of the tumor cells with the 
tissue parenchyma (40). In another way, the carcinoma cells 
might rupture from vessel lumina into the tissue parenchyma 
by going through the endothelial cell and pericyte layers that 
separate the vessel lumina from the stromal microenvironment. 
This process is known as extravasation. Further, the physical 
barriers to extravasation may be breached due to the ability of 
the primary tumors to secrete factors that cause an imbalance 
in the microenvironments and induce vascular hyperperme‑
ability. For example, the factors protein angiopoietin‑like‑4 
(Angptl4), epiregulin (EREG), COX‑2, MMP‑1, and MMP‑2, 

disrupt pulmonary vascular endothelial cell‑cell junctions in 
order to facilitate the extravasation of breast carcinoma cells 
in the lungs (35,41).

Micrometastasis formation. The formation of micrometas‑
tases is initiated following the survival of the extravasated 
cancer cells in the parenchyma of distant tissues. It is worth 
mentioning that several factors contribute to this stage of 
cancer metastasis including the type of stromal cells, ECM 
constituents, growth factors, and cytokines. In the beginning, 
cancer cells establish a ‘premetastatic niche’ to ascertain 
the compatibility in the foreign microenvironment (42). For 
this to happen, the primary tumors liberate systemic signals 
consisting of lysyl oxidase (LOX) (43), that stimulates 
organ‑specific upregulation of fibronectin from fibroblasts, 
which in turn, activates VEGF receptor 1‑positive (VEGFR1+) 
hematopoietic progenitor cells from the bone marrow to these 
prospective sites of metastasis through homing interactions 
between the deposited fibronectin and its cognate receptor, 
integrin a4b1that is expressed by the hematopoietic progenitor 
cells. The hematopoietic progenitor cells secrete MMP‑9 that 
changes the immediate microenvironments at these loci. The 
MMP‑9 activation triggers the release of various integrins and 
discharge of molecules from the ECM, such as the carcinoma 
cell chemoattractant stromal cell‑derived factor 1 (SDF‑1) (42). 
All of these changes convert the distant microenvironments 
into growth sites for the disseminated tumor cells.

Figure 2. An overview of aptamer‑based therapeutics. (A) Oligonucleotide aptamer. (B) Peptide aptamer. (C) Aptamer‑mediated delivery of therapeutic 
moieties in which the aptamer is conjugated with a small‑molecule drug and polyethylene glycol (PEG) (left), or conjugated with siRNA/microRNA (middle), 
or conjugated with PEGylated liposomes or any nanoparticle (right). The figure was created with BioRender.com.
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Metastatic colonization. Even after the successful survival of 
the tumor cells in the new microenvironment, it is still not 
ensured that they can grow and form metastases, the process 
known as metastatic colonization. Instead, it has been observed 
that a large number of tumor cells either slowly perish over 
a period of time or are sustained as microcolonies during 
long‑term dormancy, retaining the overall cell number (44). 
These dormant microcolonies may continue to remain 
dormant because of incompatibilities with the foreign micro‑
environments that surround them (44), such as in mammary 
carcinoma cells, where the focal adhesion kinase (FAK), inte‑
grin b1, and Src pathways are unable to engage within distant 
tissues (45‑47). However, they may escape dormancy to initiate 
active proliferation cell‑nonautonomous mechanisms that are 
stimulated by osteopontin (OPN) or SDF‑1 (48,49). Secondly, 
the dormant microcolonies may proliferate continuously but the 
overall number may remain the same due to the high apoptotic 
rate. For example, the prostate tumor cell secretes prosaposin 
(Psap) that inhibits metastatic colonization by upregulating the 
anti‑angiogenic factor thrombospondin‑1 in stromal cells (50). 
Metastatic colonization is also dependent on another attri‑
bute known as ‘tumor‑initiating cells’ (TICs), which possess 
such an extensive self‑renewal capacity to achieve malignant 
growth. The entry into the TIC state is promoted by miRNAs 
and the EMT‑promoting transcription factors, such as Snail, 
Twist, and ZEB1, as already discussed (51).

3. Aptamers as targeted therapeutics

Approaches of targeted therapy. Exploiting aptamers as a 
new generation of therapeutics has attracted the attention of 
the scientific community due to various advantages that are 
offered by aptamers. An individual aptamer possesses high 
specificity since it depends on its three‑dimensional confor‑
mation to bind to its specific target. The aptamer molecule 
binds to the target through a hydrogen bond, electrostatic 
interaction, van der Waals, hydrophobic interactions, or 
stacking interactions (14,52). Moreover, aptamers can be 
chemically synthesized with flexible customization providing 
an opportunity to improve pharmacokinetics and meet a wide 
range of applications needed (53,54). They can bind diverse 
targets, ranging from small molecules, proteins to viruses 
and cells (55‑58). From a therapeutic perspective, aptamers 
can be used to exert pharmacological action by themselves 
as agonists (target activation), antagonists (target inhibition), 
or to act as ligands for targeted delivery of therapeutics (12) 
(Fig. 2). Most of the developed aptamers fall into the former 
category. Pegaptanib (Macugen®) is the first FDA‑approved 
aptamer and works by antagonizing the action of vascular 
endothelial growth factor (VEGF) (23). For targeted delivery 
purposes, aptamers can be constructed to deliver a wide range 
of diagnostic or therapeutic moieties such as fluorescent mate‑
rials, radioisotopes, cytotoxic drugs, RNA oligonucleotides, 
and nanoparticles (59‑63). In addition, a multifunctional, 
aptamer‑based theranostic conjugate can be designed by 
coupling a diagnostic marker and a therapeutic moiety with 
the aptamer for simultaneous diagnosis and treatment (64‑66).

Pharmacokinetic considerations when designing aptamers. 
Once an aptamer enters the body, it is susceptible to various 

factors that minimize or prevent its therapeutic action. It is 
vital to implement strategies to overcome obstacles and 
produce aptamers suitable for clinical settings. Stability in the 
circulation and tumor microenvironment, rapid excretion by 
the kidney, and delivery to intracellular targets affect the thera‑
peutic actions of the aptamers. First, oligonucleotide aptamers 
can undergo enzymatic degradation by nucleases present in 
the circulation and tumor microenvironment. Strategies to 
produce nuclease‑resistant aptamers include chemical modi‑
fication of the structure by attaching a functional group to one 
of the following positions: 2'position of monosaccharide and 
3' or 5'termini of the aptamer (67,68). Pegaptanib aptamer, 
an approved therapeutic aptamer against age‑related macular 
degeneration, is an example of such a modification. Another 
strategy is synthesizing an RNA or DNA backbone composed 
of L‑ribose or L‑deoxyribose for RNA and ssDNA aptamers, 
respectively. Spiegelmer is the name used to refer to these 
types of aptamers. This strategy relies on the fact that nucle‑
ases degrade D‑oligonucleotide while the L‑oligonucleotide is 
resistant to degradation (68,69). A second challenge facing an 
aptamer inside the body is the rapid excretion of the aptamer 
by the kidneys. The low molecular weight of the aptamer is 
responsible for the short‑time presence of an aptamer in the 
circulation. An effective approach to overcome this obstacle 
is by conjugating the aptamer with cholesterol or high 
molecular weight moieties, such as proteins and polyeth‑
ylene glycol (70‑72). Aptamer‑PEG conjugate possesses an 
enhanced half‑life in the circulation compared to the uncon‑
jugated form of the aptamer (72). Crossing the cell membrane 
is another obstacle that can prevent an aptamer from exerting 
its pharmacological action. While the majority of targeted 
aptamers can easily interact with targets that are present in 
the circulation or on the surface of the cancer cells, some 
aptamers face difficulties crossing the cell membrane to reach 
their intercellular target. To overcome this obstacle, several 
strategies have been explored. The first strategy is the use of 
cell‑internalization SELEX to develop a therapeutic cell‑inter‑
nalizing aptamer which has the capability to bind its target 
on the cell membrane and subsequently internalize to exert 
its action (73‑75). The second strategy relies on coupling the 
therapeutic aptamer to protein transduction domains (PTDs), 
also known as cell‑penetrating peptide. PTDs can cause the 
internalization of the therapeutic aptamer (76‑78). The third 
strategy depends on the cellular uptake of a vector containing 
the DNA sequence of the therapeutic aptamer which is subse‑
quently expressed intracellularly. The expressed aptamer is 
called an intramer. After cellular uptake of the vector by the 
targeted cell, intramer expression takes place inside the cells 
which makes the intramer available to exert its action (79,80).

4. Targeting key mediators of metastasis by aptamer‑based 
therapeutics

Targeting cancer stem cells (CSCs). A small population of 
cancer cells inside the tumor mass, known as cancer stem 
cells (CSCs), have been found to possess the capability of 
self‑renewal and generation of cancer progeny cells (81). These 
cells defeat the process of anoikis, a type of programmed 
cell death that is triggered when the cells are removed from 
the surrounding ECM. In addition, research has found that 
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these CSCs are resistant to therapeutic drugs since there is 
an upregulation in the expression of the ATP binding cassette 
transporter which results in drug efflux. In vitro and in vivo 
studies show that CSCs play a role in the formation of meta‑
static nodules (81‑83). For example, it has been reported that 
the pluripotent genes octamer‑binding transcription factor 4 
(OCT4) and NANOG force‑expressed in lung adenocarcinoma 
(LAC) increase the tumorigenic and metastatic capability of 
the cells since they induce EMT through the Slug protein. In 
addition to the increase in the number of CD133+ cells, the 
new cells have increased sphere‑forming ability, drug resis‑
tance, and migration (84). In addition, CD24‑/low breast cancer 
stem cells were found to have an increased capability for the 
formation of the tumor as compared to CD24+ breast cancer 
cells. Several important pathways are engaged in the CSC 
self‑renewal process, such as the Wnt/β‑catenin and NOTCH 
pathways. Further, the stemness of CSCs is maintained 
through the hepatocyte growth factor (HGF), and the tran‑
scription factors, OCT4, NANOG, SOX2, and BMI‑1 (85‑89). 
OCT4 expression has been reported to induce dysplasia 
and expansion of progenitor cells in the intestines (90). 
Furthermore, SRY‑box transcription factor 2 (SOX2) main‑
tains the vital signaling cascades for tumorigenesis. BMI1 
proto‑oncogene, polycomb ring finger (BMI‑1) has a vital role 
in the self‑renewal of normal stem cells. It has been observed 
that the knockdown of BMI‑1 expression in CD133+ laryngeal 
cancer cells led to the restriction of cell growth, colonization, 
cell invasion in vitro, and tumorigenesis in vivo (91). It has 
been earlier demonstrated that the Y‑box binding protein 1 
could augment the stemness characteristics of human hepa‑
toma cell lines (92,93). Moreover, the KRAS signal c‑MYC 
axis supports the advancement of stem cell characteristics in 
pancreatic cancer (94).

The selective targeting capability of aptamers has been 
exploited to deliver cytotoxic drugs or nanoparticles carrying 
different types of gene therapy or small‑molecule drugs to 
CSCs (Fig. 3). These therapeutic aptamers selectively target 
proteins overexpressed on the surface of the cell membrane 
of CSCs such as, but not limited to, human epidermal growth 
factor receptor 2 (HER2), CD133, CD44, CD20, and EpCAM 
receptors. In addition, CSC‑targeted aptamers were developed 
against different types of cancer (95‑100). A multifunctional 
nanoparticle decorated with RNA aptamer that can specifi‑
cally target the HER2 receptor overexpressed on the surface 
of human breast cancer cells was examined in vitro and 
in vivo. The HER2 aptamer was able to deliver the nanopar‑
ticle carrying two different siRNAs against mediator complex 
subunit 1 (MED1) to HER2‑overexpressing breast cancer 
cells and inhibit metastatic behavior of the cells in vitro. An 
in vivo study demonstrated that the targeted nanoparticle 
eliminated breast cancer metastatic nodules in the lung and 
significantly downregulated the expression levels of proteins 
involved in cancer metastasis such as c‑Myc, MMP‑9, Trefoil 
factor 1 (TFF‑1), and cyclin D1. Most importantly, the 
examination of the stem cell population showed a significant 
decline and complete depletion of CD44+/CD24‑/low stem cells 
after monotherapy and combination therapy with tamoxifen, 
respectively (98). Moreover, RNA aptamers targeting CD133 
receptors that present on the surface of breast cancer cell 
stem cells were used to deliver nanoparticles carrying 

anti‑microRNA to inhibit microRNA‑21. An in vitro study 
demonstrated selective nanoparticle uptake by breast cancer 
stem cells compared to a control cell line with a loss of meta‑
static capability of the stem cells (96). In addition, functional 
nanoparticles decorated with two different aptamers against 
CD44 and transmembrane glycoprotein mucin 1 antigen 
(MUC1) were able to simultaneously deliver doxorubicin to 
CSCs and cancer cells, respectively. Dual‑aptamer targeting 
nanoparticles inhibited breast cancer metastasis to the lung in 
an animal model of breast cancer metastasis (100).

Targeting circulating tumor cells (CTCs). Following the 
progression of the disease in the primary organ, the cancer 
cells leave the organ, survive in the blood circulation, and 
metastasize in an organ‑specific manner. This process was 
first reported by Stephen Paget (101). Research evidence has 
demonstrated the vital role of CTCs in the development of 
metastasis. Poor prognosis is associated with the increased 
numbers of CTCs in the circulation. This makes targeting CTCs 
a novel strategy to disrupt cancer metastasis cascade (102). 
Comprehensive knowledge established concerning molecular 
changes such as overexpression of adhesion molecules that 
support the attachment of CTCs to the tissues of the distant 
organs led scientists to develop therapeutics that block or 
prevent CTCs from attaching to the new organ. A clinical 
study examining the impact of using anti‑EpCAM monoclonal 
antibodies, which target EpCAM, which is overexpressed in 
CTCs, on patients with metastatic colorectal carcinoma was 
conducted. The study demonstrated a significant prolonga‑
tion of patient survival (103). Another treatment strategy that 
showed prolonged survival of an animal model of metastatic 
ovarian cancer involved utilizing nanotechnology and a 
magnetic field to isolate CTCs (104).

The development of aptamer‑based therapeutics that target 
receptors that are involved in CTC attachment has shown 
effective prevention of cancer metastasis. DNA aptamer that 
displayed the capability to selectively target carcinoembryonic 
antigen (CEA), which plays a critical role in CTC adhesion 
and implantation, has been developed. Researchers mixed 
the anti‑adhesive DNA aptamer with CEA‑overexpressing 
colonic carcinoma cells before they injected these pretreated 
cells intraperitoneally in a mouse model. The in vivo study 
showed a significant decrease in the numbers and volumes of 
metastatic nodules compared to the control group (105,106). 
Another study developed a DNA aptamer against sialyl Lewis 
X (sLex), which helps cancer cells to bind endothelial‑selectin 
(E‑selectin) and metastasize to distant organs. In vitro study 
demonstrated that treating metastatic hepatocellular carcinoma 
cells (HepG2) with the DNA aptamer against sLex significantly 
inhibited adhesion and migration of HepG2 cells (107,108).

Targeting tumor‑secreted extracellular vesicles. Extracellular 
vesicles (EVs) are cell‑derived, cytosol‑containing 
vesicles that are involved in cell communications with the 
surrounding environment. They have been categorized based 
on the size into three types: exosomes (30‑100 nm diameter), 
microvesicles (MVs) (100‑1000 nm diameter), and larger 
vesicles known as oncosomes (1‑10 µm diameter) (109‑112). 
It has been found that EVs play a critical role in supporting 
metastasis. Tumor‑secreted EVs contain thousands of active 
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constituents such as lipids, proteins, and genetic materials for 
intercellular communication (113‑116), which act as messen‑
gers in local and distant microenvironments (117‑119). 
RNAs function as the chief bioactive factor of tumor 
cell‑derived EVs, together with other non‑coding RNAs 
namely microRNAs (miRNAs), long non‑coding RNAs 
(lncRNAs), and circular RNAs (120‑122). These non‑coding 
RNAs delivered by exosomes to recipient cells can control 
the expression of many genes to support oncogenic repro‑
gramming of malignant cells, tumor growth, local invasion, 
and premetastatic or metastatic niches formation (123‑126). 
For example, it has also been reported that exosomes can 
destroy the blood‑brain barrier by the action of miR‑181c that 
increases central nervous system (CNS) metastasis (127). 
Furthermore, the breast cancer cell‑derived exosomes were 
found to utilize miR‑122 to create a metastatic niche in the 
brain and enhance disease progression by downregulating 
glucose uptake in non‑tumor cells and rerouting the avail‑
able nutrients for cancer cells themselves (128). Moreover, 
the exosomes also adversely affect the immune function 
leading to an immunosuppressed phenotype and facilitating 
tumor progression (129). It has been observed that the 
c‑Myc mRNA in the recipient microglia and macrophages 
was decreased due to the uptake of glioblastoma‑derived 
exosomes by microglia/macrophages that led to an immuno‑
suppressive phenotype mediated by the transport of miR‑21 
and miR‑451 (130). It is worth mentioning that EVs can be 
released from stroma cells and support tumor metastasis. 
For example, exosomes released by astrocytes were found 
to downregulate phosphatase and tensin homolog (PTEN), 
a tumor‑suppressor gene, in brain tumor cells leading to 
elevated oncogenicity (131).

The growing body of evidence regarding the crucial role 
of EVs in the development of cancer metastasis has attracted 
some researchers to identify aptamers that target EVs and seek 
to develop aptamer‑based therapeutics to treat cancer metas‑
tasis. Recently, a novel modification of SELEX technology, 
which has been called Exo‑SELEX, has been established to 
identify aptamers that specifically bind cell‑derived exosomes. 
Using the most aggressive subtypes of breast cancer, 
triple‑negative and HER2+, Exo‑SELEX helped researchers to 
identify novel Ex‑50.T aptamer. In addition, in vitro assess‑
ment of the therapeutic activity of EX‑50.T was carried out 
using MDA‑MB‑231 and MCF‑7 cell lines. The study relied on 
the fact that treating MCF‑7 cells with exosomes derived from 
the highly metastatic MDA‑MB‑231 cells stimulates MCF‑7 
migration. The results demonstrated that MCF‑7 cell migra‑
tion was significantly inhibited when treating MCF‑7 cells 
with exosomes that were pre‑incubated with Ex‑50.T (132). 
Another approach for targeting cancer cell‑derived EVs is 
with the help of nanotechnology. Researchers have exploited 
the well‑known fact regarding the liver uptake of mesoporous 
silica nanoparticles and the subsequent elimination of the 
nanoparticles into the small intestine to develop nanoparticles 
that specifically bind and eliminate circulating EVs from 
the blood. Mesoporous silica nanoparticles decorated with 
an aptamer that specifically target epidermal growth factor 
receptor (EGFR‑targeting aptamer) that presents on the surface 
of EVs were developed. In vivo study to monitor the biodistri‑
bution of injected, labeled exosomes derived from metastatic 
lung cancer showed that the aptamer‑targeted nanoparticles 
were able to significantly increase the accumulation of labeled 
exosomes to the liver and consecutively to the small intestine. 
In addition, aptamer‑targeted nanoparticles inhibited the 

Figure 3. Aptamer‑based antimetastatic therapeutics targeting key mediators of cancer metastasis. Antimetastatic aptamer‑based therapeutics target key 
mediators of cancer metastasis such as cancer stem cells (CSCs), circulating tumor cells (CTCs), tumor‑secreted extracellular vesicles and tumor‑associated 
immune cells as discussed in the text. The figure was created with BioRender.com.
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pulmonary metastasis formation in a subcutaneous murine 
tumor model (133). 

Targeting tumor‑associated immune cells. Immune cells can 
play dual opposite roles in cancer. Immune cells can recognize 
and kill immunogenic cancer cells and inhibit tumor growth. 
Conversely, they can promote tumor growth by inducing the 
formation of new blood vessels, known as angiogenesis, and 
facilitating cancer metastasis (134‑136). Intercellular commu‑
nication between cancer cells, immune cells, and other stroma 
cells in the tumor microenvironment is responsible for this 
observed plasticity of immune cell function. Myeloid‑derived 
suppressor cells (MDSCs) and regulatory T cells (Tregs) 
recruited to the primary and secondary tumor sites contribute 
to the immunosuppressive environment. They are recruited in 
response to numerous growth factors, chemokines, and cyto‑
kines that are secreted by the cancer cells and other stromal 
cells (137‑141). Through different mechanisms, MDSCs and 
Tregs negatively affect the antitumor activity of NK cells 
and prevent tumor infiltration of antitumor cytotoxic CD8+ T 
cells (139,142). In addition, the types and levels of bioactive 
molecules and growth factors secreted in the tumor microen‑
vironment and involved in signaling pathways can modulate 
the function of immune cells. For example, pro‑inflammatory 
cytokines stimulate the antitumor activity of the immune 
cells while anti‑inflammatory cytokines create an immuno‑
suppressive environment that shifts the function of immune 
cells toward tissue repair and regeneration. Interleukin‑4 
(IL‑4) and interleukin‑13 (IL‑13) can shift tumor‑associated 
macrophages toward the alternatively activated M2 phenotype 
which promotes tumor growth and stimulates the metastatic 
behavior of cancer cells. Similarly, transforming growth 
factor‑β (TGF‑β) shifts tumor‑associated neutrophils toward 
a protumor phenotype (141,143,144). The communication 
between cancer cells and the immune cells continues during 
different stages of the cancer metastasis cascade. During 
cancer cell invasion and intravasation, immune cells secrete 
enzymes, such as MMPs, that contribute to ECM remodeling. 
In addition, the newly developed blood vessels facilitate 
cancer cell spread to different organs. Receptor activator 
of nuclear factor‑B ligand (RANKL) which is secreted by 
T regulator cells improves CTC survival during the circula‑
tion and contributes to the development of the pre‑metastatic 
niche in the secondary site (145,146). More details regarding 
the role of immune cells in cancer metastasis are reviewed 
elsewhere (147,148).

The use of aptamer‑based therapeutics to inhibit the 
recruitment and function of immunosuppressive cells and 
modulate the immune cell phenotype from a protumor to an 
antitumor phenotype are promising strategies by which to 
inhibit cancer metastasis. The development of aptamer‑based 
therapeutics that prevent immunosuppressive cells from 
exerting their action has been exploited. The interleukin 
4 receptor‑α (IL4R‑α) antagonist aptamer that targets 
IL4R‑α‑expressing M2 tumor‑associated macrophages and 
myeloid‑derived suppressor cells led to the elimination of 
immunosuppressive cells in vivo. Subsequently, the numbers 
of antitumor CD8+ T cells were increased which suppressed 
the formation of pulmonary metastasis of 4T1 metastatic 
breast cancer cells (149). The utilization of aptamers to deliver 

therapeutics to tumor metastases also has been developed. 
Doxorubicin‑loaded liposomes decorated with a T1 aptamer 
that target MDSCs showed significant depletion of MDSCs 
and increased intratumoral accumulation of cytotoxic T cells 
in animals with bone metastasis of MDA‑MB‑231 breast 
cancer cells (150). In addition, the 4‑1BB aptamer was used to 
deliver a small non‑coding antisense RNA (sasRNA) to Treg 
cells for transcriptional gene silencing of a key regulator of the 
immunosuppressive phenotype of Treg cells. Aptamer‑sasRNA 
conjugate inhibited the Treg immunosuppressive phenotype 
in vitro and significantly improved coadministered antitumor 
vaccine against B16F10 metastatic melanoma cells that were 
grown subcutaneously in vivo (142,151). Similar findings 
have been reported after using an aptamer that targets cyto‑
toxic T lymphocyte‑associated antigen 4 (CTLA4) to deliver 
STAT3 siRNA to Treg cells. The CTLA4‑STAT3 siRNA 
conjugate depleted Treg cells in the primary and metastatic 
sites and prevented pulmonary metastasis of B16 melanoma 
cells in vivo (19). In addition, aptamers that target and prevent 
the functions of anti‑inflammatory cytokines or their recep‑
tors can inhibit immune cell polarization toward a protumor 
phenotype. Aptamers that target IL‑6, IL‑6R, IL‑10R have 
been developed (152‑155), yet their therapeutic activities 
against metastasis need to be examined.

5. Limitations and future perspectives

The development of aptamer‑based anticancer therapeutics has 
been increasingly growing in the last few years. Encouraging 
findings introduce aptamer‑based therapeutics as a potential 
class of agents in the treatment of primary tumors. However, 
cancer metastasis is the main cause for cancer‑related deaths, 
thus preventing or treating cancer metastasis is pivotal to 
improving survival rates. Recently, extensive efforts have been 
directed toward developing and evaluating aptamer‑based 
therapeutics against cancer metastasis. Table I documents 
examples of aptamer‑based therapeutics that have been 
examined against cancer metastasis in preclinical and clinical 
settings and reported between 2019 and 2022 (133,156‑161). 
Unfortunately, no aptamer‑based therapeutic has been 
approved by the FDA to treat cancer metastasis thus far 
limiting the use of aptamer‑based therapeutics in cancer 
metastasis treatment. It has been mentioned earlier in this 
review that some strategies had been introduced to overcome 
the challenges concerning aptamer pharmacokinetics such as 
enzymatic degradation, rapid excretion by the kidney, and poor 
delivery to intracellular targets. Nevertheless, other challenges 
still exist, and overcoming these challenges is crucial before 
aptamer‑based technology can be approved for use against 
cancer metastasis. For example, immunological reactions 
resulting from aptamer administration have been observed. 
A randomized clinical trial evaluating the effect of REG1 
anticoagulation system, which is an RNA aptamer‑based 
inhibitor of the coagulation factor IXa, was terminated due 
to a severe allergic reaction (162). Research has demonstrated 
that allergic reactions observed with aptamer‑based therapeu‑
tics result from factors such as the CpG‑containing sequence 
and PEGylation (163‑165). Understanding the underlying 
mechanisms by which the immunological reactions are trig‑
gered as well as finding the design elements contributing to 
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immunogenicity is important for the successful development of 
safe aptamers. Furthermore, it is extremely important to iden‑
tify unwanted immunological reactions when using aptamers 
that target and modulate immune cells involved in cancer 
metastasis. In addition, information concerning the long‑term 
consequences of targeting tumor‑associated immune cells, 
and whether the impact can be extended to affect other cells 
in the immune system network are lacking. In addition, 
insufficient toxicity data and lack of appropriate regulatory 
guidelines for preclinical toxicity assessment studies are chal‑
lenges that could restrain aptamers from being approved for 
treatment against cancer metastasis. Toxicity observed with 
other oligonucleotide‑based therapeutics such as antisense 
oligonucleotides have raised a red flag about possible toxicity 
that could not be detected with current study designs when 
assessing the toxicity of oligonucleotide aptamers (166,167). 
Pegaptanib is the only FDA‑approved aptamer‑based thera‑
peutic for the treatment of neovascular age‑related macular 
degeneration. However, postmarketing surveillance of the 
adverse drug reactions of pegaptanib suggests a critical need 
for a long‑term assessment for possible severe adverse drug 
reactions and toxicity (168). Moreover, a survey conducted 
by the Oligonucleotide Working Group of the European 
Federation of Pharmaceutical Industries and Associations 
(EFPIA) demonstrated a discrepancy in preclinical safety 
assessment studies performed for oligonucleotide‑based ther‑
apeutics (169). Thus, establishing optimal toxicity assessment 
guidelines is critical for fully characterizing aptamer toxicity. 
Another limitation is the lengthy and complex production 
process which is an obstacle for large‑scale production for 
clinical use. The SELEX process is carried out in multiple 
rounds in which each round consists of multiple steps: incuba‑
tion of the target with a random library, removing the unbound 
sequences from the bound sequence, elution of the desirable 
bound sequence, and amplification of the desirable bound 
sequence (11). Moreover, a successful selection of an aptamer 
necessitates optimizing the experimental conditions such as 
temperature, pH, ionic strength, and ratio of the target to the 
random library which creates a complex process. Therefore, 
identification of strategies to improve the aptamer selection 
process will help facilitate the large‑scale production of 
aptamer‑based therapeutics.

Targeting key mediators of cancer metastasis using 
aptamer‑based therapeutics is a promising strategy against 
metastasis; yet, researchers should solve concerns with the 
current research. First, exploring new targets and assessing 
the efficacy of aptamer‑based therapy in relevant in vivo 
models are still limited. Enormous molecular targets 
and factors that regulate cancer metastasis have not been 
explored as potential targets for aptamer‑based antimeta‑
static therapy. For example, miRNAs are RNAs with short, 
highly conserved, non‑coding sequences. By binding to the 
3'untranslated region of target mRNAs, miRNAs control gene 
expression at the posttranscriptional level. Recent findings 
demonstrate that miRNAs control metastasis by regulating 
metastasis‑related genes in cancer stem cells and during the 
processes of EMT and metastatic colonization (170,171). 
Using aptamers to bind oncogenic precursor microRNAs 
to inhibit functional miRNA formation or deliver tumor 
suppressor miRNAs in the form of aptamer‑miRNA conjugate 
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may show antitumor activity (172‑175). Furthermore, circular 
RNAs (circRNAs), which range in length from a few hundred 
to thousands of nucleotides, is a type of RNA that has been 
recently re‑recognized (176). Contrary to linear RNAs that 
have 5'caps and 3'tails, circRNAs are single‑stranded with 
covalently closed circular transcripts (177). They were earlier 
known to be the products of mis‑splicing or by‑products 
of pre‑mRNA processing with poor abundance, but now 
they have been recognized as a class of non‑coding RNAs 
following the use of high‑throughput RNA sequencing 
(RNA‑seq) technologies. circRNAs are observed to be 
involved in the pathogenesis of cancer tumorigenesis, 
metastasis, and therapy resistance (178,179). These potential 
strategies have been examined in vitro or clinically irrelevant 
in vivo models (142,173,175). Thus, assessment of the efficacy 
of developed aptamer technology against newly identified 
targets in appropriate animal models of cancer metastasis is 
crucial to develop effective aptamer‑based therapeutics.

6. Conclusion

In conclusion, this review summarizes recent advances in the 
development of aptamer‑based antimetastatic therapeutics. 
Studies discussed here demonstrate that targeted aptamers 
possess a promising future in fighting cancer metastasis. 
Despite the potential findings in the field of molecular and 
cellular oncology, there are still opportunities to explore 
aptamer technology against potential targets. This could result 
in the development of aptamer‑based antimetastatic therapy to 
target cancer metastasis. In addition, more research is needed 
to examine the existing antimetastatic aptamers in situations 
that mimic cancer metastasis inside the body.
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