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Abstract

Antimicrobial peptides represent an alternative to traditional antibiotics that may be less sus-

ceptible to bacterial resistance mechanisms by directly attacking the bacterial cell mem-

brane. However, bacteria have a variety of defense mechanisms that can prevent cationic

antimicrobial peptides from reaching the cell membrane. The L- and D-enantiomers of the

antimicrobial peptide GL13K were tested against the Gram-positive bacteria Enterococcus

faecalis and Streptococcus gordonii to understand the role of bacterial proteases and cell

wall modifications in bacterial resistance. GL13K was derived from the human salivary pro-

tein BPIFA2. Minimal inhibitory concentrations were determined by broth dilution and a

serial assay used to determine bacterial resistance. Peptide degradation was determined in

a bioassay utilizing a luminescent strain of Pseudomonas aeruginosa to detect peptide

activity. Autolysis and D-alanylation-deficient strains of E. faecalis and S. gordonii were

tested in autolysis assays and peptide activity assays. E. faecalis protease inactivated L-

GL13K but not D-GL13K, whereas autolysis did not affect peptide activity. Indeed, the D-

enantiomer appeared to kill the bacteria prior to initiation of autolysis. D-alanylation mutants

were killed by L-GL13K whereas this modification did not affect killing by D-GL13K. The

mutants regained resistance to L-GL13K whereas bacteria did not gain resistance to D-

GL13K after repeated treatment with the peptides. D-alanylation affected the hydrophobicity

of bacterial cells but hydrophobicity alone did not affect GL13K activity. D-GL13K evades

two resistance mechanisms in Gram-positive bacteria without giving rise to substantial new

resistance. D-GL13K exhibits attractive properties for further antibiotic development.
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Introduction

Antimicrobial peptides (AMPs) have been investigated for several decades in an effort to

develop alternatives to traditional antibiotics, which face increasing levels of bacterial resis-

tance [1–5]. Naturally occurring AMPs are found in vertebrates, invertebrates, plants and

microbes and may act on the bacterial membranes, cell wall or interior targets [6–8]. It has

been proposed that the interaction of AMPs with the bacterial cell membrane is associated

with relatively low probability of bacterial resistance [9], although bacteria that inhabit the

host microbiome and some invading bacteria clearly have the ability to co-exist with or over-

come host AMPs. Indeed, experimental resistance to AMPs has been observed [10] and the

corresponding bacterial defense mechanisms could also protect against therapeutic AMPs [7,

11]. Conversely, wide-spread use of therapeutic AMPs could lead to resistance also against

endogenous host-defense peptides (“arming the enemy”) and render the host unprotected

against invading bacteria [12]. To address these concerns, a better understanding of the mech-

anisms of action and bacterial resistance to AMPs is needed [13].

We have developed the antimicrobial peptide GL13K (GKIIKLKASLKLL-NH2), which is

derived from the human salivary protein BPIFA2 (BPI-fold family A, member 2; formerly:

Parotid Secretory Protein, PSP, SPLUNC2, C20orf70) [14, 15]. L-GL13K is bactericidal and

effective against Gram-negative bacteria [14], although it is susceptible to bacterial proteases

[16]. L-GL13K also kills established biofilms of Pseudomonas aeruginosa and contributes to

their eradication in combination with the aminoglycoside tobramycin [16]. Studies with

L-GL13K on artificial membranes suggested selectivity for negatively charged model bacterial

membranes leading to peptide-induced micellization and transient pore formation. Both

mechanisms are thought to create holes that would lead to rapid cell death by loss of mem-

brane potential and ions from the bacterial cell [17, 18].

Immobilized L-GL13K is active against the Gram-positive bacteria Streptococcus gordonii,
causing cell rupture, reminiscent of autolysis, under continuous nutrient flow conditions [19].

To test if the soluble peptide is effective against Gram positive bacteria, the original L-amino

acid version of GL13K [14] and a protease-resistant all-D-amino acid version D-GL13K [16]

were tested against Enterococcus faecalis and S. gordonii. The enantiomers showed significant

differences in their effects, suggesting that D-GL13K kills bacteria by evading bacterial resis-

tance without causing new resistance.

Materials and methods

Bacterial strains and culture conditions

E. faecalis strains OG1RF (wild-type); a D-alanylation mutant (dltA) of OG1RF (TX5427); a

protease negative, autolysis impaired mutant (gelE-, SprE-) of OG1RF (TX5128); vancomycin-

resistant E. faecalis V583 and S. gordonii DL1 (wild-type) have previously been described [20–

24]. Bacterial cultures were inoculated from frozen stock cultures and grown in Todd-Hewitt

Broth (THB) (Difco, Franklin Lakes, NJ) at 37˚C as stand cultures. Bacteria were cultured

overnight unless otherwise mentioned. Todd-Hewitt Agar (THA) for enumeration of CFU

contained 1.5% agar (Difco) in THB.

Construction of Streptococcus gordonii autolysis mutant (atlS) and D-

alanylation mutant (dltA)
The S. gordonii DL1 atlS (SGO_2013) mutant was constructed by adapting the marker-less

mutagenesis system developed for Streptococcus mutans by Xie et al. [25]. Briefly, the S. gordo-
nii ldh promoter and mutated pheS gene (pheS�) and ermAM antibiotic resistance marker were
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synthesized and cloned into pUC57 (Genscript, Piscataway, NJ). The S. gordonii pheS� gene

contains an A316G mutation and silent mutations after codon 316 to prevent recombination

at the chromosomally encoded pheS gene, resulting in the final plasmid, pJHMD1 (Hall et al.,

submitted). This approach avoids off target effects and effects of antibiotics are null. The

mutants retain all 5’ and 3’ transcriptional regulators.

A markerless atlS in-frame deletion strain was constructed by a two-step transformation

protocol. The linear JHMD1 mutagenesis cassette was PCR amplified from pJHMD1 using the

JHMD1For/JHMD1Rev primer pair (Table 1). Further, approximate 0.5 kb upstream and

downstream regions overlapping the start and stop codons of atlS were PCR amplified using

primers containing complementary DNA sequences to JHMD1, atlS-upFor/atlS-upRev-

JHMD1 and atlS-dnFor-JHMD1/atlS-dnRev. Each PCR product was purified, mixed in equi-

molar concentrations, subjected to Splice-Overlap Extension PCR (SOE-PCR) to generate a

3.1 kb atlSup-JHMD1-atlSdown PCR product, transformed into S. gordonii DL1, plated on

THA containing 5 mg/L erythromycin and incubated anaerobically at 37˚C for 48 hours. For

the second transformation, two primer pairs, atlS-upFor/atlSupRev and atlS-dnFor/atlS-

dnRev, were used to amplify the same 0.5 kb upstream and downstream regions. The upstream

product contains a complementary sequence to the downstream product. The PCR products

were purified and mixed in equimolar concentrations for SOE-PCR. The 1 kb product was

transformed into DL1:atlSup-JHMD1-atlSdn, plated on THA containing p-Cl-Phe and incu-

bated anaerobically at 37˚C for 48 hours. The mutation was verified by diagnostic colony PCR.

The phenotype of a S. gordonii atlS mutant has previously been described [26].

The construction of the DL1 dltA mutant followed the equivalent protocol with the primers

listed in Table 2.

Peptide synthesis and handling

L-GL13K (Gly-Lys-Ile-Ile-Lys-Leu-Lys-Ala-Ser-Leu-Lys-Leu-Leu-NH2) [14] and D-GL13K

[16] were purchased from AAPPTec (Louisville, KY) or Bachem (Torrance, CA). The lyophi-

lized powder was stored at -20˚C and aliquots were resuspended as stock in sterile 0.01% acetic

acid at a concentration of 10 mg/ml and stored at 4˚C. The peptides were subjected to further

quality control by LC/MS analysis (College of Pharmacy, University of Minnesota) to ensure

equal concentration after resuspension. Peptides were either used directly from stock or fur-

ther diluted to a 1 mg/ml working stock as needed.

Table 1. Primers used in the construction of the S. gordonii DL1 atlS mutant.

atlS-upFor 5’- GCT AAG CCC TGT CTG GGC TTT TTG -3’

atlS-upRev-

JHMD1

5’- CTA TGC TAT GAG TGT TAT CGT TTC TCG CTT CTT TTT CAT GTA ACT CCC TCT

TTA ACA C -3’

atlS-dnFor-

JHMD1

5’- GTT AT CTA TTA TTT AAC GGG AGG AAA TAA CGA GGA TTT GCA AGA CCA

CGT TAT CAA TAA -3’

atlS-dnRev 5’- GAA GCA TTT GCT TGA GAC GAT ACT TGA C -3’

atlS-upRev-SOE

KO

5’- TTA TTG ATA ACG TGG TCT TGC AAA TCC TCG CTT CTT TTT CAT GTA ACT

CCC TCT TTA ACA C -3’

atlS-dnFor SOE

KO

5’- CGA GGA TTT GCA AGA CCA CGT TAT CAA TAA -3’

JHMD1-For 5’- CGA GAA ACG ATA ACA CTC ATA GCA TAG -3’

JHMD1-Rev 5’- TTA TTT CCT CCC GTT AAA TAA TAG ATA AC -3’

Primer pairs used for creating the markerless atlS in-frame deletion strain of S. gordonii DL1.

https://doi.org/10.1371/journal.pone.0194900.t001
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Minimal inhibitory concentration

The minimal inhibitory concentration (MIC) assays were performed essentially as described

for cationic AMPs [27], but using streptococcal growth-friendly THB without the addition of

blood or serum components. A working stock of 1-5x105 CFU/ml in 90 or 100 μl THB was

added to 10 or 20 μl of a 2-fold serial peptide dilution in 0.01% acetic acid and incubated for 20

h at 37˚C in 96-well polypropylene plates. The OD at 600 nm (OD600) was determined in a

Synergy HT plate reader (BioTek, Winooski, VT). Control wells for growth without peptide

and growth medium without bacteria were included. Bacterial cell numbers in the inoculum

were verified by colony count.

Analysis of protease activity

Aliquots (5 μl) of overnight cultures of E. faecalis OG1RF or TX5128 were spotted on THA

containing 3% gelatin. The plates were incubated at 37˚C overnight and gelatinase activity was

detected as a turbid halo surrounding the bacterial colonies.

To test proteolytic processing of GL13K peptides, overnight bacterial cultures were centri-

fuged (5 min, 13,000 g) and the conditioned supernatants were sterile-filtered (0.22 μm, Corn-

ing). Filtered supernatant (16.8 μl) was incubated with 3.2 μl (3.2 μg) peptide at 37˚C for 2 h to

allow bacterial proteases in the supernatant to process the peptide. To determine residual pep-

tide activity, 70 μl of 10 mM sodium phosphate buffer, pH 7.4 was added to each sample and

then supplemented with 10 μl (108 CFU) of bioluminescent Pseudomonas aeruginosa Xen41

(Caliper Lifesciences; now Perkin Elmer, MA) that had been washed three times in 0.9% NaCl

(final maximal peptide concentration 32 mg/L). Viability of the indicator bacteria was deter-

mined after 15 min incubation at 37˚C by determining bioluminescence in a Synergy HT plate

reader. The luminescence detected in the absence of added peptide was used as a measure of

100% proteolysis.

Bacterial autolysis assay

The lysis assay followed an established protocol for bacterial autolysis [28] with minor modifi-

cations. Exponentially growing cells were washed twice in PBS then washed once in ice-cold

dH2O. The bacteria were incubated in PBS with 0.05% Triton X-100 and peptides at a concen-

tration of 100 mg/L. OD600 was monitored spectrophotometrically for 180 min. In some

Table 2. Primers used in the construction of the S. gordonii DL1 dltA mutant.

dltA-upFor 5'- GGC TAA CAG TTT AAT GGT CTG ACT G-3'

dltA-upRev-

JHMD1

5'- CTA TGC TAT GAG TGT TAT CGT TTC TCG ATT CGT CAC GAA AGG ATA
CCT CTT TTA ATC -3'

dltA-dnFor-

JHMD1

5'- GTT ATC TAT TAT TTA ACG GGA GG AAA TAA ATG ATG GAA ATT TTA AAA
CAA CTT CCT CAC -3'

dltA-dnRev 5'- GGC ATA AAG AGC ATG AAG CGC-3'

dltA-upRev-SOE

KO

5'- ATT CGT CAC GAA AGG ATA CCT CTT TTA ATC -3'

dltA-dnFor SOE

KO

5'- GAT TAA AAG AGG TAT CCT TTC GTG ACG AAT ATG ATG GAA ATT TTA
AAA CAA CTT CCT CAC-3'

JHMD1-For 5’- CGA GAA ACG ATA ACA CTC ATA GCA TAG -3’

JHMD1-Rev 5’- TTA TTT CCT CCC GTT AAA TAA TAG ATA AC -3’

Primer pairs used for creating the dltA mutant strain of S. gordonii DL1. See Methods for details.

https://doi.org/10.1371/journal.pone.0194900.t002
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experiments, the cells were incubated with the peptides for 2h in PBS+0.05% Triton X-100 and

then cultured on THA to enumerate surviving cells.

Bactericidal activity

These assays were performed according to our established protocol [14] with some modifica-

tions. Cells were washed three times in 0.9% NaCl and five μl of washed cells (109 CFU/ml)

were added to the peptides diluted 2-fold (128 to 4 mg/L) in 45 μl of 10 mM sodium-phos-

phate, pH 7.4. The samples were incubated at 37˚C for 2 h and 10 μl were then spotted on

THA plates to assess bactericidal activity.

Biofilm assay

E. faecalis OG1RF, TX5427 or V583 were cultured in a Calgary device for 24h in THB. Biofilms

were treated with peptides (100 mg/L) for 4h and surviving cells were sonicated and plated on

THA for enumeration of CFUs.

Selection for GL13K peptide resistance in S. gordonii and E. faecalis
To investigate potential resistance development against the GL13K peptides, dilutions of the

peptides were prepared and incubated as described for the MIC assay. The next day (day 0),

the MIC was recorded and the culture in the well with the highest peptide concentration that

allowed growth (i.e 0.5 x MIC) was diluted 1:100 and used as an inoculum for the next round

of selection in a new MIC assay and so forth until a stable plateau of resistance was reached

[29].

Statistical analysis

Data were analyzed as described in the figure legends, using Graphpad Prism v. 6.07 (Graph-

pad Software, La Jolla, CA).

Results

Antibacterial activity of GL13K enantiomers

In the absence of an energy source, D-GL13K effectively killed 108 CFU/ml wild-type E. faeca-
lis at 15±10 mg/L (N = 4) while 48±23 mg/L (N = 3) of L-GL13K were required for complete

killing. This difference was reflected in the inhibition of bacterial growth. D-GL13K showed

an average MIC of 13 mg/L, while L-GL13K did not inhibit growth of wild-type E. faecalis at

concentrations up to 512 mg/L (Table 3).

Effect of proteases on peptide activity

Actively growing E. faecalis produce proteases that contribute to their resistance to AMPs [30].

We have previously observed that L-GL13K is more sensitive to bacterial proteases than

D-GL13K [16]. To determine if the high resistance of growing E. faecalis to L-GL13K could be

due to degradation by bacterial proteases, the peptides were tested against the protease defi-

cient strain TX5128. Surprisingly, the MICs for this strain were not different from those of the

wild-type strain OG1RF (Table 3). Thus, L-GL13K did not inhibit growth of TX5128 while

D-GL13K exhibited an MIC of 11 mg/L.

The lack of gelatinase activity in TX5128 was verified by culture on gelatin agar [31], which

resulted in a halo due to gelatin degradation around wild-type OG1RF but not around TX5128

(Fig 1A). To test if the E. faecalis proteases can in fact degrade L-GL13K, the peptides were
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incubated with conditioned culture supernatants from wild-type (OG1RF) and protease-defi-

cient E. faecalis (TX5128) and residual peptide activity tested against P. aeruginosa, which is

killed by both peptide enantiomers [16]. As expected, conditioned supernatant from wild-type

E. faecalis caused almost complete proteolysis of L-GL13K but not D-GL13K. In contrast, the

protease-deficient strain TX5128 did not show significant proteolysis of either peptide enan-

tiomer (Fig 1B).

Role of autolysis in bactericidal activity

The protease-deficient TX5128 strain of E. faecalis is also deficient in autolysis [32], suggesting

that autolysis is not necessary for bacterial killing by D-GL13K (Table 3). To test this, cell lysis

was induced with Triton X-100 [28, 33], which caused an 80% decrease in OD600 after three

hours in wild-type E. faecalis (Fig 2A) while the autolysis impaired mutant (TX5128) showed

strongly reduced autolysis with a reduction of OD600 of only about 25%. L-GL13K somewhat

reduced autolysis of wild-type bacteria while no autolysis was seen in the presence of

D-GL13K (Fig 2A and 2B). The reduction of autolysis by the peptide enantiomers correlated

with bacterial killing under autolysis conditions (Fig 2C). Thus, L-GL13K showed a small, yet

non-significant, reduction of cell numbers while D-GL13K reduced viable cells by 3log10.

These results suggest that D-GL13K kills E. faecalis independent of autolysis.

Effect of D-alanylation

The cell wall of Gram-positive bacteria consists of a peptidoglycan matrix containing teichoic

and lipoteichoic acids that can be D-alanylated by the dlt-operon, which lowers their suscepti-

bility to cationic AMPs [34]. To test if this defense mechanism contributes to the differential

effect of the GL13K enantiomers, they were tested against a dltA mutant of E. faecalis
(TX5427) (Table 3). L-GL13K exhibited a substantially reduced MIC against the dltA mutant,

while the activity of D-GL13K was not affected.

Biofilms of E. faecalis showed similar differences in susceptibility to the GL13K enantiomers

(Fig 3). L-GL13K was ineffective against wild-type biofilms but reduced viable CFU in the dltA
mutant by three orders of magnitude, relative to the wild-type biofilm. D-GL13K was highly

Table 3. Minimal inhibitory concentrations of E. faecalis.

E. faecalis L-GL13K D-GL13K

Strain MIC (mg/L) N MIC (mg/L) N

OG1RF > 10 13 ± 2 13

OG1RF dltA 70 ± 17� 6 23 ± 6 5

TX5128(gelE-, SprE-) > 5 11 ± 1 5

OG1RF ebsG > 5 7 ± 1 4

OG1RF::pMSP7551 > 5 10 ± 0 5

OG1RF::pMSP7551+nisin > 5 10 ± 0 5

V583 > 4 10 ± 0 4

Minimal inhibitory concentrations were determined as described in Methods. The MICs are shown as mean ± SEM

for L-GL13K and D-GL13K. >) Mean MIC is above the tested concentration range (this value was set at 200 mg/L

for data analysis). MIC dilution series were analyzed individually and statistical outliers from all series were removed

using the ROUT method (Q = 1%), as provided in Graphpad Prism. The cleaned data were analyzed by non-

parametric Kruskal-Wallis test and compared to the wild-type strain (OG1RF) with Dunn’s multiple comparison

post-test.

�) different from OG1RF, P<0.0001.

https://doi.org/10.1371/journal.pone.0194900.t003
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effective against both strains. The D-enantiomer was also tested against biofilm of a vancomy-

cin-resistant strain of E. faecalis (V583). Although the untreated V583 biofilm contained fewer

CFUs than that of the wild-type strain, D-GL13K reduced the viable biofilm CFUs by 3log10

in both strains (Fig 3). Consistent with this finding, the MICs for D-GL13K were similar for

wild-type and vancomycin-resistant E. faecalis (Table 3). Thus, the relative resistance of E. fae-
calis to L-GL13K appears to depend partially on D-alanylation, while D-GL13K is not affected

by this defense mechanism or vancomycin resistance.

To test if E. faecalis TX5427 can regain resistance to GL13K peptides, serial MIC assays

were performed in the presence of L-GL13K or D-GL13K. L-GL13K increased the MIC of the

dltA mutant 8-fold after two rounds of selection, while the D-enantiomer caused only a 2-fold

increase of the MIC after seven rounds (Fig 4). Similarly, D-GL13K did not substantially

increase the MIC of wild-type E. faecalis. Thus, the dltA mutant (TX5427) appears to regain

resistance to L-GL13K while remaining highly susceptible to D-GL13K.

Fig 1. Relative proteolysis of GL13K peptides. (A): Wild-type (OG1RF) or the protease-negative strain (TX5128) of

E. faecalis was cultured on THA containing 3% gelatin. Gelatinase activity was visualized as a turbid halo around the

bacterial colonies; (B): L-GL13K (L) or D-GL13K (D) (32 mg/L) was incubated with conditioned supernatant of wild-

type (OG1RF) or the protease-negative strain (TX5128) of E. faecalis for 2 h. Residual peptide activity was determined

by adding bioluminescent P. aeruginosa Xen41 to the mixture. Bioluminescence from surviving bacteria was used as a

measure of proteolytic degradation of each peptide and expressed relative to bacterial bioluminescence in the absence

of peptides (equivalent to 100% proteolysis). Data are shown as mean ± SEM from three independent experiments and

were analyzed by paired t-test for each strain. n.s., not significant.

https://doi.org/10.1371/journal.pone.0194900.g001
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Fig 2. Effect of GL13K peptides on Triton X-100 induced autolysis. E. faecalis OG1RF (A) or the autolysis-deficient

strain TX5128 (B) were incubated in PBS with 0.05% Triton X-100 in the absence of peptide (control) or in the

presence of 100 mg/L of L-GL13K or D-GL13K (D). The OD600 was recorded for 180 min and expressed as a percent

of starting OD600 of the control sample. (C): Bactericidal activity of GL13K peptides in PBS+0.05% Triton X-100. E.

faecalis OG1RF were incubated with 0.05% Triton X-100 in the absence of peptide (Ctrl) or with L-GL13K or

D-GL13K for 2h. Surviving CFU were enumerated and are shown as mean ± SEM (N = 5). Peptide treated samples

were compared to the untreated control by Kruskal-Wallis test with Dunn’s multiple comparison post-test. n.s., not

significant.

https://doi.org/10.1371/journal.pone.0194900.g002
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Surface hydrophobicity of bacterial strains

Lipoteichoic acid has been correlated with surface hydrophobicity of streptococci [35]. D-ala-

nylation of teichoic acids protects bacteria from cationic peptides by masking negative charges

in the cell wall, surprisingly this does not affect cell surface hydrophobicity in Lactococcus lactis
[36]. To determine if D-alanylation affected cell surface hydrophobicity of E. faecalis, wild-

type and mutant bacteria were tested for adhesion to hydrocarbon. Wild-type OG1RF were

highly hydrophilic with only 5% adhering to hexadecane (Fig 5). The dltA mutant showed

5-fold higher hydrophobicity. Since this difference in hydrophobicity correlated with the dif-

ferent susceptibility to L-GL13K, we further tested this correlation with a mutant that overex-

presses the hydrophobic cell surface protein EbsG in response to induction by nisin (OG1RF::

pMSP7551) [37]. Un-induced cells showed 4% hydrophobicity, i.e. similar to wild-type cells,

and this increased to 25% in nisin-induced cells, i.e. similar to the dltA mutant (Fig 5). Despite

this difference, both non-induced and induced cells were resistant to L-GL13K while their sen-

sitivity to D-GL13K was similar to that of wild-type OG1RF cells (Table 3). These results sug-

gest that changes in D-alanylation but not surface hydrophobicity are correlated with bacterial

resistance to L-GL13K.

Peptide effects on Streptococcus gordonii
To determine if the role of D-alanylation in peptide resistance was specific for E. faecalis, the

related oral commensal bacteria S. gordonii were tested. S. gordonii are highly hydrophobic with

over 90% binding to hexadecane (Fig 5). A dltA mutant of these bacteria may also exhibit

increased hydrophobicity although the increase is only about 2% (P<0.06). Consistent with the

Fig 3. Effect of GL13K peptides on biofilms of E. faecalis. Twenty-four hour biofilms of OG1RF; OG1RF dltA or V583 were treated with 100 mg/L of

L-GL13K (L) or D-GL13K (D). Surviving CFU were enumerated from each peg and expressed relative to the mean CFU recovered from pegs of wild-

type cells treated with buffer alone (OG1RF—C). Data from 2–4 experiments are expressed as mean ± SEM (N = 6–13). V583 was only treated with

D-GL13K.

https://doi.org/10.1371/journal.pone.0194900.g003
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results for E. faecalis, wild-type S. gordonii are resistant to L-GL13K while a dltA mutant shows

an MIC of 11 mg/L to L-GL13K (Table 4). D-GL13K inhibits the growth of both wild-type and

dltA mutant bacteria with MICs of 4–5 mg/L (Table 4). Thus, resistance of S. gordonii to the

GL13K enantiomers is also correlated with D-alanylation but not surface hydrophobicity.

Fig 4. Development of resistance in E. faecalis. MICs for L-GL13K (circles) and D-GL13K (squares) were recorded on consecutive

days using E. faecalis OG1RF (wild-type) (open symbols) (D-enantiomer only) and dltA (closed symbols). The MIC for each day is

expressed relative to the starting MIC (day 0). Data from three experiments are shown as mean ± SEM.

https://doi.org/10.1371/journal.pone.0194900.g004

Fig 5. Surface hydrophobicity of bacterial strains. Bacteria were fractionated into hexadecane as a measure of surface hydrophobicity. Ef–E. faecalis;
Sg–S. gordonii. 7551—OG1RF::pMSP7551. Data from 2–3 experiments are shown as mean ± SEM (N = 6–9).

https://doi.org/10.1371/journal.pone.0194900.g005
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As in E. faecalis, repeated treatment of S. gordonii with sub-inhibitory concentrations of

D-GL13K caused little change of the MIC of wild-type and dltA bacteria, while L-GL13K

caused a substantial increase of the MIC reaching 6-fold in wild-type bacteria and 16-fold in

the dltA mutant (Fig 6). An autolysin-deficient mutant of S. gordonii was effectively inhibited

by D-GL13K (Table 4), confirming that autolysis is not required for antibacterial activity.

Discussion

Antimicrobial peptides have been proposed as an alternative to traditional antibiotics [13, 38,

39] and new peptides and derivatives are continuously generated and investigated [40, 41]. It

has been suggested that these peptides would be less susceptible to bacterial resistance mecha-

nisms since they directly attack the bacterial cell membrane [9]. On the other hand, resistance

can develop [10] and concerns have been raised that bacterial resistance to therapeutic pep-

tides could also render bacteria resistant to the host’s defense peptides (arming the enemy)

[12]. Indeed, it is increasingly clear that bacteria have a variety of defense mechanisms that can

prevent cationic antimicrobial peptides from reaching the cell membrane, including secreted

proteases or modification of the cell surface, i.e. the cell wall in Gram-positive bacteria or the

outer membrane in Gram-negative bacteria [4, 11, 13, 42].

Secreted proteases are effective defense mechanisms against unmodified peptides. Indeed,

the protease-resistant D-GL13K is much more effective against P. aeruginosa [16], S. gordonii
and E. faecalis (this report) than the protease-susceptible L-enantiomer of the peptide. Simi-

larly, a difference in MIC between the L- and D-enantiomers was reported for the synthetic

peptide IK8 [43], whereas the MIC did not differ between the L- and D-enantiomers of the

antimicrobial peptide anoplin [44]. Many antimicrobial peptides are resistant to host and bac-

terial proteases and D-amino acids are commonly found in these peptides [45]. However, it

appears that protease-resistance is not the only difference between L- and D-enantiomers of

AMPs. The present results with the protease negative strain E. faecalis TX5128 showed that the

activity of L-GL13K also was lower than that of D-GL13K in the absence of bacterial proteases,

suggesting that additional resistance mechanisms may function in these Gram-positive

bacteria.

Although previous results with immobilized GL13K had suggested a role for autolysis in

bacterial killing [19], the present results indicate that autolysis is not necessary for killing of E.

faecalis.

Table 4. Minimal inhibitory concentrations of S. gordonii.

S. gordonii L-GL13K D-GL13K

Strain MIC (mg/L) N MIC (mg/L) N

DL1 > 7 5 ± 0.6 7

DL1 dltA 11 ± 3� 3 4 ± 2 3

DL1 atlS 63 ± 8 6 4 ± 1 4

Minimal inhibitory concentrations were determined as described in Methods. The MICs are shown as mean ± SEM

for L-GL13K and D-GL13K. >) Mean MIC is above the tested concentration range (this value was set at 200 mg/L

for data analysis). MIC dilution series were analyzed individually and statistical outliers from all series were removed

using the ROUT method (Q = 1%), as provided in Graphpad Prism. The cleaned data were analyzed by non-

parametric Kruskal-Wallis test and compared to the wild-type strain (DL1) with Dunn’s multiple comparison post-

test.

�) different from DL1, P<0.006.

https://doi.org/10.1371/journal.pone.0194900.t004
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A second major bacterial defense mechanism against cationic AMPs involves the reduction

of the overall negative surface charge of outer membrane (Gram-negative) or cell wall (Gram-

positive) components. Several Gram-negative species, including Porphyromonas gingivalis
[46], reduce the overall negative charge of the cell surface by modifying lipopolysaccharides,

thereby reducing susceptibility to AMPs [47, 48]. Gram-positive bacteria use D-alanylation of

teichoic and lipoteichoic acids to reduce the negative surface charge of the cell wall and

mutants that are unable to modify these molecules are consequently more sensitive to AMPs

[49–51]. Indeed, L-GL13K was more effective against the dltA mutants of both planktonic bac-

teria and biofilms of S. gordonii and E. faecalis than the wild-type strains. In contrast,

D-GL13K was highly effective against both mutant and wild-type bacteria. This could be rele-

vant for potential clinical applications since Gram-positive bacteria have been shown to

Fig 6. Development of resistance in S. gordonii. MICs for L-GL13K (circles) and D-GL13K (squares) were recorded on consecutive days

using S. gordonii DL1 (wild-type) (open symbols) (D-enantiomer only) and dltA (closed symbols). The MIC for each day is expressed relative

to the starting MIC (day 0). Data from 2–3 experiments are shown as mean ± range.

https://doi.org/10.1371/journal.pone.0194900.g006
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upregulate the dlt-operon to mask lipoteichoic acids with D-alanine in response to the chal-

lenge by antimicrobial peptides [52, 53]. A peptide that is not affected by D-alanylation-status

may therefore retain efficacy under these conditions.

In addition to D-alanylation, the D-enantiomer of GL13K was also able to overcome the

resistance mechanisms in the vancomycin resistant strain V583. The ability of the dlt mutant

to regain resistance to L-GL13K but not D-GL13K further strengthens the clinical potential of

the latter peptide.
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