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Abstract: Autophagy is a conserved degradation pathway for recycling damaged organelles and
aberrant proteins, and its important roles in plant adaptation to nutrient starvation have been
generally reported. Previous studies found that overexpression of autophagy-related (ATG) gene
MdATG10 enhanced the autophagic activity in apple roots and promoted their salt tolerance. The
MdATG10 expression was induced by nitrogen depletion condition in both leaves and roots of
apple plants. This study aimed to investigate the differences in the growth and physiological status
between wild type and MdATG10-overexpressing apple plants in response to nitrogen starvation. A
hydroponic system containing different nitrogen levels was used. The study found that the reduction
in growth and nitrogen concentrations in different tissues caused by nitrogen starvation was relieved
by MdATG10 overexpression. Further studies demonstrated the increased root growth and the higher
nitrogen absorption and assimilation ability of transgenic plants. These characteristics contributed
to the increased uptake of limited nitrogen nutrients by transgenic plants, which also reduced the
starvation damage to the chloroplasts. Therefore, the MdATG10-overexpressing apple plants could
maintain higher photosynthetic ability and possess better growth under nitrogen starvation stress.

Keywords: apple; autophagy; MdATG10; nitrogen assimilation; nitrogen starvation

1. Introduction

Nitrogen (N) is a fundamental macronutrient for plant growth and development
because it is a key component of many cellular constituents, including nucleic acids, amino
acids, proteins, cell walls, membranes, chlorophyll, and phytohormones [1,2]. Nitrogen
deficiency impedes plant growth, reduces photosynthesis, hydrolyzes cell proteins, pro-
motes plant senescence, and ultimately decreases plant productivity [3,4]. Under aerobic
conditions, NO3

−-N is the predominant form of nitrogen in the soil for absorption and
utilization by plants [5,6]. However, given the great significance of nitrogen fertilizer
application to plant production, nitrogen fertilizer was used in agriculture excessively and
inappropriately, and subsequently, a series of problems, such as air pollution and water
pollution, have cropped up [7,8]. Therefore, the research on absorption and utilization of
nitrogen by plants under limited nitrogen supply conditions may be of great significance
to rational fertilization.

Plant production is reflected by the progress of photosynthesis during its life, which
requires a system comprising many proteins [9]. Serving as a nitrogen storage unit, more
than 70% of nitrogen in plants is stored in chloroplasts under normal conditions [10]. It
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is this large amount of nitrogen requirement to construct the photosynthetic system that
results in the need for nitrogenous fertilizer. Most of the nitrogen in plants is transported
to vigorous tissues and storage organs in response to nitrogen-deficient conditions [11].
Therefore, the loss of nitrogen from chloroplasts directly affects chlorophyll synthesis and
leads to leaf senescence [12]. As leaves are the main organ for performing photosynthesis
in plants, chlorophyll degradation and the leaf senescence phenotype lead to decreased
photosynthetic capacity of plants [13].

The morphology and physiology of plant roots are affected by the nitrogen content in
the soil, and the root structure, in turn, influences the nutrient and moisture absorption by
plants under stress conditions [14]. The root length, distribution, and biomass are closely
related to nitrogen uptake and utilization in response to nitrogen-deficient condition [15].
In addition, the root system is also an important site for assimilation and transformation of
phytohormones and organic acids [16]. Nitrogen is taken up from soil by plants through
energy expenditure and transport via transpiration. Research showed that NO3

−-N was
the primary form of nitrogen for absorption and utilization by plants [6]. After absorbing
NO3

−-N, most of it is transferred through the xylem to the aboveground mesophyll cells
for reduction [17]. This reduction process first involves the reduction of nitrate to nitrite by
nitrate reductase (NR) in the cytoplasm, and then nitrite is converted into ammonium by
nitrite reductase (NiR) in plastids or chloroplasts. Ammonium is converted and assimilated
as glutamic acid and glutamine through the action of glutamine synthetase (GS) and
glutamate synthase (GOGAT) [18,19]. Among the absorption, assimilation, and transport
of NO3

−-N, the assimilation process is the most critical step and one of the most important
limiting factors because both nitrite and excess ammonium are poisonous to plants [20].
Therefore, these assimilation steps need to be well coordinated at the cellular level in
response to different nitrogen supply conditions, thereby promoting the nitrogen use
efficiency of plants.

Autophagy plays an important role in nitrogen recycling when plants encounter
starvation conditions [21,22]. The growth of various Arabidopsis autophagy-related (ATG)
genes mutants is hypersensitive to nitrogen-deficient conditions by displaying early leaf
senescence, lower rosette biomass, and reduced seed yield [23,24]. For example, both
the ATG18-defective RNAi line and atg5 mutants showed impaired autophagic activity
and reduced nitrogen recycling ability compared with wild type (WT) Arabidopsis [25].
Similar results were found in crops, such as Osatg7-1 mutant in rice, which showed re-
duced biomass production during the vegetative growth stage combined with suppressed
nitrogen-remobilization in aging leaves [26]. The multiple omics studies on maize atg12
seedlings showed that autophagy exerted significant effects on protein formation and mem-
brane structure under nutrient-stress conditions [27]. A previous study on apple plants
found that the levels of free amino acids were less reduced in MdATG9-overexpressing ap-
ple callus compared with the wild type under limited nitrogen conditions [28]. In addition,
the research on MdATG18a-overexpressing apple plants showed that more anthocyanin
was accumulated in the transgenic plants in response to nitrogen-deficiency stress, possibly
due to the enhanced autophagic activity [29].

The research of Arabidopsis ATG10, the E2-like enzyme predicted to be responsible for
ATG12 conjugation, showed that atg10 mutants fail to form the ATG12-ATG5 conjugate
and cannot accumulate autophagic bodies within the vacuole under nutrient deficiency
condition [30]. A previous study in apple demonstrated that MdATG10 had a conserved
function in the apple salt tolerance [31]. As the present study found that the MdATG10
expression could also be induced by low levels of nitrogen in both the leaves and roots of
apple plants, here, we employed the transgenic and WT apple plants to investigate the
effect of autophagy on the overall physiological and growth state of apple plants under
nitrogen starvation. Through a series of studies, we found that MdATG10 overexpression
led to better root growth and more efficient absorption and assimilation of the limited
nitrogen sources. Furthermore, this effective absorption of nutrition also reduced the
starvation damage to chloroplasts in transgenic plants.
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2. Results
2.1. Overexpression of MdATG10 Alleviated the Growth Limitation of Apple Plants under
Nitrogen Deficiency Stress

The expression analysis of MdATG10 under low-nitrogen stress showed that the
MdATG10 transcript was induced in both the leaves and roots, with respective upregulation
being almost 1.8- and 3.8-fold on day 6 (Figure 1). Furthermore, to ensure the reliability of the
conclusions of research, GL-3 (WT) and three previously obtained MdATG10-overexpressing
(OE) apple lines (OE–1, OE–4, and OE–5) were used to further investigate the function of
MdATG10 in apple plants when they encountered nitrogen starvation conditions.
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Figure 1. Changes in the expression of MdATG10 in (a) leaf and (b) root of apple plants after treating with or without
nitrogen depletion stress for 8 d. Different letters indicate significant differences between treatments, according to one-way
ANOVA followed by Tukey’s multiple range test (p < 0.05).

Using a hydroponics system, the WT and transgenic apple plants were cultured under
control and low-nitrogen conditions for 28 days. The growth status was consistent between
the OE and WT plants under control hydroponic conditions. After nitrogen starvation
treatment, all genotypes exposed leaves chlorosis and growth inhibition, but the inhibition
of transgenic plants was affected to a less serious extent than that of WT plants (Figure 2a
and Table 1). The plant height decreased among the genotypes, but the reduction was much
smaller in OE plants than in WT plants (Figure 2b). The same tendency was also found in
the total FW or DW of OE and WT plants after nitrogen starvation treatment (Figure 2d,e).
As for the root length, the limitation of root elongation caused by nitrogen deficiency was
significant in WT plants, but this limitation was lessened by MdATG10 overexpression
(Figure 2c). The relative growth rate of the WT plants decreased to 25.9% of the control
after treatment, while those of the OE plants decreased to 49.1% in OE–1, 51.0% in OE–4,
and 56.1% in OE–5. Interestingly, the better root growth of transgenic plants caused the
root–shoot ratio of them was significantly elevated under low-nitrogen conditions. These
results suggested that the adverse effect of nitrogen deficiency on the growth of apple
plants was effectively relieved by MdATG10 overexpression.
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Figure 2. Overexpression of MdATG10 alleviated the growth limitation of apple plants under nitrogen-
deficiency stress. (a) Phenotypes of WT and transgenic apple plants under control hydroponic
conditions and after 28 d of treatment with 0.15 mM nitrogen-deficiency stress. Bars: 5 cm. (b) Plant
height, (c) root length, (d) relative growth rate, and (e) root–shoot ratio of WT and transgenic plants
with or without treatment. Data are shown as the means of six replicates with SEs. Different letters
indicate significant differences between treatments, according to one-way ANOVA followed by
Tukey’s multiple range test (p < 0.05).

Table 1. Tissue fresh weights (FW, g) and dry weights (DW, g) measured from WT and MdATG10-OE plants after 28 d of
nitrogen-deficiency treatment.

Root FW
(g plant−1)

Stem FW
(g plant−1)

Leaf FW
(g plant−1)

Total FW
(g plant−1)

Root DW
(g plant−1)

Stem DW
(g plant−1)

Leaf DW
(g plant−1)

Total DW
(g plant−1)

WT–CK 1.063 ± 0.069
a

1.429 ± 0.043
a

3.675 ± 0.129
a

6.168 ± 0.229
a

0.206 ± 0.007
ab

0.815 ± 0.027
a

1.222 ± 0.093
a

2.244 ± 0.118
a

OE–1–CK 1.031 ± 0.109
a

1.408 ± 0.029
a

3.672 ± 0.075
a

6.110 ± 0.054
a

0.211 ± 0.006
ab

0.803 ± 0.008
a

1.223 ± 0.082
a

2.237 ± 0.076
a

OE–4–CK 1.081 ± 0.075
a

1.436 ± 0.036
a

3.634 ± 0.077
a

6.151 ± 0.112
a

0.207 ± 0.007
ab

0.805 ± 0.005
a

1.237 ± 0.113
a

2.249 ± 0.118
a

OE–5–CK 1.029 ± 0.071
a

1.425 ± 0.036
a

3.643 ± 0.058
a

6.089 ± 0.128
a

0.202 ±0.004
ab

0.803 ± 0.004
a

1.189 ± 0.062
a

2.196 ± 0.062
a

WT–ND 0.568 ± 0.076
b

0.726 ± 0.029
c

2.185 ± 0.069
c

3.476 ± 0.059
c

0.106 ± 0.009
d

0.256 ± 0.009
c

0.699 ± 0.045
c

1.062 ± 0.049
c

OE–1–ND 1.004 ± 0.037
a

1.024 ± 0.101
b

2.692 ± 0.065
b

4.717 ± 0.065
b

0.183 ± 0.005
c

0.299 ± 0.009
b

0.829 ± 0.012
bc

1.312 ± 0.026
b

OE–4–ND 1.122 ± 0.054
a

1.065 ± 0.131
b

2.739 ± 0.061
b

4.927 ± 0.207
b

0.197 ± 0.007
b

0.303 ± 0.008
b

0.866 ± 0.036
b

1.367 ± 0.026
b

OE–5–ND 1.097 ± 0.043
a

1.069 ± 0.132
b

2.938 ± 0.042
b

4.905 ± 0.131
b

0.201 ± 0.005
ab

0.303 ± 0.008
b

0.871 ± 0.026
b

1.375 ± 0.029
b

Note: CK, plants without any treatment; ND, plants with nitrogen deficiency treatment. All data are means ± SE of 9 plants. Values
not followed by the same letter indicate significant differences between treatments, according to one-way ANOVA followed by Tukey’s
multiple range test (p < 0.05).
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2.2. Overexpression of MdATG10 Alleviated the Damage on the Photosynthetic System in Apple
Plants under Nitrogen Deficiency Stress

Low levels of nitrogen had a negative effect on the plant’s photosynthetic system.
Therefore, continuous measurements of net photosynthesis of all lines were performed
during the nitrogen deficiency treatment. Under control conditions, the photosynthesis rate
(Pn) was relatively consistent between the WT and transgenic plants as it was measured
every 7 days. The nitrogen-deficiency condition led to the decrement in Pn of all apple
plants, but the reduction was much less in the transgenic plants. In detail, while it declined
drastically after 14 days of treatment in the WT plants, it was not apparently reduced
in the OE plants until day 21 of treatment (Figure 3a). In addition, the detection of total
chlorophyll content in the leaves of all apple plants after the treatment showed that the
degradation of chlorophyll concentrations caused by low levels of nitrogen was much
smaller in OE plants than in WT plants (Figure 3b). The same trend was also found in the
changes in photosystem II (PSII) photochemistry between the WT and transgenic plants,
as shown by the Fv/Fm (Figure 3c) and Y(II) (Figure 3d), which were measured on day
28 of treatment. These results suggested that the photosynthetic system of MdATG10-
overexpressing apple plants was less damaged by nitrogen-deficiency stress than that of
WT plants.
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Figure 3. Overexpression of MdATG10 leads to higher photosynthetic capacity in apple under
nitrogen-deficiency stress. (a) Changes in the net photosynthesis rate (Pn) were determined every
seven days during the treatment. (b) Total chlorophyll, (c) Fv/Fm, and (d) Y(II) of WT and transgenic
plants with or without treatment. Data are shown as the means of three replicates with SEs. Different
letters indicate significant differences between treatments, according to one-way ANOVA followed
by Tukey’s multiple range test (p < 0.05).

2.3. Apple Plants Overexpressing MdATG10 Maintained Better Growth and Activity of the Root
System under Nitrogen-Deficiency Stress

A significant difference in root biomass was observed between the OE and WT plants
after nitrogen-deficiency treatment. Therefore, the root architecture of all genotypes was
observed and analyzed (Figure 4a). Obviously, the root growth of WT plants was sup-
pressed by a long-term low nitrogen level, but this suppression was not apparent in OE
plants. Then, the root lengths, root volumes, surface area, and numbers of forks among
genotypes were examined. For WT plants, these parameters were decreased by 44.3%,
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45.0%, 41.3%, and 32.9%, respectively, at the end of the treatment (Table 2). However, for OE
plants, the root lengths were decreased after treatment compared with the lengths of plants
cultured under the control condition, but the other three indices of roots were not affected
by nitrogen-deficiency stress. Moreover, the average root diameters did not differ among
genotypes and treatment groups. Then, the root activity of all genotypes was measured.
Only the root activity of WT plants was decreased by nitrogen deficiency; the OE plants
were not significantly affected after treatment (Figure 4b). These results suggested that
the restriction of both activity and growth of the transgenic plant root system caused by
nitrogen deficiency was definitely reduced by MdATG10 overexpression.
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Figure 4. Overexpression of MdATG10 leads to better root growth and activity in apple under nitrogen deficiency stress.
(a) Root architecture, bars: 1 cm, and (b) root activity of WT and transgenic plants with or without treatment. Data are shown
as the means of five replicates with SEs. Different letters indicate significant differences between treatments, according to
one-way ANOVA followed by Tukey’s multiple range test (p < 0.05).

Table 2. Root scanning analysis of WT and MdATG10-OE plants after 28 d of nitrogen deficiency treatment.

Length
(cm)

Surf Area
(cm2)

Avg Diam
(mm)

Root Volume
(cm3) Forks

WT–CK 1256.30 ± 42.30 ab 93.85 ± 4.16 a 0.24 ± 0.01 ab 0.63 ± 0.02 ab 26428 ± 3288.17 a
OE–1–CK 1288.40 ± 26.28a 93.88 ± 3.22 a 0.28 ± 0.02 ab 0.63 ± 0.01 a 25322 ± 2156.41 a
OE–4–CK 1296.20 ± 47.97 a 93.08 ± 1.28 a 0.28 ± 0.04 ab 0.65 ± 0.12 ab 26348 ± 2466.29 a
OE–5–CK 1284.70 ± 53.31 a 92.96 ± 2.45 a 0.26 ± 0.02 ab 0.65 ± 0.08 ab 23746 ± 2466.29 a
WT–ND 556.99 ± 26.72 d 42.21 ± 2.25 c 0.24 ± 0.01 b 0.26 ± 0.02 c 8692 ± 199.56 b

OE–1–ND 927.00 ± 17.36 c 78.33 ±8.01 b 0.28 ± 0.03 ab 0.55 ± 0.06 ab 20846 ± 1929.27 a
OE–4–ND 1160.50 ± 41.10 b 102.81 ± 2.89 a 0.25 ± 0.01 ab 0.66 ± 0.01 ab 22855 ± 1902.22 a
OE–5–ND 1161.60 ± 34.84 b 100.93 ± 3.28 a 0.30 ± 0.03 a 0.76 ± 0.04 a 22432 ± 1805.93 a

Note: CK, plants without any treatment; ND, plants with nitrogen deficiency treatment. All data are means ± SE of 5 plants. Values
not followed by the same letter indicate significant differences between treatments, according to one-way ANOVA followed by Tukey’s
multiple range test (p < 0.05).

2.4. Apple Plants Overexpressing MdATG10 Maintained a Better Nitrogen Retention Ability
under Nitrogen Deficiency Stress

Nitrogen is one of the most important mineral nutrients for plant growth and devel-
opment. Furthermore, the autophagic recycling process in plants contributes to nitrogen
remobilization under a nutrient-deficient condition. Under control hydroponics conditions,
the measurement of nitrogen concentrations in the roots, stems, and leaves of apple plants
showed no distinct differences among genotypes. The nitrogen starvation treatment greatly
decreased the nitrogen content in different tissues, but the reduction was lower in the OE
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plants than in the WT plants (Figure 5a–d). For example, the nitrogen content in the roots
of the WT plants decreased to 63.9% of the control after treatment, while those of the OE
plants decreased to 67.4% in OE–1, 79.1% in OE–4, and 71.1% in OE–5 (Figure 5a).
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Figure 5. Overexpression of MdATG10 leads to higher nitrogen concentration in apple under nitrogen deficiency stress.
Changes of nitrogen concentrations in the (a) roots, (b) stems, (c) leaves, and (d) total of WT and transgenic apple plants.
Data are shown as the means of three replicates with SEs. Different letters indicate significant differences between treatments,
according to one-way ANOVA followed by Tukey’s multiple range test (p < 0.05).

As NR, NiR, GS, and GOGAT enzymes play important roles in nitrate reduction and ni-
trogen assimilation in plants, the activities of these four enzymes in both the roots and leaves
of transgenic apple plants and WT were measured. In roots, NR, GS, and GOGAT activities
were decreased by nitrogen deficiency in all genotypes, but the activities of NR and GOGAT
were significantly higher in OE plants than in WT plants after treatment (Figure 6a–d). In
leaves, the difference in the activities of these four enzymes between WT and transgenic
apple plants under treatment was even more pronounced. For example, the GS activity was
diminished in WT plants but increased in the OE plants after treatment (Figure 6e–h). These
results suggested that overexpression of MdATG10 in apple plants improved its nitrogen
absorption and assimilation ability under nitrogen-deficiency conditions.
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Figure 6. Overexpression of MdATG10 leads to enhanced nitrogen assimilation ability in apple under nitrogen deficiency
stress. Activities of (a) nitrate reductase (NR), (b) nitrite reductase (NiR), (c) glutamine synthetase (GS), and (d) glutamic
acid synthase (GOGAT) in the root (a–d) and leaf (e–h) of WT and transgenic plants with or without treatment. Data
are shown as the means of three replicates with SEs. Different letters indicate significant differences between treatments,
according to one-way ANOVA followed by Tukey’s multiple range test (p < 0.05).
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2.5. Overexpression of MdATG10 Promoted the Expression of Nitrogen Absorption Genes in Apple
Leaves under Nitrogen Deficiency Stress

Due to the significant difference in the activities of enzymes involved in nitrogen
assimilation pathways of transgenic and WT apple plants under low-nitrogen treatment,
the expression of genes involved in the nitrogen absorption processes was examined in
the leaves of all genotypes. As shown in Figure 7, the expression levels of four genes in
the nitrate transporter (NRT) pathway, that is, NRT1.1, NRT2.4, NRT2.5, and NRT2.7, were
all higher in the transgenic plants than in WT plants after 14 days of nitrogen-deficiency
treatment. Particularly, while the expression of NRT2.4 transcripts decreased in the WT
plants under treatment, it was upregulated in the OE plants, even to almost threefold
in OE–5. In addition, the expression pattern of ammonium transporter (AMT) genes
showed the same trend as NRT genes among genotypes under treatment. For example,
the expression of AMT1.1 was downregulated by low levels of nitrogen in WT plants,
but it was upregulated almost twofold in transgenic plants. The transcripts of AMT1.2,
AMT1.6, and AMT2.1 were all expressed at higher levels in OE plants in response to
nitrogen-starvation condition. These data demonstrated that overexpression of MdATG10
upregulated some genes responsible for nitrogen absorption in the apple plants under
nitrogen-deficiency conditions.
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Figure 7. Changes in transcript levels of genes involved in nitrogen absorption in apple following
nitrogen-deficiency treatment. Data are shown as the means of three replicates with SEs. Different
letters indicate significant differences between treatments, according to one-way ANOVA followed
by Tukey’s multiple range test (p < 0.05).
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2.6. Overexpression of MdATG10 Intensified the Autophagic Activity in Apple Leaves under
Nitrogen Deficiency Stress

The autophagic recycling process plays an important role in plant resistance to a
nutrient-deficient condition. qRT-PCR was used to examine the expression patterns of
several important autophagy-related genes in the leaves of all plants to assess the changes
in autophagic activity among plants with different genotypes under nitrogen deficiency
treatment. The expression of detected MdATGs showed little difference among different
genotypes under control hydroponics conditions. In response to low-nitrogen treatment,
the expression of MdATG3b and MdATG4 remained unchanged in WT plants, whereas
the expression of MdATG3a, MdATG7a, MdATG8c, MdATG8f, MdATG8i, MdATG9, and
MdATG12 was induced among genotypes; all of them expressed at higher levels in the OE
plants (Figure 8a). The changes in autophagic activity among different genotypes were
further assessed under low-nitrogen treatment using a TEM. Under control hydroponic
conditions, few autophagosome structures were observed in all the plants (Figure 8b). In-
creased numbers of autophagosomes were detected in apple plants in response to nitrogen
starvation condition. The accumulation of autophagosomes was up to 4.7-fold in WT plants,
but the accumulation in the OE plants increased to 8.2-fold in OE–1, 14.7-fold in OE–4, and
10.4-fold in OE–5 (Figure 8c). Taken together, the results indicated that the autophagy in ap-
ple plants triggered by low levels of nitrogen was intensified by MdATG10 overexpression.
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Figure 8. Expression of other MdATGs and formation of autophagosomes in apple following nitrogen
deficiency treatment. (a) Changes in expression of other MdATGs in WT and MdATG10-OE plants
following nitrogen deficiency treatment. (b) Representative TEM images of autophagic structures
in mesophyll cells of WT and MdATG10-OE plants. Autophagic bodies are indicated by arrows.
Bars: 1 µm. (c) Relative autophagic activity normalized to the activity of WT or MdATG10-OE plants
shown in panel (b). More than 10 cells were used to quantify structures. Data are the means of six
replicates with SE. Different letters indicate significant differences between treatments, according to
one-way ANOVA followed by Tukey’s multiple range test (p < 0.05).
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3. Discussion

Plants encounter a variety of physiological and biochemical changes during their
growth. Therefore, they have developed many evolutionarily conserved strategies for
stress resistance. Autophagy is one of the significant pathways for plants to maintain
cell homeostasis in response to abiotic stresses, as many damaged organelles and redun-
dant macromolecules are degraded through it [32,33]. Several studies demonstrated that
autophagy could be induced by nutrient scarcity in different plant species, such as Arabidop-
sis [34] foxtail millet [35], rice [26], maize [36], and apple [28]. By placing the tissue-cultured
MdATG18a-overexpressing apple plants on nitrogen-depleted MS medium, a previous
study demonstrated that increased autophagy in apple plants led to enhanced tolerance
to nitrogen deficiencies accompanied by increased anthocyanin accumulation in apple
roots [29]. However, the effects of autophagy on the growth and physiological performance
of apple plants under nitrogen-deficient conditions have not been systematically studied.

The present study found that MdATG10 expression could be induced by nitrogen-
starvation condition in the leaves and roots of apple plants. Three MdATG10-overexpressing
apple plants were generated previously [30]. A hydroponic system was used to analyze
the influence of enhanced autophagic activity on the growth and activity of apple plants
under long-term low-nitrogen treatment. Under the hydroponic low-nitrogen treatment,
the apple plants showed leaves chlorosis and growth inhibition, which was significantly
alleviated by MdATG10 overexpression. As nitrogen is the main component of chloroplasts,
the external nitrogen level supplied to plants greatly affects the activity of enzymes in the
photosynthetic system of leaves, thereby influencing the photosynthesis and production
of plants [37,38]. The present study found that both the net photosynthesis and PSII
photochemistry activity were higher in transgenic plants than in WT plants during the
low-nitrogen treatment. Previous studies reported the active role of autophagy in nutrient
remobilization when plants encountered starvation conditions [23,39]. It was believed
that overexpression of MdATG10 in apple plants could reduce the damage on chloroplasts
under nitrogen deficiency stress by improving the recycling and utilization of limited
nitrogen, which might be part of the reason for the differences in aboveground biomass
among genotypes.

In addition, the long-term deficiency of nitrogen weakened the root growth of WT
plants, but this suppression was not apparent in OE plants. The examination of root activity
also showed the same tendency among genotypes. Particularly, the root–shoot ratio of
transgenic plants increased under low-nitrogen conditions and was higher than that of
WT plants. A previous study showed that the higher root–shoot ratio of maize made it
conducive to survive under nitrogen deficiencies [15]. Here, the results demonstrated
that MdATG10 overexpression could reduce the restriction of root growth and further
promote the root–shoot ratio of apple plants under nitrogen starvation conditions. The root
system was the first portion of plants to perceive changes in the environmental nutrient
concentrations; it was also the major organ responsible for absorbing external nutrients [40].
We believed that the better root system of MdATG10-overexpressing apple plants under
low-nitrogen treatment could promote their uptake of limited nitrogen and other useful
nutrients in hydroponics, which created a virtuous cycle for plant growth and might be
another reason for the differences in biomass among genotypes.

For most plants, especially agricultural crops, the nitrate in soil was taken as the
main nitrogen source [41]. The acquired inorganic nitrogen is absorbed through roots and
reduced to amino acids in roots and leaves of plants [42]. In this study, the measurement
of nitrogen concentration in different tissues showed that the nitrogen concentration was
higher in the roots and leaves of transgenic plants than in WT after treatment. NR and
NiR participate in the coupled regulation process of reducing nitrate to ammonium, and
the activity of NR is mainly affected by the concentration of nitrate [43]. This study found
that the NR activity was decreased by low-nitrogen treatment in both roots and leaves of
WT plants, but it was significantly higher in OE plants than in WT in both tissues. The
ammonium was assimilated as amino acids through the action of GS and GOGAT enzymes
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in the leaves of higher plants, and thus the external nitrate concentrations affected GS
and GOGAT activities by influencing the reduction of ammonium [19]. This study found
no significant differences in GS and GOGAT activities among genotypes under control
conditions; however, the activities of these two enzymes were two to three times higher
in the leaves of transgenic plants than those of WT plants under low-nitrogen treatment.
Moreover, as only NO3

−-N was supplied to apple plants in this research, accompanied by
the fact that most of NO3

−-N absorbed by plant roots is transferred to the aboveground
mesophyll cells for reduction, the difference in the activities of NiR and GS was only found
in the leaves of WT and OE plants in response to low-nitrogen treatment, but not in the
roots. These results showed that the nitrate assimilation and utilization in transgenic plants,
especially in the leaves, was less inhibited by nitrogen starvation conditions. Therefore,
we believed that MdATG10 overexpression could effectively curb the negative effect of
external nitrogen deficiency on the endogenous nitrogen cycling in apple leaves, which
increased the nitrogen utilization efficiency of apple plants.

In plants, the fluxes of nitrate and ammonium are mediated by various NRTs and
AMTs [44]. The genetic approaches to improve the nitrogen use efficiency are associated
with the manipulation of genes involved in inorganic nitrogen uptake and allocation [45]
For example, the constitutive overexpression of the high-affinity nitrate transporters Os-
NRT1.1b in rice plants resulted in increased nitrate uptake and aboveground plant biomass
grain yield [46]. Moreover, rice plants overexpressing AMT1.1, which is the most widely
studied AMT gene in rice, showed superior growth and higher yield [47]. However, the
researches on transporters involved in unloading and importing nitrogen in leaves and
mesophyll are relatively scarce. AtAMT1.1 and AtAMT2.1 were identified for retrieving and
importing ammonium into mesophyll cells in Arabidopsis [48,49]. Here, the changes in the
expression patterns of key genes implicated in nitrogen uptake processes were examined in
all genotypes. MdATG10 overexpression upregulated the expression of most detected genes
responsible for nitrogen absorption in apple plants under nitrogen-deficiency conditions.
These results further proved the higher nitrogen absorption and utilization abilities of
MdATG10-overexpressing apple plants.

Obviously, low levels of nitrogen significantly induced autophagic activity in apple
plants, but the autophagosome formation seemed more frequent in MdATG10-overexpressing
apple plants. In Arabidopsis, researches on the various atg mutants under suboptimal condi-
tions demonstrated the important role of autophagy in nutrient recycling, especially under
starvation conditions [23]. Here, we applied MdATG10-overexpressing apple plants to com-
prehensively analyze the effects of enhanced autophagy on the physiological changes and
nitrogen utilization during apple growth under long-term low-nitrogen treatment. MdATG10
overexpression could significantly increase the root–shoot ratio of apple plants, which pro-
moted their uptake of nitrogen nutrients, thereby reducing the damaging effect of nitrogen
deficiency on the whole plant growth. In addition, higher activities of nitrogen assimilation
enzymes were observed in transgenic apple plants, together with the higher expression levels
of nitrogen absorption genes. We believed that autophagy could improve the nitrogen uti-
lization efficiency of apple plants by improving the absorption and assimilation of nitrogen.
Therefore, the increased nitrogen utilization efficiency ensured the chloroplast activity in
apple leaves, thus promoting their growth under nitrogen-deficient conditions. Besides the
conserved degradation and circulation roles of autophagy, these findings provided insight
into the autophagy-mediated morphological and physiological acclimation mechanisms of
apple plants in response to nitrogen deficiency.

4. Materials and Methods
4.1. Plant Materials and Treatment

The M. hupehensis Rehd. apple plants treated with nitrogen depletion conditions were
used to examine the expression pattern of MdATG10 under low-nitrogen stress [50]. Tissues
of GL-3 apple plants were cultured as described previously [51], and then sub-cultured
every 4 weeks. After 30 days on the rooting media, GL-3 (WT) and three MdATG10-
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overexpressing apple lines (OE–1, OE–4, and OE–5) were planted in plastic pots (8 × 8 cm)
filled with a substrate (Pinds Substrate)/roseite/perlite mixture (v:v:v, 3:1:1) and placed in a
growth chamber (25/22 ◦C day/night, 120 µmol photons m−2 s−1, 14-h photoperiod). After
acclimation for 20 days, transgenic and WT apple plants of similar size were transferred to
a hydroponics system as described previously [52]. Plants of uniform size were selected for
treatment after a 10-day preincubation. Each strain contained eighty plants was divided
into two groups. The control group was cultured with 1/2 Hoagland nutrient solution
(1.75 mM Ca(NO3)2, 2.5 mM KNO3, 0.5 mM KH2PO4, 1 mM MgSO4, 0.05 mM FeSO4,
0.05 mM EDTA-Na2, 23.13 µM H3BO3, 4.57 µM MnCl2, 0.38 µM ZnSO4, 0.16 µM CuSO4,
0.25 µM H2MoO4.), and the nitrogen supply in the treatment group was decreased to
0.15 mM (1.75 mM CaCl2, 0.15 mM KNO3, 1.18 mM K2SO4, 0.5 mM KH2PO4, 1 mM
MgSO4, 0.05 mM FeSO4, 0.05 mM EDTA-Na2, 23.13 µM H3BO3, 4.57 µM MnCl2, 0.38 µM
ZnSO4, 0.16 µM CuSO4, 0.25 µM H2MoO4) [44,52]. They were cultivated under conditions
of 23–25/16–18 ◦C Day/night, 160 µmol photons m−2 s−1, and a 14-h photoperiod, and
the nutrient solution was changed every 5 days. After 14 and 28 days of this experiment,
the third through sixth leaves from the apex of the stem (fully mature leaves) and the
roots were sampled from all strains for damage analyses. For samples mentioned above,
three biological replicates were prepared with three plantlets combined as one replicate.
The samples were stored at −80 ◦C after being frozen quickly in liquid nitrogen.

4.2. Growth Measurements

Nine plants per strain were collected to measure the plant height and root length after
the hydroponic treatment. Plant heights were measured from the base of the stem to the
terminal bud of the main stem. After 0 and 28 days of the treatment, 15 plants per strain
were collected and divided into root, stem, and leaf portions. The fresh and dry weights
were measured as described previously [53]. Briefly, the three portions of plants were
rinsed first with tap water, then with tap water containing 0.1 mol HCl, and finally with
distilled water. After the fresh weight (FW) of each sample plant was recorded, the dry
weight (DW) was obtained after the plants were fixed at 105 ◦C for 15 min and oven-dried
at 75 ◦C for at least 72 h to a constant weight. The relative growth rate was calculated as
follows: RGR = (ln DW2 − ln DW1)/ (T2 − T1), where DW1 is the plant DW on day 0 (T1)
and DW2 is the plant DW on day 28 (T2). The root: shoot ratio was calculated as root DW/
(leave DW + stem DW).

4.3. Evaluation of Photosynthetic Characteristics and Chlorophyll Fluorescence

On days 0, 7, 14, 21, and 28 of the hydroponic experiment, the net photosynthesis rate
(Pn) was monitored between 8:30 and 11:00 a.m. using a CIRAS-3 portable photosynthesis
system (CIRAS, PP-Systems, Amesbury, MA, USA). All measurements were taken at
1000 µmol photons m−2 s−1 and a constant airflow rate of 500 µmol s−1. The concentration
of cuvette CO2 was set at 400 ± 5 cm3 m−3. Data were collected from fully expanded, fully
light-exposed leaves at the same position from six plants.

Chlorophyll fluorescence transients were measured on leaves at the same position
from selected plants after 20 min of dark acclimation using the Open FluorCam FC 800-O,
and Fv/Fm ratios were calculated with Fluorcam7 software (PSI, Brno, Czech Republic).

4.4. Measurements of Root Architecture and Root Activity

After 28 days of treatment, the roots of selected plants were cut off and rinsed with
tap water and distilled water without damage. After using SNAPSCAN310 scanner
(Seiko Epson Corp., Bangalore, India) to collect scanned images, the total root length,
average diameter, root volume, surface area, and number of forks were measured using
the WinRhizo image analysis system (V4.1 c; Regent Instruments, Quebec, QC, Canada).

To analyze root activity, fresh and white root samples of six plantlets were collected at
the end of stress treatment. The root activity was determined through triphenyl tetrazolium
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chloride method using detection kits (Suzhou Comin Biotechnology Co. Ltd., Suzhou,
China) following the manufacturer’s protocols.

4.5. Determination of Nitrogen Concentrations and Enzymatic Activities

The nitrogen concentrations were determined by the heating digestion method [53].
Briefly, after sieving with a 0.15 mm sifter, 0.1 g samples of roots, stems, and leaves were
digested with 5 mL of concentrated sulfuric acid (H2SO4, AR, 98%) and hydrogen peroxide
(H2O2, GR, ≥30%) at 375 ◦C. Deionized H2O was added to a volume of 100 mL. Nitrogen
concentrations were obtained with an Auto Analyzer 3 (AA3) continuous-flow analyzer
(SEAL Analytical, Norderstedt, Germany).

The activities of nitrate reductase (NR), nitrite reductase (NiR), glutamic acid synthase
(GOGAT), and glutamine synthetase (GS) were determined using detection kits (Suzhou
Comin Biotechnology Co. Ltd., Suzhou, China) following the manufacturer’s protocols at
the end of stress treatment.

4.6. RNA Extraction and qRT-PCR Analysis

Total RNA extraction was carried out using a Wolact plant RNA isolation kit (Wolact,
Hong Kong, China). Then, 1 µg of total RNA was used for cDNA synthesis using a Re-
vertAid First-Strand cDNA Synthesis Kit (Thermo Scientific, Waltham, MA, USA). The
qRT-PCR analysis was carried out with an SYBR Premix Ex Taq II Kit (TaKaRa, Dalian,
China) using a LightCycler 96 quantitative instrument (Roche, Switzerland). Three bi-
ological replicates were conducted in each assay, and Malate dehydrogenase (MdMDH)
transcription was used to normalize the levels of different genes [54]. The relative expres-
sion level of each gene was determined by the 2−∆∆CT method [55], and the specificity
of each gene was determined using a dissociation curve analysis. All experiments were
repeated with three biological replicates. The gene-specific primer sequences are shown in
Supplemental Table.

4.7. Observation of Autophagosomes

On day 28 of the experiment, the fourth mature leaves from the apex of the stem
were excised from selected plants and immediately cut into small pieces in 2.5% aldehyde
solution before being placed in the dark for 12 h at 4 ◦C. After washing with 0.2 M PBS
buffer (pH 7.4), the samples were fixed with 1% (v/v) osmium tetroxide for 2.5 h at room
temperature, dehydrated in a graded ethanol series (30–100%; v/v), and embedded in Epon
812. The ultrathin sections (70 nm) were prepared on an ultramicrotome (Leica ULTRACUT,
Wetzlar, Germany) and collected on Formvar-coated grids. The autophagosomes were
observed under a Jeol-1230 transmission electron microscope (TEM, Hitachi, Tokyo, Japan)
at an accelerating voltage of 80 kV.

4.8. Statistical Analysis

Experimental data were analyzed with SPSS 20.0 software. The statistical analysis
was performed by one-way analysis of variance followed by Tukey’s multiple range test
(p < 0.05), and values were presented as mean ± SEs (standard error) of at least three
biological replicate samples.

5. Conclusions

As the MdATG10 expression could be induced by a low nitrogen level both in the
leaves and roots of apple plants, the MdATG10-overexpression apple plants were cultured
in a hydroponic system containing different nitrogen levels for 28 days to investigate how
autophagy functions in the physiological and growth state of apple plants under nitrogen
starvation. The present study found that MdATG10 overexpression induced the autophagic
activity in apple plants, which led to a better root growth and a more efficient absorption
and assimilation of the limited nitrogen sources under nitrogen starvation condition. This
effectively absorbed nitrogen and nutrition also reduced the starvation damage to the
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chloroplasts in transgenic plants. It was concluded that besides the degradation role
of autophagy, it could elevate the tolerance of apple plants to nitrogen deficiency by
promoting the root–shoot ratio of plants and further reducing the starvation damage on
the photosynthetic system.
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