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Abstract

Mutations to the human kinome are known to play causal roles in cancer. The kinome regu-

lates numerous cell processes including growth, proliferation, differentiation, and apoptosis.

In addition to aberrant expression, aberrant alternative splicing of cancer-driver genes is

receiving increased attention as it could lead to loss or gain of functional domains, altering a

kinase’s downstream impact. The present study quantifies changes in gene expression and

isoform ratios in the kinome of metastatic melanoma cells relative to primary tumors. We

contrast 538 total kinases and 3,040 known kinase isoforms between 103 primary tumor

and 367 metastatic samples from The Cancer Genome Atlas (TCGA). We find strong evi-

dence of differential expression (DE) at the gene level in 123 kinases (23%). Additionally, of

the 468 kinases with alternative isoforms, 60 (13%) had significant difference in isoform

ratios (DIR). Notably, DE and DIR have little correlation; for instance, although DE highlights

enrichment in receptor tyrosine kinases (RTKs), DIR identifies altered splicing in non-recep-

tor tyrosine kinases (nRTKs). Using exon junction mapping, we identify five examples of

splicing events favored in metastatic samples. We demonstrate differential apoptosis and

protein localization between SLK isoforms in metastatic melanoma. We cluster isoform

expression data and identify subgroups that correlate with genomic subtypes and anatomic

tumor locations. Notably, distinct DE and DIR patterns separate samples with BRAF hotspot

mutations and (N/K/H)RAS hotspot mutations, the latter of which lacks effective kinase

inhibitor treatments. DE in RAS mutants concentrates in CMGC kinases (a group including

cell cycle and splicing regulators) rather than RTKs as in BRAF mutants. Furthermore, iso-

forms in the RAS kinase subgroup show enrichment for cancer-related processes such as

angiogenesis and cell migration. Our results reveal a new approach to therapeutic target

identification and demonstrate how different mutational subtypes may respond differently to

treatments highlighting possible new driver events in cancer.
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Author summary

The incidence of melanoma continues to rise worldwide, especially in young adult popu-

lations. Metastasized melanoma is difficult to treat with current drugs and may kill

patients in a matter of months. Kinase inhibitor (KI) drugs have shown success in treating

melanoma with BRAFV600E mutations, and a better understanding of how melanoma

alters the human kinome may reveal new drug targets. We use two approaches: finding

kinases with altered gene expression and finding kinases with aberrant alternative splic-

ing, which is less studied. Alternative splicing is a mechanism through which a gene may

produce different gene products (isoforms), even if overall gene expression does not

change. We find multiple examples of aberrant splicing and discuss their possible role in

driving cancer. Because melanoma cells lacking a BRAF mutation do not respond well to

current KIs, we also contrast results between genomic subtypes of melanomas. In particu-

lar, samples with a primary NRAS mutation have distinct expression patterns. Our results

buoy future research interests of oncologists; and will also be of interest to researchers

studying aberrant splicing in other diseases. Additionally, we provide novel algorithms for

statistical testing of altered isoform makeup of transcripts generated from the same gene

locus.

Introduction

Melanoma is the deadliest form of skin cancer, with about 232,100 new cases and 55,500

deaths worldwide each year [1]. Although incidence is less than 5% of new cancer cases in the

U.S., incidence and deaths worldwide continue to rise, especially in the young adult popula-

tions [2]. Stage 1 or 2 disease is easily treated by surgery, where 5-year survival rates are > 90%

[1], but if not caught early tumors may metastasize to the nearby lymph nodes and then

throughout the body. Once the disease reaches the brain, median survival time decreases to 5

months [3]. Thus, novel systemic treatments for metastatic melanoma are needed.

Kinases have become compelling cancer targets because they contain mutations that pro-

duce constitutive kinase activation and dysregulate signaling pathways in cancer. Among the

538 known kinase genes in humans, there are numerous relevant targets. Specifically, muta-

tions have been observed in kinases serving as growth factor receptors [4], cell cycle regulators

[5,6], nuclear signaling [7], and apoptosis regulators [8]. In melanomas, BRAF is most com-

monly mutated, along with other kinases including NRAS and NF1. Fleuren et al. identified 23

additional kinases harboring driver mutations for melanoma, including the receptor FGFR3
and cell cycle regulator CDK4 [9]. Additional targets may remain undiscovered as atypical

kinases, which can phosphorylate proteins but lack a typical kinase domain.

Along with chemotherapy and immunotherapy, treatments for advanced melanomas also

incorporate small molecule kinase inhibitors (KI). There are currently 37 FDA approved KIs

on the market for cancer treatment, with ~150 in ongoing clinical trials [10]. Targets of these

small molecule KIs include BRAF, which occurs in about 50% of melanoma patients [1,11],

and MEK, a downstream signaling target of BRAF in the MAPK pathway. Despite initial suc-

cesses for these drugs, limitations remain. For example, half of all BRAF-mutant tumors

treated with BRAF inhibitors advance within 6–8 months post-treatment [12] whereas other

hotspot mutations, such as in NRAS, lack effective KI treatments altogether [13]. Complemen-

tary targeted approaches in the form of immune-checkpoint blockers ipilimumab, pembroli-

zumab, and nivolumab, have recently been shown to significantly improve survival in some

patients, even in those with wildtype BRAF [14–16]. Although these treatments do not work in
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the majority of patients [17], combining them with KIs may improve survival prospects. Thus

while existing drugs show promise for a subset of patients, new targets and combination thera-

pies are in dire need to address treatment-resistant tumors, and especially those tumors with

wildtype BRAF.

There are multiple forms of kinase dysregulation: activating mutations, overexpression,

underexpression, copy number alterations, repression, and chimeric translocations; but there

has been much less research into gene isoform distributions, in part due to the difficulty of

estimating isoform composition from short read RNA sequences [18,19]. For these data,

computational approaches are required to estimate isoform counts prompting development of

transcript alignment algorithms such as RSEM [20], and faster pseudo-alignment algorithms

such as kallisto [21]. The gold-standard of isoform analysis might eventually be achieved

through “3rd generation” long read sequencing technologies such as PacBio [22] and Oxford

Nanopore [23], providing more accurate, contiguous isoform sequences, although these cur-

rently have a high error rate and are costly compared to 2nd gen. sequencing [24]. Regardless,

long and short read sequencing technologies both discern differential isoform composition to

address the question of how alterations in sequential exon continuity can change functional

outcomes.

Although isoform distributions are not widely reported in the literature, there is reason to

suspect they are altered in cancer tissues. First, alternative splicing is highly abundant under

normal conditions where up to 94% of human genes undergo alternative splicing [25], and the

dominant isoform depends on cell type [26]. Second, in various cancers, trans-acting splicing

factors can be mutated or mis-regulated [27–31], potentially skewing isoform distributions.

Third, somatic DNA mutations–abundant in cancer–may occur on splice sites, favoring or

suppressing splicing events. Kinases are known to undergo alternative splicing events in cancer

[18] and these are implicated in tumor progression. Examples include MKNK2 in glioblastoma

[32]; CD44 in breast cancer [33]; and KLF6 in prostate, lung, and ovarian cancers [34]. Splicing

induces losses or gains of functional or regulatory domains, documented in cancers, altering

the functions of affected proteins in the cell. Despite these observations, differential isoform

usage is an extra level of detail not normally analyzed in cancer studies.

Here we propose to detect and demonstrate the biological relevance of isoform alterations

in metastatic melanoma. Notably, a recent study of the human kinome in prostate cancer

found that there was little overlap between genes with differential expression and genes with

differential splicing [35], suggesting a study of the latter will yield additional therapeutic tar-

gets. Despite our emphasis on differential isoform expression, we include differential expres-

sion of genes (i.e., representing a gene locus with a single expression value), to show distinct

and relevant findings learned from each type of assessment.

In this study, we analyze RNA-seq data from The Cancer Genome Atlas (TCGA) skin cuta-

neous melanoma project (SKCM) to study changes to the kinome of metastatic vs. primary

tumor melanomas. Important findings include isoforms downregulated in metastatic samples

that correspond with known and novel suppressors of metastasis and additional subgroupings

of metastatic samples with narrowly focused therapeutic potential. Our results identify charac-

teristics of wildtype BRAF tumors, as well as new subdivisions among BRAF mutant tumors.

Methods

Human kinome

We obtained Gene IDs for 538 human kinases from the Human Kinome database [36] at

http://kinase.com/web/current/kinbase/. Kinases are classified into 10 phylogenetic groups:

tyrosine kinases (TKs); “Sterile” serine/threonine kinases (STEs); calmodulin-dependent
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kinases (CAMKs); Cdk, MAPK, GSK, and Cdk-like related kinases (CMGCs); protein kinase

A, protein kinase G, and protein kinase C related kinases (AGCs); tyrosine kinase-like (TKLs);

casein kinase 1 (CK1); receptor guanylate cyclases (RGCs); “other” typical kinases; and atypical

kinases (aPKs) i.e. kinases that phosphorylate without a conventional kinase domain; For our

analysis, we further subdivided TKs into receptor tyrosine kinases (RTKs) and non-receptor

tyrosine kinases (nRTKs) due to their distinct functional roles.

TCGA data

We obtained RNA-seq data and kinase gene counts–estimated using HTSeq [37]–from the

National Cancer Institute (NCI)’s Genomic Data Commons (GDC) portal for TCGA’s skin

cutaneous melanoma (SKCM) project. This included data from 472 samples gathered from

468 patients: 367 samples for metastatic tumors, 103 for primary tumors, 1 for an additional

metastatic tumor from the same patient, and 1 for solid normal tissue. The latter two samples

were not used in our analysis.

The data was processed in 14 batches, with the largest batch (labeled “A18”) having 218 of

the samples in three plates. The remaining batches had 10–48 samples in a single plate each.

Isoform quantification

For the purpose of quantifying the abundance of isoforms in the human kinome, we used the

kallisto (v0.45.0) package [21] in conjunction with the transcript sequences of protein coding

genes in the Gencode (release 29) annotation of the human genome. We first constructed the

kallisto index file using the 98,913 FASTA sequences of transcript isoforms of human protein

coding genes included in the Gencode annotation (ftp://ftp.ebi.ac.uk/pub/databases/gencode/

Gencode_human/release_29/gencode.v29.pc_transcripts.fa.gz; accessed March 15, 2019).

FASTQ-formatted RNA-Seq reads (48-bp, paired-end) for each TCGA SKCM sample were

produced from the bam files obtained from the Genomics Data Commons Data Portal. In

order to avoid biases in kallisto estimates of fragment lengths, for each sample we produced

FASTQ files in which the order of the reads was randomized. We then used these randomized

reads to perform the kallisto “quant” analysis, from which we obtained the transcripts per mil-

lion (tpm) estimates of each isoform abundance.

Sample quality control

3’ bias for each sample was estimated using the QoRTs package [38]. For sample purity, we

used the consensus purity estimate from Aran et al. [39]. Samples with purity < 70% were

removed to create our “high purity” sample set. Samples with a QoRTs 3’ bias score > 0.55

(see ref [38] for Methods) were also removed in our “quality controlled” set. After clustering

kinase isoform expression in metastatic samples, we also classified 83 metastatic samples as

having amounts of immune infiltrate using k-means clustering with 2 centers (see Clustering

of Metastatic Samples below).

Differential expression (DE)

We tested differential expression of all genes between primary tumor and metastatic samples

using the DESeq2 toolbox for R [40] with two models: “sample type” and “sample type

+ batch” to account for batch effects.

Genomic subtypes for 56 primary tumor and 260 metastatic samples were obtained from

Akbani et al. [11]. They included BRAF hotspot mutants (47%), RAS [N/H/K] hotspot mutants

PLOS COMPUTATIONAL BIOLOGY Kinase isoform expression in metastatic melanoma

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010065 May 13, 2022 4 / 35

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_29/gencode.v29.pc_transcripts.fa.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_29/gencode.v29.pc_transcripts.fa.gz
https://doi.org/10.1371/journal.pcbi.1010065


(29%), NF1 mutants (9%), and triple wildtype (WT) (15%). The remaining 156 samples were

added after the study and had no genomic subtype information.

Reverse phase protein array (RPPA) data

The Reverse Phase Protein Array (RPPA) level 3 normalized data were downloaded from the

GDAC data portal (http://gdac.broadinstitute.org/). The original data contains 355 SKCM

samples consisting of 92 primary tumor and 263 metastatic samples. Since the RPPA data used

antibodies in rabbit and mice, we manually mapped the protein names into human gene

names, with the aid of GeneCards (https://www.genecards.org/). We found 165 unique genes

corresponding to the 208 RPPA protein probes. This included 33 kinase genes with 56 (26.9%)

corresponding probes. We focused on the 224 samples with purity�70%, same as in our dif-

ferential gene expression analysis. We tested differential protein expression between primary

tumor (n = 78) and metastatic samples (n = 146) using a two-sided Wilcoxon’s rank sum test.

Benjamini-Hochberg adjusted p-value < 0.05 was deemed significant.

Calculations for differential isoform ratios (DIR)

Transcript isoform counts for the TCGA samples were estimated from RNA-seq data with kal-
listo [21], using isoform information for protein coding loci provided by Gencode v.29 tran-

scriptome annotation. In total, there were 3,040 protein coding isoforms for the human

kinome. 69 genes with only one coding isoform and one pseudogene in the kinome list

(PRKY) were not tested, leaving 2,971 isoforms. For each gene, isoform counts (in transcripts-

per-million or TPM) were grouped as a vector (e.g. a five-element vector for a gene with five

coding isoforms), and the vector was normalized to sum to 1. One vector per sample was

made, ignoring samples with zero counts for all isoforms.

We used two models to test for differential isoform ratios. The first was a permutation

method utilizing linear discrimination analysis (LDA). LDA was performed to reduce the

space of isoform vectors to the 1D line which best separates sample types, and the LDA statis-

tic

ðmPT � mMetÞ
2

s2
PT þ s

2
Met

was calculated. The sample labels were then randomized niter times and the statistic recalcu-

lated to create a null distribution, from which the p-value was found. This method had the

benefit of producing a single p-value without assumptions, but could only find p-values as low

as 1/niter.

In the second model, principal component analysis (PCA) was performed on the space of

normalized isoform vectors, providing us with “n-1” components for “n” isoforms. PCs with

zero variance were removed. We tested the difference in isoform coordinates between sample

types along each PC using one of three different statistical tests (see below) and combined the

p-values using Fisher’s method. For both models, p-values were adjusted using Benjamini-

Hochberg FDR adjustment.

Comparison of statistical tests

Given that the permutation test becomes computationally prohibitive for large datasets and

high precision, we attempted to find a statistical test that could reproduced the results obtained

through permutations. We used three different tests along the principal components of the

space of isoform vectors: the Wilcoxon rank sum test, Welch’s t-test, and the general
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independence test from R’s conditional inference (coin) package [41]. We combined the p-val-

ues from each principal component with both Fisher’s method (FM) and the asymptotically

exact harmonic mean (HMP) from DJ Wilson [42]. This resulted in six sets of p-values which

we compared to the permutation test results.

We found that the t-test combined with Fisher’s method gave the best correlation between

p-values (r = 0.92) and ranks (ρ = 0.92), while the coin test combined with HMP gave the best

correlation between the logarithm of p-values (r = 0.89). However, total correlation may be of

less interest than the sensitivity and specificity of the tests. We calculated Youden’s J statistic

(sensitivity + specificity– 1) at three significance levels: p = 0.05, 0.01, and 0.001. The t-test

combined with Fisher’s method performed best at all three levels, with J = 0.79, 0.80, and 0.80

respectively, followed by the coin test with Fisher’s method. The geometric mean of these two

tests pnew ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffipt� testpcoin
p

performed better, with J = 0.80, 0.84, and 0.86 respectively, and also

increased all three correlations. We thus adopted this test for scaling up the number of genes.

The Wilcoxon test performed poorly due to difficulties handling ties in the data.

Clustering of metastatic samples

A quasi-Poisson generalized linear model (GLM) was used to test each individual metastatic

sample vs. all primary tumor samples for each protein-coding isoform–using TPM counts

from kallisto–resulting into a 3,040 x 367 matrix of p-values. Before clustering the data was

thresholded into three bins, setting all p< 0.05 to +1 for isoforms with increased expression,

all p< 0.20 to -1 for isoforms with decreased expression, and all other entries to 0. The reason

we used such a liberal p-value for negative change is because most count data follow a Poisson-

like distribution with a low median, which makes decreased expression for individual samples

unlikely to test as significant. For example, isoform SLK-202 tests as highly significant for

decreased expression (p = 3.4e-9) for all metastatic vs. primary tumor samples but only tests as

significant (p = 0.0014 and 0.038) for two individual samples.

After digitizing, we applied k-means clustering to the data matrix, using the elbow method

to find an appropriate number of clusters. Enrichment for tumor region, mutation subtype

[11], batch ID, and kinase phylogenetic group in each cluster were tested using Fisher’s exact

test.

Gene biological process and kinase group enrichment

1,572 biological process (BP) annotations were downloaded from the PANTHER database at

geneontology.org. Genes were ranked by p-values (for DE or DIR) and significant genes tested

for enrichment using the one-sided Fisher’s exact test (i.e. hypergeometric test), using the

remaining kinase genes as the background. We found that enrichments could differ drastically

depending on the p-value threshold chosen for significance, so we searched for BP enrichment

at multiple thresholds. Additionally, testing for DE or DIR with small sample sizes produced

less extreme p-values than testing with large sample sizes, resulting in comparing >300 signifi-

cant genes from one set of results (more than half the kinome) to<10 genes in another set of

results. So we tested four percentile-based thresholds–the top 5%, 10%, 20% and 40% of all

genes with a p-value–to obtain a comparable set of enrichments between sample sets. Results

described are for the top 5% of genes unless noted otherwise.

We did not adjust p-values for the biological processes for several reasons. Having discov-

ered a set of significant genes, we wanted to investigate the functional role served by these

genes. Some annotations, such as “protein kinase”, will never test as significant because all the

genes in our background and foreground are kinases, making the expected false discovery rate

lower than assumed in Benjamini-Hochberg (BH) correction. Furthermore, GO terms are
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highly dependent, making common adjustment methods such as BH inappropriate. Finally,

GO terms do not account for individual isoform activities, thus do not address our underlying

question.

We did calculate an empirical false discovery rate (see S1 Results) merely to compare our

enrichment results to those of a randomly selected set of “significant” genes.

Kinase phylogenetic group enrichment (see “Human kinome” above) was calculated in the

same manner using percentile thresholds, with p-values unadjusted.

Split-read alignment mapping

To evaluate changes in the relative abundance of isoform using an alternative method, we

quantified the relative abundance of split reads specifically associated with the isoform of inter-

est. For this purpose, we aligned the RNA-Seq reads using STAR against the hg19 version of

the human genome assembly. We used the QoRTs package [38] to quantify split read support

for splice junctions. For cases of alternative promoters, we compared the relative abundance of

split reads supporting a common exon junction with alternative upstream exons. In cases of

isoforms differentiated by a skipped exon, we considered the reads supporting the junction

skipping the exon, and the average number of reads supporting the two junctions of the alter-

natively spliced exon. The relative abundance was expressed as a fraction of reads specifically

supporting one isoform out of the total number of reads supporting both isoforms. The differ-

ence in the relative abundance was compared between primary tumor and metastatic samples

using a one-sided Wilcoxon rank sum test, guided by the expectation set by the output from

the kallisto tool.

In addition to this method, we also performed local analysis of exon usage using the pack-

age DEXSeq [43] on the quality-controlled sample set (see “Sample quality control” above). All

kinase genes, including those with only one coding isoform, were tested.

Survival analysis

We obtained patient survival data, i.e. days until death, from TCGA. To determine differences

in survival across sample clusters (see “Clustering of metastatic samples” above), survival

events and their respective times up to 4000 days were compiled for samples in each cluster

based on vital status. We then used this data to generate a Kaplan-Meier estimator to plot the

survival curves of each cluster. Log-rank tests were used to evaluate significance.

We assessed the correlation between kinase gene expression and patient survival using

overall survival calculated for 205 high purity metastatic samples with survival data. For each

kinase gene (n = 538), HTSeq gene counts (normalized by size factor by DESeq2) were corre-

lated against overall survival using the Spearman correlation test. P-values were adjusted using

Benjamini-Hochberg method.

Overexpression of SLK isoforms in Metastatic Melanoma

We transiently overexpressed short-length SLK (SLK-201), and full-length SLK (SLK-202) in

the metastatic melanoma cell line A375 (ATCC, Manassas, VA). SLK-201 and SLK-202 were

cloned into the GFP fusion expression vector, p-RECEIVER-M98 (Genecopoeia, Rockville,

MD). A375 cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) with 10% FBS.

A375 cells were transfected with lipofectamine 2000 (Invitrogen, Carlsbad, CA). Deletions Δ1-

373SLK-201 and Δ1-373SLK-202 were made from the full-length constructs by GenScript (Pis-

cataway, NJ).

To determine early apoptosis, the cells were stained with annexin V (BD Biosciences, San

Jose, CA), and analyzed by FACS at 24h, 48h, and 72h time points. The positive threshold for
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annexin V detection was determined by comparing a negative control (cells treated with the

same volume lipofectamine used in transfection) and a positive control (cells treated with 1 μM

of Adriamycin, a DNA damaging drug which induces apoptosis) at each time point for each

replicate. Similarly, the positive threshold for GFP expression was determined by comparing a

negative control (cells treated with a volume lipofectamine used in transfection, but no vector)

and a positive control (cells transfected with eGFP-only vector) at each time point for each repli-

cate. We analyzed percent annexin V in GFP positive cells over time for the negative control

(i.e., Lipofectamine, no vector), eGFP-only, SLK-201-eGFP, SLK-202-eGFP. Cells expressing

GFP were binned into five groups of increasing GFP fluorescence intensity for further analysis

as follows: B1 (104–104.5), B2 (104.5–105), B3 (105–105.5), B4 (105.5–106), B5 (> 106).

To examine differences in the actin cytoskeleton, the cells were stained with Phalloidin-

iFluor 594 (Abcam, Waltham, MA) and DAPI (Thermo Scientific, Waltham, MA). They were

visualized with a Zeiss LSM 880 NLO Laser Scanning Microscope at 24h, 48h, and 72h time

points.

Results

We analyzed the 538 kinase genes comprising the human kinome for changes in total mRNA

expression and 3,040 isoforms for altered isoform expression, between metastatic and primary

tumors. Using computational tools HTSeq [37] and kallisto [21] with short read sequences, we

implemented the data analysis workflow depicted in Fig 1. Along with differential expression

defined at the gene level and differential isoform ratios calculated within each locus, we per-

formed a clustering analysis to identify pathway, mutational and functional characteristics that

define each subgroup.

In this paper, we will first cover the DE results for varying sample sets (all samples, high

purity samples only, and samples separated by genomic subtype), covering significant genes

and their biological process enrichments. We will then do the same for the differential isoform

ratio results before comparing the two groups.

Sample demographics

Primary (n = 103) and metastatic (n = 367) tumors were obtained from the TCGA skin cutane-

ous melanoma project (SKCM) (Table 1). Primary tumors originated in a number of locations

Fig 1. Data analysis workflow.

https://doi.org/10.1371/journal.pcbi.1010065.g001
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including arms or legs, trunk, head or neck, or other areas, such as armpit, genitalia, etc. Meta-

static locations included regional cutaneous or subcutaneous tissue, regional lymph nodes, dis-

tant metastases, and unclassified metastases. Samples were skewed towards males, and mostly

derived from white individuals. Patient age at time of diagnosis ranged from 15 to 90, with a

median of 58-years-old.

Differential expression (DE) dominated by receptor tyrosine kinases

We first tested differential expression at the gene level. Out of 538 kinase genes, 281 (52%) had

significant DE (padj < 0.05) between all primary tumor and all metastatic samples (S1 Table).

The top groups, ranked by p-value, included both non-receptor (nRTKs) and receptor tyrosine

kinases (RTKs) (Fig 2A). We looked for biological process enrichment in the top 5% and 10%

of genes, and found strong enrichment for immune cell activation (both innate and adaptive).

Clustering analysis (see Methods) revealed these genes have strongly correlated expression,

suggesting their high expression results from immune infiltrate in the metastatic samples, i.e.

immune cells attacking tumor cells. Using this approach, we identified 83 metastatic samples

with high amounts of putative immune infiltrate (see Methods), which we removed before

rerunning the DESeq2 analysis. This action removed the enrichment for nRTKs, whereas RTK

enrichment remained (Fig 2B). We next addressed the impact of impure tumor samples, as

measured by the consensus purity estimate developed in Aran et al. [39]. When 168 samples

with< 70% estimated purity were removed from the original set, which included 80 of the 83

Table 1. Sample demographics.

Sample details Variables Sample numbers

type - Normal tissue Primary Metastatic

count - 1 103 367

tumor origin arms or legs - 41 153

trunk 1 48 125

head or neck - 8 30

other (armpit, genitalia, etc.) - 4 9

unknown - 2 50

metastatic location regional cutaneous or subcutaneous tissue - - 74

regional lymph nodes - - 221

distant metastases - - 68

unclassified metastases - - 4

genomic subtype BRAF hotspot mutation - 32 118

RAS hotspot mutation - 11 81

NF1 any mutation - 5 23

triple WT - 8 38

not available - 47 107

sex male 1 61 230

female - 42 137

age (median) - 51 65 56

race white 1 94 353

Asian - 7 5

non-white Hispanic - 1 2

black - 0 1

unknown - 1 6

# of batches 1 14 14

https://doi.org/10.1371/journal.pcbi.1010065.t001
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immune infiltrate samples, again we saw enrichment for nRTKs disappear whereas RTKs

remained significant (Fig 2C). We named this filtered group the “high purity” (HP) group. In

both assessments, enrichment for RTKs remained significant when assessed as subsets of the

top 5% to ~ 20% of genes. There was also a lesser enrichment for the STE kinase group

(p = 0.031 at 20% threshold; Fig 2C), which contains kinases upstream of MAPK signaling cas-

cades. When only the high purity (HP) samples were compared we found 197 significant genes

including 26 of the 57 RTKs (S2 Table). Of these 26 kinases, 11 are known to be internalized

from the cell surface into the nucleus [44]: FGFR1/3, FLT1, ERBB4, INSR, TIE1, CSF1R, EGFR,

IGF1R, MET, and KDR. Internalized receptors have been linked to cancer progression and

resistance to therapy by, for example, activating DNA damage response pathways [45–47].

Absolute fold-changes for significant genes ranged from 0.503 (KSR) to 11.7 (NRK).

Next, we examined differential gene expression when the HP primary tumor and metastatic

samples were subdivided into their particular genomic subtypes (BRAF, RAS, triple WT and

NF1) (S3 Table). Although this approach reduced sample size for each test, a similar enrich-

ment pattern emerged. Specifically, the DE genes for the BRAF hotspot mutants, NF1 mutants,

and triple WT samples were all enriched for RTKs (odds ratios = 4.0, 6.9, and 3.2 respectively

at 5% threshold: Fig 2D). The deviant result was the case of the RAS hotspot mutants, where

DE was dominated not by RTKs but by CMGC kinases (odds = 4.1, Fig 2E). This group

Fig 2. Kinase group enrichment for differential expression of primary and metastatic tumors differs by sample set. Depicted are the odds ratios for each

kinase group in the top 5%, 10%, 20%, and 40% of kinase genes, ranked by p-value. This indicates that the strongest DE enrichment is concentrated in nRTKs

for all 470 samples, RTKs for high purity and BRAF mutant samples, and CMGC kinases for RAS mutant samples. Enrichment data collected at the four

percentile points are independent of p-value; the percent of genes that have significant DE (p<0.05) before and after p-value adjustment are shown by the gray

and black dotted lines respectively. Sample type (primary tumor or metastatic) was the only model variable for the DESeq2 results.

https://doi.org/10.1371/journal.pcbi.1010065.g002
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contains both cyclin-dependent kinases–which regulate the cell cycle–and downstream MAP-

kinases–which regulate gene expression–as well as kinases directly involved in splicing regula-

tion (i.e., serine arginine protein kinases). Although RTKs (particularly Ephrin receptors, i.e.,

EPHA) remain significantly altered in the RAS mutants, this result suggests a distinct set of

alterations is associated with metastases in RAS mutants. In metastatic BRAF mutants,

mutated BRAF itself had non-significant increased expression.

Influence of sample batches on differential gene expression

Because not all the samples in the TCGA data set came from the same batch, we also ran

DESeq2 using both sample type and batch ID as model variables. This approach increased p-

values, decreasing the number of significant genes. However, 123 kinase genes remained sig-

nificant at the padj < 0.05 level, including 16 RTKs (Table 2), compared to 197 total genes

when only the sample type was the variable. Gene ranking was not substantially altered (Spear-

man correlation, ρ = 0.81) and enrichment trends were similar to our prior results for all geno-

mic subtypes (BRAF, RAS, triple WT), with the exception of the NF1 mutant samples. These

could not be assessed due to the small sample size (2 primary and 11 metastatic tumors),

where the primary tumors and metastatic samples were not from the same batch. Excepting

this subtype, for the remaining analyses we included batch ID as a model variable.

Biological process (BP) enrichment differs by genomic subtype

In addition to the kinase group enrichment, for each set of results (i.e., all samples, high purity,

BRAF mutants, etc.) we looked for BP enrichment among significant genes, as a hypothesis-

free approach to further characterize the metastatic tumors (S4 Table). Top genes were highly

enriched for immune-related annotations when all 470 samples were used, the highest being

“adaptive immune system” (p = 5.1e-9) (Table 3). These enrichments nearly disappeared when

samples with < 70% purity were removed. Surprisingly, when only analyzing HP samples,

Table 2. Differential expression from primary tumor to metastatic samples in receptor tyrosine kinases (RTKs).

Gene Name Base Mean Fold Change P-value P-adj Nuclear Trafficked [44]

EPHA1 149.44 -6.13 8.15e-31 1.82e-28

FGFR3 496.72 -4.58 4.29e-14 3.72e-12 Yes

LMTK3 84.69 -2.99 4.87e-10 2.97e-08

EPHA3 671.47 3.20 7.27e-09 3.77e-07 Yes

EPHB6 392.00 -2.79 1.31e-07 5.62e-06

FLT1 1539.25 1.57 4.10e-06 1.24e-04

MERTK 993.10 1.86 2.16e-05 5.06e-04

ROR1 409.93 1.75 4.58e-05 9.44e-04

FGFR2 232.15 -2.54 6.50e-05 1.25e-03 Yes

EGFR 731.80 -1.95 3.58e-04 4.76e-03 Yes

EPHA2 3375.91 -1.56 1.74e-03 0.0156

TIE1 895.76 1.42 3.63e-03 0.0267 Yes

EPHA6 16.09 2.24 5.71e-03 0.0371

DDR2 6622.61 1.36 6.66e-03 0.0416

RYK 2858.81 1.17 8.31e-03 0.0484 Yes

INSR 2475.26 1.25 8.60e-03 0.0495 Yes

Results are between high purity (>70%) primary and metastatic tumors using sample type and batch ID as model variables. Only RTKs with padj < 0.05 are shown.

Negative fold change indicates decreased expression in metastatic samples.

https://doi.org/10.1371/journal.pcbi.1010065.t002
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significant BP annotations were depleted, with only four annotations receiving a p-value below

0.05. “Ephrin receptor signaling pathway” (p = 0.033); was the only non-immune-related

enrichment. Significant ephrin pathway genes included 7 ephrin receptors and downstream

non-RTKs such as ROCK1/2 (regulators of actin cytoskeleton, downstream of RHOA and

EPHA4 [48]), PAK3 (downstream of RAC1 and EPHBs and important for cytoskeletal reorga-

nization in dendritic spines [49]) and YES1 (oncogene downstream of EPHA2 which induces

cell proliferation and migration [50]). Ephrin receptors are prototypical RTKs that impact cell

shape, adhesion, and movement through activation or repression of the Rho GTPase family

[51], suggesting an important role in metastatic processes.

The lack of BP enrichments suggests either that DE is widely distributed among a number

of cell processes, or that enrichment patterns differ by genomic subtype and disappear when

lumped together. To address this question, we separated the high purity samples into genomic

subtypes and found support for the latter hypothesis, where division into individual subtypes

revealed enrichment in distinct processes (Table 3). We observed strong BP enrichment

among DE genes for samples with BRAF mutations, with the most significant annotation

being “cell differentiation” (p = 1.3e-4). Neurogenesis and cell projection-related enrichments

were also discovered. The DE genes for RAS mutants had weaker enrichments, although select

examples such as “positive regulation of defense response” and “regulation of angiogenesis”

are relevant for cancer. The ephrin receptor signaling pathway was enriched in both the BRAF
(p = 0.008) and RAS (p = 0.035) mutants.

The NF1 mutant and triple WT sets had smaller sample sizes (13 and 28 samples respec-

tively). The NF1 mutants were enriched for “regulation of MAPK cascade” (p = 0.0054), “che-

motaxis”, and “neuron projection guidance” among others. The triple WT samples–unlike the

Table 3. Summary of kinase differential expression results.

Sample Set Sample Size P<0.051 Padj<0.05 Kinase Group Enrichment Selected BP Enrichments2 P-value2

All Samples PT: 103

Met: 367

262 genes 202 genes nRTK

RTK

Adaptive immune response

Hemopoiesis

Innate immune response

5.1e-9

1.4e-7

6.1e-4

All Samples (Purity>0.7) PT: 88

Met: 214

203 genes 123 genes RTK

STE

Ephrin receptor signaling pathway 0.033

BRAF Hotspot Mutation

(Purity>0.7)

PT: 27

Met: 61

99 genes 27 genes RTK Cell differentiation

Positive reg. of lipase activity

Biomineralization

Positive reg. of neurogenesis

Positive reg. of cell projection organization

Ephrin receptor signaling pathway

1.3e-4

5.2e-4

5.9e-4

0.0016

0.0058

0.0077

RAS Hotspot Mutation

(Purity>0.7)

PT: 9

Met: 52

133 genes 36 genes CMGC Eye morphogenesis

Positive reg. of defense response

Reg. of angiogenesis

Ephrin receptor signaling pathway

0.0034

0.017

0.050

0.035

NF1 Any Mutation

(Purity>0.7)

PT: 2

Met: 11

62 genes 12 genes RTK Reg. of MAPK cascade

Eye morphogenesis

Chemotaxis

Neuron projection guidance

0.0054

0.0057

0.013

0.014

Triple WT

(Purity>0.7)

PT: 8

Met: 20

41 genes 9 genes RTK

CAMK

Calcium-mediated signaling

Cellular response to cytokine stimulus

Inflammatory Response

Defense Response

0.0021

0.0031

0.0053

0.013

1 Both sample type and batch ID were used as model variables for DESeq2, except for the NF1 subtype where only sample type was used
2 Enrichments are for the top 27 (5%) kinase genes ranked by p-value

https://doi.org/10.1371/journal.pcbi.1010065.t003
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other genomic subtypes–were enriched for responses to cytokine stimulation, especially inter-

leukin-1 (p = 0.0053), as well as the inflammatory response and defense response.

Reverse Protein Phase Array (RPPA) Data

We compared our results with an orthogonal dataset containing reverse protein phase array

(RPPA) data. Although isoform information was not available, 33 kinase genes had available

RPPA data, wherein 14 genes (42%) had significant (padj<0.05) differential expression (S1

Fig), compared to 60 of 175 non-kinase genes (34%) (S5 Table). The 14 genes include two

RTKs, ERBB3 and KIT. While the number of kinase genes covered by the RPPA data is too

small for a signaling pathway enrichment analysis, a gene ontology analysis revealed that the

14 genes participate in vital biological processes related to cell growth and proliferation. In par-

ticular, the cell cycle regulatory genes including EEF2K, PRKCD, PRS6KB1, CHEK2, MTOR,

and BRAF were all upregulated in the metastatic group. These results corroborate that some of

the kinase genes are also dysregulated at the protein level as tumors progress from primary to

metastatic state.

Kinase genes exhibit differential isoform usage between primary and

metastatic tumors

To complement the usual procedure of DE analysis, we next tested whether multi-isoform

kinase genes exhibit differential isoform ratios (DIR) between primary and metastatic tumors.

Per the Gencode v.29 annotation, we tested 468 such genes with 2,971 total coding isoforms.

We measured significance in 317 (68%) via a permutation test (padj < 0.05) when all 470

tumor samples were used, more genes than had tested significant for DE. Our complementary

PCA test (see Methods) found p-values as low as 5.3e-28 for LIMK1.

This high level of observed DIR could be an artefact of sample impurity–since different cell

types might express isoforms in different ratios–or experimental artefacts such as fragment

sequence bias [52]. Fragment bias results from degraded RNA reads. Because these reads are

sequenced from the 3’ end following poly(A) enrichment protocols, high levels of degradation

results in overestimation of 3’ fragment isoforms and underestimation of 5’ fragment isoforms

(Fig 3A and 3B), although the total gene count estimate is unaffected.

We inspected the isoform counts and found that genes with the strongest DIR had 3’ frag-

ment isoforms, suggesting samples with high 3’ fragment bias could be driving significance.

This bias was concentrated in the primary tumor samples (two-sided Wilcoxon, p = 1.3e-8)

(Fig 3C). We also found sample impurity was concentrated in metastatic samples (p = 1.6e-4).

Thus, both could contribute to the observed levels of significance.

Using the histograms as a guide, we removed samples with less than 70% purity or a QoRTs

estimate of 3’ bias> 0.55 from further analysis (Fig 3C). This reduced the number of samples

to 50 primary tumor and 178 metastatic (S3 Table), which we deemed the “quality-controlled”

(QC) sample set. In this stringent QC set, only 60 genes had DIR with padj < 0.05 (Permutation

test), and the most significant kinase was SLK at p = 7e-6 (Table 4, full list in S6 Table). As a

post-hoc analysis we tested the effects on individual genes by removing samples one-by-one to

assess the influence of fragment bias or sample impurity. (See S1 Results, S2 and S3 Figs)

Differential gene expression does not predict differential isoform ratios

Having controlled for fragment bias and impurity, we asked whether genes with differential

expression between primary and metastatic tumors were also likely to exhibit DIR. We com-

pared the p-values for DIR from the QC set to the p-values for DE from the HP set. Genes with

padj < 0.05 had non-significant overlap (Fisher’s exact test, p = 0.310), with only 15 genes
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overlapping (Fig 4). Gene rank (by p-value) had no correlation (Spearman, ρ = 0.038). The

gene MAP3K3, for example, had the third highest level of DIR (p = 5.6e-5) but no observed

change in expression (p = 0.77, rank 487). Interestingly, genes with significant DIR were

Fig 3. Examining data bias in isoform count estimation. (A) Isoform examples. (B) Cancer cell isoform distributions can be altered by effects of fragment

bias and cell type heterogeneity (i.e. sample impurity). The bars represent the apparent relative expression level of each isoform, with the left bar indicating the

true distribution in a cancer cell and the right two bars indicating how data bias can skew the results. (C) Primary and metastatic tumor samples assessed for 3’

fragment bias using QoRTs, where samples scoring above 0.55 were removed, and sample impurity, where samples with< 70% purity were removed. Red bars

in the sample purity assessment indicate metastatic samples with observed high immune infiltrate.

https://doi.org/10.1371/journal.pcbi.1010065.g003
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enriched for nRTKs (Fig 5A) but not RTKs, the opposite of what we observed for DE genes.

Thus DE and DIR affect different genes.

We separated the QC samples into genomic subtypes, as we did for the DE analysis, and cal-

culated DIR for each subset. Due to the small sample sizes, few genes tested as significant with

our permutation test. For example, the BRAF mutants revealed only four genes with padj <

0.05 (SLK, MOK, ABL2, and SYK) while the other 3 subtypes revealed no significant genes

after p-value adjustment (summarized in Table 5). As seen for the full sample set, no ranked

gene list for any DIR sample group correlated with its DE counterpart.

Table 4. Example genes with significant changes in isoform ratios after 3’ bias and sample impurity filtering.

Gene DIR, p-value DIR, padj Coding Isoforms Splicing/isoform changes in metastatic samples Significant DE?

SLK 7.00E-06 0.00328 2 Skipping of 13th exon, part of coiled-coil region Yes "

TGFBR11 3.40E-05 0.00590 9 Selection for 3rd exon, encodes transmembrane domain

MAP3K3 5.60E-05 0.00590 5 Skipping of 3rd exon, precedes PB1 domain

COQ8B1 6.80E-05 0.00590 11 Selection for 6th exon, effects on function unknown Yes #

ABL1 8.00E-05 0.00590 3 Increase of full-length isoforms, decrease of 5’ fragment

LIMK1 0.000128 0.00750 3 Alternate promoter site. Shortens 1st zinc- binding domain.

PAN31 0.00027 0.0108 2 Selection for 4th exon

FGFR3 0.00028 0.0108 7 Switch to mutually exclusive version of 8th exon, affecting 3rd Ig-like domain Yes #

FES 0.00037 0.0108 9 Skipping of 11th exon, encodes SH2 domain

UHMK11 0.00067 0.0154 3 Alternate promoter site favoring longer isoform with ATP-binding region

PAK6 0.00081 0.0173 14 Decrease of all isoforms except a middle fragment Yes #

MAST4 0.00175 0.0256 16 Potential alternate promoter (decreased use of first three exons of isoform -202) Yes2 #

BLK 0.00215 0.0273 3 Unequal increase of two major isoforms Yes "

MKNK2 0.0069 0.0531 8 Alternate splicing at terminal exon, increase of isoform without MAPK binding site Yes #

1Results supported by kallisto counts but not supported by exon junction read mapping
2Significant DE only when using sample type + batch ID in model

https://doi.org/10.1371/journal.pcbi.1010065.t004

Fig 4. DE does not overlap with DIR. Significance in one does not predict significance in the other (One-sided Fisher’s exact test, p = 0.091 (left) and 0.310

(right)). Compared are results using high purity samples for DE (model ~ sample type + batch ID) and quality-controlled samples for DIR. Compared are the

468 kinase genes with>1 coding isoform.

https://doi.org/10.1371/journal.pcbi.1010065.g004
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Fig 5. Genes with significant DIR display unique BP enrichment patterns. (A) DIR genes are enriched for non-receptor tyrosine kinases in the QC set,

whereas there was no kinase group enrichment in the full sample set. The black dotted line indicates the percent of genes with padj< 0.05, and the gray dotted

line the percent of genes with unadjusted p< 0.05 (B) Select biological process enrichments for the QC set. Note that significance is plotted (-log10p), not odds

ratios, and the horizontal dotted line indicates p = 0.05. (C) When using the QC RAS hotspot mutant samples only, DIR genes were highly enriched for

angiogenesis and related annotations.

https://doi.org/10.1371/journal.pcbi.1010065.g005
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DIR affects different biological processes than seen for DE

Because many unadjusted p-values were significant for DIR we elected to search for gene

ontology (GO) enrichments. For each sample set, we searched for biological process (BP)

enrichment in the top genes (ranked by p-value) using percentile thresholds from 5% - 40%

(see Methods). Enrichments are described for the top 5% (24) genes unless noted otherwise.

For comparative purposes, we examined the full sample set first without filtering, which

contained low purity and high fragment bias samples, we revealed 221 BP terms with p< 0.05

and 10 additional terms with p<0.001. The most significant terms included “positive regula-

tion of translation” (p = 1.5e-4), “cytoskeletal organization”, “response to amino acid starva-

tion”, and “blood vessel development” (Table 5). Immune-related enrichments were strongest

at the 40% threshold, indicating putative immune infiltrate may affect DIR results, but the

most significant genes were not immune-related.

The QC set had fewer BP enrichments than the full sample set (Table 5). These enrichments

included “regulation of endocytosis” (p = 3.5e-4) “cytoskeletal organization”, “endothelial cell

migration”, “cell differentiation”, and “cell cycle arrest” (Fig 5B), all of which have a putative

relevance to cancer.

The genomic subtype sets revealed distinct BP enrichments–as they did when testing DE

genes. In contrast to the DE genes, the DIR genes between BRAF mutant primary and meta-

static tumors did not show strong BP enrichments, while the DIR genes between RAS mutant

samples showed enrichment for 94 BPs. The strongest of these was “positive regulation of

angiogenesis” (p = 1.6e-4) and related enrichments such as “vasculature development”. Other

enrichments included “cell-cell communication”, “protein transport”, and “membrane organi-

zation” (Fig 5C). Such enrichment patterns would not be discovered if DE alone was studied.

In contrast, significant genes from the BRAF mutants had 27 processes enriched below

p = 0.05 –these included 6 cell locomotion-related enrichments–and none below p = 0.008.

Table 5. Summary of kinase differential isoform ratio results.

Sample Set1 Sample Size P<0.05 Padj<0.05 Kinase Group Enrichment Selected BP Enrichments2 P-value

All Samples PT: 103

Met: 367

330 genes 317 genes None Response to amino acid starvation

Cytoskeletal organization

Positive reg. of lipid kinase activity

Response to fibroblast growth factor

Blood vessel development3

3.3e-4

4.5e-4

0.0021

0.0057

8.7e-4

Quality Controlled PT: 50

Met: 178

154 genes 60 genes nRTK Reg. of endocytosis

Endothelial cell migration

Cell differentiation

Positive reg. of stress fiber assembly

Cytoskeletal organization

3.4e-4

0.0037

0.0050

0.0057

0.0084

BRAF Hotspot Mutation (QC) PT: 17

Met: 52

57 genes 4 genes nRTK Regulation of protein acetylation

B cell receptor signaling pathway

Reg. of cell motility

0.0084

0.012

0.031

RAS Hotspot Mutation (QC) PT: 6

Met: 50

29 genes 0 genes None Positive reg. of angiogenesis

Cellular response to VEGF

Chemotaxis

1.6e-4

0.0020

0.0075

Triple WT

(QC)

PT: 6

Met: 16

40 genes 0 genes None Reg. of gene expression

Reg. of RNA splicing

Chromatin organization

0.0065

0.015

0.023

1 Subgroups are comparable to Table 3, except the NF1 mutant set, which had too few samples (1 primary tumor, 11 metastatic) for reasonable analysis.
2 Enrichments are for the top 24 (5%) kinase genes with >1 coding isoform ranked by p-value.
3 Blood vessel development is concentrated in the top 47 (10%) genes.

https://doi.org/10.1371/journal.pcbi.1010065.t005
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Resolving alternative splicing events in kinase genes

Focusing on DIR with discrete splicing changes, we identified skipped exons, alternative pro-

moters, and alternative terminal exons (Table 4). For example, ABL1 has two long isoforms

(ABL1-201 and -202), which differ only in their promoter site, that have increased expression

in metastatic samples. An additional isoform (ABL1-203) encodes a shorter 5’ fragment, and

decreases in expression. However, ABL1 does not test as significant in DE between primary

and metastatic samples, indicating that the DIR analysis can reveal aberrations that differential

gene expression does not capture.

To test the kallisto DIR data for evidence of splicing differences, we quantified RNA-seq

reads mapped directly to the nucleotide sequences of exon junctions in several genes from

Table 4. This provides a resolved view of exon splicing patterns in the samples which did not

rely on kallisto (see Methods). Within the melanoma sequence data, we confirmed exon skip-

ping in three genes–MAP3K3 (exon 3), FES (exon 11) (Fig 6) and SLK (exon 13) (Fig 7). We

also confirmed switching to mutually exclusive exons in two genes–exon 8 of FGFR3 and the

terminal exon of MKNK2–and increased use of an alternative promoter in LIMK1 (Fig 6). We

illustrate the fraction of split reads, out of all reads, supporting these events.

In SLK, the most significant gene on our list, expression of the long isoform SLK-202 is

decreased, whereas the short isoform SLK-201 increases (Fig 7). The short isoform skips exon

13 predicting a putative role for loss of this exon in cancer. We compared expression of this

alternative exon in normal melanocytes using RNA-seq data from Zhang et al. [53]. Exon 13

was absent in the normal cells, and largely specific to primary tumor samples.

Some genes have DIR which coincides with significant DE. For example, 6 of the 7 coding

isoforms of FGFR3 are suppressed in metastatic samples (S4 Fig), while the remaining isoform

-205 has mildly increased expression. PAK6, with 14 isoforms, undergoes a similar alteration.

In BLK, DIR of 3 isoforms is driven by an unequal increase of 2 major isoforms, rather than all

3.

To address the functional consequences and biological implications of isoform switching,

we matched the alternatively spliced regions in these five genes to domain annotations

obtained from UniProt (Table 4). The skipped exon in SLK encodes a section of a coiled-coil

region in the C-terminal domain. SLK uses this domain to dimerize at high concentrations,

and these dimers activate apoptosis [54]. MKNK2 switches to a shortened terminal exon which

lacks the MAPK binding site, interfering with downstream signaling. The 11th exon of FES
encodes the SH2 domain, which is necessary to activate the kinase domain [55]. The 3rd exon

of MAP3K3 is not mapped to any domain, but it precedes the PB1 protein-interaction domain.

These data indicate that the isoform changes modulate the usage of important domains in the

kinases, which can ultimately affect their function and participation in signaling networks.

Finally, the alternative promoter of LIMK1 shortens the first zinc-binding domain, a domain

that inhibit the protein’s kinase activity [56].

Comparison to DEXSeq results

In a parallel approach, we analyzed the primary and metastatic sample data using DEXSeq, a

method commonly used to measure differential exon usage. DEXSeq found only 11 exonic

bins in 5 genes to have significant differential usage (padj<0.05), compared to 60 genes with

our method (S7 Table). Three of these genes were also highly significant with our method:

MAST4, FGFR3, and SLK (S5A–S5C Fig). The remaining two, PDGFRA and LMTK3, are likely

false positives due to the low number of counts for their significant exons (median ~1) (S5E

Fig). Before multiple test correction, the alternate promoter of LIMK1 was significant

(p = 0.0014); but not the SH2 domain of FES, MAPK-binding region of MKNK2, nor the 3rd

PLOS COMPUTATIONAL BIOLOGY Kinase isoform expression in metastatic melanoma

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010065 May 13, 2022 18 / 35

https://doi.org/10.1371/journal.pcbi.1010065


exon of MAP3K3; despite our confirmation with direct junction sequence alignment. We

found multiple reasons for the low sensitivity of DEXSeq (see S1 Results), which led to us to

elect to measure DIR using isoform counts.

Fig 6. Alternative splicing between primary and metastatic samples. (A-E) Shown for each gene are box plots for fraction of split reads aligned to exon

junctions in primary tumor and metastatic samples. Below, maps of each isoform identify the differential exon. (F) Zoomed-in plot for SLK. Half (89 / 178) of

metastatic samples have no reads supporting exon 13. See Fig 7 for more detail.

https://doi.org/10.1371/journal.pcbi.1010065.g006
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Overexpression of SLK isoforms in Metastatic Melanoma

SLK is involved in apoptosis and in the disassembly of actin [57]. We wished to see if overex-

pression of the two SLK isoforms could produce cell death in metastatic melanoma. We

hypothesized that expression of the full-length isoform (SLK-202) would produce more cell

death compared to the short-length isoform (SLK-201) due to the lack of one dimerization

domain (coiled-coil region) in the shorter isoform. We also hypothesized that there would be

differences in actin disassembly between SLK isoforms. In these experiments, SLK-201 and

SLK-202 were cloned into p-RECEIVER-M98, an eGFP-fusion expression vector. We tran-

siently transfected A375 metastatic melanoma cells with the negative control (i.e., Lipofecta-

mine, no vector), eGFP-only, SLK-201-eGFP, and SLK-202-eGFP. Cells were collected at 24h,

48h, and 72h post transfection. We found no endogenous SLK-202 in A375 using RNA-seq

data from the Sequence Read Archive (SRR961660; S6A Fig).

We observed a significant increase in the percentage of annexin V positive cells at the 48h

and 72h time points in both SLK constructs compared to the eGFP-only control, supporting

the hypothesis of SLK-induced apoptosis (S6B Fig). We observed no significant difference

between the effect of the two SLK constructs when comparing all GFP positive, annexin V pos-

itive cells (S6B Fig). However, when eGFP expressing cells were divided into bins, B1 –B5, cor-

responding to increasing expression levels of eGFP-fusion constructs (S7A Fig), we observed

Fig 7. Alternative splicing in SLK. (A) The two coding isoforms of SLK, which only differ in the presence or absence of exon 13. (B) Mapped read counts from

one primary tumor and one metastatic sample. In the metastatic sample, no reads are mapped to exon 13, indicating that isoform SLK-202 is not present; exons

(blue), introns (white-dashed bar indicates introns longer than 300 bp, only partially shown), UTRs (gray). (C) Box and scatter plots for the two isoforms of

SLK. Also shown in the scatter plot are the normal melanocyte samples from Zhang et al. [53]. (D) Difference in incidence of annexin V positive cells between

SLK-202 (long) and SLK-201 (short) isoforms for bins, B1-B5, of increasing GFP fluorescence (see also S7A Fig) and different time points. Each value

represents the average of two replicates (actual values and associated variance are provided in S7B–S7F Fig); �(p< 0.05),r(p = 0.055). (E) Merged channel

images of A375 cells transfected with eGFP-only, SLK-202-eGFP, and SLK-201-eGFP constructs at the 24-hour timepoint. Cells were stained with DAPI (blue)

and phalloidin (red), along with GFP expression (green). Scale bars = 25 μm.

https://doi.org/10.1371/journal.pcbi.1010065.g007
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an increase in the difference of percent annexin V positive cells between SLK-202 and SLK-201

at the 48h and 72h time points (Figs 7D and S7A). These data indicate that the long SLK iso-

form (SLK-202) induces apoptosis at a higher rate. This finding corresponded to increasing

construct expression levels, indicating that the functional impact of the longer isoform could

be detected only at higher expression levels and longer timepoints (S7B–S7F Fig).

We also found that SLK-202 co-localizes with actin filaments more strongly than SLK-201 or

the eGFP-only control (Figs 7E and S8A–S8D). At 48h, the SLK-202 transfected cells begin to lose

their structure, and by 72h, the cells have mostly detached. Since the N-terminus of SLK contrib-

utes mainly to the cell death [57], we removed the N-terminal 373aa of SLK-202 (Δ1-373SLK-202).

Δ1-373SLK-202 had a unique localization to actin filaments along the periphery of the cell (S8A–

S8C and S8E Fig). Δ1-373SLK-201 looked similar to SLK-201. These results suggest that SLK-202

localizes to and potentially disassembles actin more effectively in metastatic melanoma compared

to SLK-201, consistent with SLK-202 being more apoptotic in our binned data (Fig 7D).

Clustering on DIR identifies correlations with genomic subtype and tumor

location

To identify similarities in metastatic samples based on isoform expression patterns, we clustered

the samples (columns in Fig 8). Rather than clustering raw expression data, we determined

which of the kinase isoforms was significantly upregulated or downregulated in each of the 367

metastatic samples (see Methods) relative to all primary tumor samples. This allowed us to

address the simpler question of which isoforms are altered in which samples. To identify corre-

lated patterns of upregulation or downregulation we also clustered the isoforms (rows in Fig 8).

Of the 3,040 protein coding kinase isoforms, 235 had significant altered expression

in> 13% of metastatic tumor samples. Clustering this reduced dataset with the k-means

elbow method identified 4 sample clusters and 4 isoform groups (S9 Fig). However, we found

that using k-means with 5 isoform groups strengthened certain BP enrichment patterns. These

5x4 clusters are depicted in Fig 8. For each sample cluster, we tested enrichment for batch ID,

region (skin/soft tissue, lymph node, and distant metastasis), and genomic subtype.

Notable enrichments in Cluster A (n = 55 samples) include the tissue location of skin/soft tissue

cluster and BRAF hotspot mutations. Cluster B (n = 69 samples) was identified as a lymph node

cluster with mild enrichment in triple WT samples. Distant metastases were depleted in both A and

B clusters. Cluster C (n = 60 samples) had no region enrichment but was strongly enriched for RAS
hotspot mutations (Fisher’s exact test, p = 4.4e-4, odds = 2.9). Cluster D (n = 183 samples) stood out

as a low expression cluster, which had expression largely similar to the primary tumor samples, with

little upregulation of isoforms compared to other groups. Moreover, decreased expression of iso-

forms (shown in blue) occurred in many samples. This cluster was enriched for distant metastases.

The batch ID enrichment analysis identified batch A18 in Cluster C, suggesting batch

effects could have influenced our results. To address this issue, we clustered only the 199 meta-

static samples (54% of all such samples) in batch A18 (S10 Fig), originally found in groups

A-D. We found four clusters comparable to the four described above, and Cluster 3 was still

significantly enriched for RAS hotspot mutants (p = 0.032, odds = 2.1). Clustering all samples

not in A18, originally present in groups A-D, also revealed 4 clusters and though genomic sub-

type was not available for most of these samples, Cluster C still had the highest enrichment for

RAS mutants (p = 0.16, odds = 2.3). Thus, the RAS group enrichment appears to be indepen-

dent of the batch. Cluster D in our main heatmap was enriched for batch A37, a smaller batch

(n = 41 samples), considerably smaller than the cluster it was in.

We also compared the level of 3’ bias and sample impurity in each cluster and found that

Cluster B had low purity (median 42%) compared to the other three (median of 72%, 80%, and
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79% respectively). Median 3’ bias did not differ noticeably, although Cluster C had a lowest

mean bias (0.517, QoRTs score), indicating higher quality samples. Taken together, these data

suggest that metastatic samples have characteristic subgroups related to tumor location and

genomic subtype, where isoform expression patterns may help to identify the most similar

samples to test as treatment subgroups.

Isoform groups correlate with biological process annotations

We performed a similar analysis on the five isoform groups (i.e., rows), looking for kinase phy-

logenetic group and BP enrichments compared to the total human kinome. Group 1 was

Fig 8. Heatmap of 367 metastatic samples clustered according to kinase isoform counts. Red dots indicate increased expression in metastases

(Quasi-Poisson GLM, p< 0.05) while blue dots indicate decreased expression (p < 0.2). Shown are the 367 metastatic samples (columns) and 235

isoforms that were altered in> 13% of samples (rows). P-values for enrichments were calculated using the one-sided Fisher’s exact test.

https://doi.org/10.1371/journal.pcbi.1010065.g008
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enriched for genes involved in blood vessel morphogenesis (p = 3.6e-6) and related annota-

tions, as well as MAPK regulation. These isoforms are upregulated in Clusters A and B. Since

these genes are active in the skin/soft tissue sample cluster and regional lymph nodes, the iso-

forms may be important in the first transition from primary tumor to metastatic melanoma.

This group is also enriched for RTKs.

Group 2 was strongly enriched for nRTKs and contained genes in the category of immune

response, for example, used by leukocytes such as T-cells and B-cells (p = 5.2e-11). These iso-

forms are consistently upregulated in Cluster B. Due to their highly correlated expression and

the low estimated purity of the Cluster B samples (median 42%), this group likely arises from

immune cells infiltrating the tumor, consistent with previous findings from Akbani et al. [11].

Cluster B is also enriched for samples taken from lymph nodes, a prime location for immune

cells to interact with the tumor.

Group 3 was enriched for kinases that regulate cell motility (p = 0.0081). No phylogenetic

kinase group enrichments were found, although this group had weak CMGC enrichment com-

pared to the other four groups in Fig 8. These isoforms had the highest expression in Cluster

C, containing RAS hotspot mutant samples and distant metastases. We note a strong pattern

of exclusivity for Group 3 isoforms with the immune infiltrate cluster of Group 2 isoforms,

suggesting a novel means of stratifying samples for clinical testing.

Group 4 was enriched for kinases which positively regulate apoptosis (p = 0.010) and cell

differentiation (p = 0.0045), and for STE kinases. These isoforms were upregulated in Clusters

A and C. This group contains two isoforms of CDK19, a gene implicated in cancer prolifera-

tion (a third isoform, CDK19-203, lacks the seventh exon and decreases in metastatic samples).

The function of these isoforms in apoptosis is not explored; on the one hand apoptotic pro-

cesses may occur spontaneously in cancer due to cellular stress and DNA damage [58], on the

other hand alternate splicing can modulate pro- and anti-apoptotic functions in the same

gene, like BCLX [59]. Samples with high levels of immune infiltrate (i.e. Cluster B) appear to

have no enrichment of these isoforms, indicating how therapeutics could be specific for one

subgroup and be ineffective in another.

Group 5 contained isoforms of genes enriched for regulation of RNA biosynthesis and tran-

scription (p = 0.0059). These isoforms had correlated downregulation in several samples (Clus-

ters B and D), although they are not universally downregulated and in fact increase in some

samples. One such gene, NME1, is a known suppressor of metastasis [60]. Also in this group

are two isoforms of MAPKAPK3 (-201 and -208), a gene which activates autophagy in response

to stress [61] and represses transcription factor E47 [62]. A shorter isoform, -202, is increased

in metastatic samples. This isoform lacks the p38 MAPK-binding site, meaning it cannot be

activated by p38. This apparent isoform switching was not identified by our DIR analysis

because isoform -201 increases in some metastatic samples. RPS6KA4-201 also significantly

decreases, though not the gene’s two secondary isoforms -202 and -205. These isoforms lack a

nuclear binding site on the 3’ end, suggesting it is RPS6KA4’s nuclear binding that is selected

against. The list of isoforms in Group 5 is given in Table 6, and the full list for each sample

cluster and isoform group may be found in S8 Table.

Some isoforms had divergent expression patterns depending on cluster. For example, the

major isoform of BRD4, BRD4-201, was found in Group 5, indicating decreased expression in

several samples. In contrast, this isoform increased in RAS-mutant metastatic samples, as did

two shorter isoforms BRD4-205 (a member of Group 3) and BRD4-203 (S11 Fig). This suggests

BRD4 may be a drug target specific to RAS-mutant melanoma; indeed, a recent study found

that Vemurafenib-resistant melanoma was susceptible to BRD4 degradation [63]. Consistent

with this observation, DE analysis revealed an 11% increase in BRD4 expression in metastatic

RAS mutants, but this increase is not significant (punadjusted = 0.452). Furthermore, we could
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not confirm kallisto’s isoform assignments using exon junction alignment, although the

reported increase in isoform 205 –a shortened isoform which includes the two bromodomains

but not the C-terminal region or NET domain–may suggest an underlying switching effect.

Immune infiltrate correlates with increased survival

In our analysis of survival across sample clusters, Cluster 2 (n = 67) was observed to have a

higher median survival compared to the other three sample clusters (Fig 9A). Fittingly, this

cluster corresponds to samples with immune infiltration. A log-rank test comparing Cluster 2

survival against the rest of the samples showed a low level of statistical significance (p = 0.065).

Clusters 1 (n = 54), 3 (n = 60) and 4 (n = 175) demonstrated no significant difference in patient

survival after applying pairwise log-rank tests.

We also analyzed the correlation between overall survival and HTSeq gene counts for each

kinase gene. Of the 538 genes tested, WNK2 and OBSCN presented the strongest negative cor-

relation between expression (see Methods) and patient survival (Spearman ρ = -0.26 and -0.24,

Table 6. Kinase genes with correlated decreased expression in metastatic samples.

Identified by isoform clustering (Group 5)1

Gene Isoform ID�

MAP2K5 204

MAPK7 204

CAMKK2 216

TNK2 208

ARAF 201

MAP3K6 202

MAP2K7 201

MAPKAPK3 208, 201

ULK1 201

BCKDK 201

CSK 201

BRD4 201

CDK16 220

CDK11B 203

STK11 201

ADCK2 201

RPS6KA4 201

CLK3 201

DAPK3 201

CSNK1G2 201

GTF2F1 201

NRBP1 203

TRIM28 201

MAP2K2 202

NME1 203

MAP2K5 204

MAPK7 204

These isoforms have correlated under-expression in individual samples, but not strong under-expression across all

samples, with the exception of RPS6KA4, (FC = -1.39, padj = 0.0011, DESeq2 with high purity samples)

�isoform numbers are from Gencode v.29

https://doi.org/10.1371/journal.pcbi.1010065.t006
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Fig 9. Survival curves. (A) Cluster 2 (corresponding to immune infiltrate) was observed to have higher median survival compared to the other clusters. A log-

rank test comparing Cluster 2 survival against the rest of the samples showed a low level of statistical significance (p = 0.065). (B) Survival curves of the four

genes with the highest Spearman correlation between gene expression and overall survival in high purity samples (n = 205). Samples were quantile binned by

their gene count into low (blue), medium (red) and high (green) values. All survival curves were analyzed up to the 4000 days.

https://doi.org/10.1371/journal.pcbi.1010065.g009
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respectively), while PRKACB showed the strongest positive correlation (ρ = 0.233)(Fig 9B).

The unadjusted correlations were significant, however after multiple test correction (BH pro-

cedure), none of the correlation values rise to a level of statistical significance, with WNK2 hav-

ing the lowest adjusted p-value of 0.110.

Discussion

Given the rise in melanoma cases across the world, and preliminary success of new therapeutic

approaches combing kinase inhibitors and other treatments, we were encouraged to look for

differential isoform expression, which has not been intensively studied, and compare it to dif-

ferential expression identified using conventional approaches (i.e., using the gene locus as a

proxy for average expression). We show that both differential expression and altered isoform

ratios are prevalent in the human kinome in metastatic melanoma compared to primary

tumor melanoma. Furthermore, these changes differ by genomic subtype and tumor location.

Affected genes were enriched for several biological processes including immune response,

angiogenesis, cell differentiation, chemotaxis, and cell projection organization. Our results

provide insight into the regulation of melanoma progression and possible new routes for

grouping therapeutic targets.

Different genes were affected by differential expression (DE) and differential isoform ratios

(DIR). These genes differed in both phylogenetic groups, e.g. receptor tyrosine kinases in DE

vs non-receptor tyrosine kinases in DIR, and biological process enrichments. Thus, isoform

analysis may reveal novel information about cancer progression that DE analysis cannot. The

drivers behind these splicing events are unknown, but can be multifactorial. For example,

mutations in splicing factors can determine outcomes of alternative splicing, but so may

somatic mutations or SNPs [64]. Additional determinants derive from epigenetic changes

such as aberrant DNA methylation [65] and RNA modifications [66].

Isoform switching may affect protein function

We chose to examine six genes with especially significant isoform switching in greater detail.

Metastatic samples showed SLK overexpression in our study, something that has been previ-

ously observed in other cancer types such as ErbB2-driven breast cancer [67]. Knocking down

this gene markedly reduces cell migration in 3T3 MEF cells [68]. It appears that invasion is the

functional benefit provided by SLK overexpression to metastatic melanoma. However, while

the short form of SLK (SLK-201) is overexpressed in metastatic samples, the long form (SLK-
202) is underexpressed. Overexpression of SLK can cause dimerization via the C-terminal

coiled-coiled domain; these dimers then activate apoptosis [54]. The short form of SLK (SLK-
201) skips an exon that encodes a coiled-coil region in the C-terminal domain. Our experiment

found introduction of the SLK-202 isoform to be more apoptotic at high concentrations; it is

therefore possible that the decrease in the long SLK-202 isoform, seen in TCGA metastatic sam-

ples, decreases apoptotic potency and facilitates the transition toward metastasis. Thus, SLK-202

isoform expression may provide a therapeutic target. Furthermore, the transfected SLK-202 iso-

form localized to actin filaments along the nuclear periphery more readily than the SLK-201 iso-

form. Further experiments are needed to address the impact of the differential localization.

MAP3K3 has been identified as an oncogene in various cancers [69–71]. Although we

observed no differential expression of the gene (after immune-infiltrate samples were

removed), we found that skipping of exon 3 was significant in metastatic samples. The func-

tional effect of this skipping is unknown; it precedes, but is not part of, the PB1 protein-protein

interaction domain. MAP3K3 plays important roles in angiogenesis, cell differentiation, and

proliferation and may regulate its partners through this structural edit.
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In metastatic samples, MKNK2 was found to switch to a shortened terminal exon which

lacks the MAPK binding site. This switching has been previously observed in glioblastoma

[32] (compared to normal samples), where the short terminal exon showed pro-oncogenic

activity. The authors demonstrated that use of splice switching oligos in glioblastoma reduced

the presence of the short terminal isoform and inhibited the oncogenic properties, suggesting

this approach might also work in melanoma.

Another event we observed was in the FES gene, a non-receptor tyrosine kinase. The 11th

exon, which encodes the SH2 domain and is necessary to activate the kinase domain [55], was

skipped at a significantly higher rate in metastatic samples. FES has been previously identified

as a tumor suppressor in melanoma [72], but we did not observe significant DE in our analysis.

We predict that the skipping of the SH2 domain effectively turns off the kinase activity without

decreasing the overall gene count. This effect would be consistent with reports of wild type

FES acting as a tumor suppressor [73]. DE analysis alone would have missed this important

effect. Notably, FES has several known inhibitors that target the SH2 domain and thus would

not be effective against the short isoform [73].

FGFR3, which has highly significant negative DE, also has a significant alternative splicing

event which affects the third Ig-like domain. There was a comparatively higher level of isoform

FGFR-205 (also known as FGFR3-IIIc) and less of FGFR-202 (or FGFR3-IIIb). This IIIb/c imbal-

ance has been observed in other cancers, such as colorectal [74]. The same study found that

knocking down FGFR3-IIIc inhibited cell growth and induced apoptosis, but not FGFR3-IIIb.

The negative DE was unexpected given FGFR3 is often considered an oncogene, but the gene is

known to limit growth in tumors of epithelial origin [75]. Hence the decreased expression of

IIIb and switching to IIIc may be two separate mechanisms of altering FGFR3 activity.

Finally, an isoform of LIMK1 with an abrogated N-terminal LIM domain was expressed at

a significantly higher level in metastatic samples. Deleting both LIM domains was previously

found to increase kinase activity 3–7 fold [76], suggesting this isoform has greater kinase activ-

ity. Targeting LIMK1 with small molecular inhibitors has been shown to reduce migration and

invasion of malignant melanoma [56], suggesting increased activity would promote malig-

nancy. LIMK1 also did not have significant DE in our dataset.

Expression pattern of RAS hotspot mutants

Our various analyses discovered that RAS mutants have an expression level pattern distinct

from the other three genomic subtypes. BRAF and MEK inhibitors, while useful for treating

BRAF-mutant melanoma, have no or limited effectiveness against RAS mutants [77]. BRAF
mutants that gain resistance to BRAF inhibitors often acquire a secondary NRAS mutation

[78], meaning any effective RAS mutant treatment may also aid in treating drug-resistant

BRAF-mutants. We found that DE of kinases in RAS mutants is concentrated in CMGC

kinases (as opposed to receptors as in the other three subtypes) and that DIR is concentrated

in kinases involved in angiogenesis. Thus anti-angiogenics [79] are also possible treatments.

Analysis of kallisto counts also identified the bromodomains of BRD4 as a possible target. A

recent study found that Vemurafenib-resistant melanoma was susceptible to BRD4 degrada-

tion [63], and bromodomain inhibitors such as OTX015 and BI-2536 have already had some

success in treating carcinomas [80]. However, this result was not supported by the HTSeq gene

counts or exon junction analysis.

Another genomic subtype, triple WT melanoma, had DE mostly affecting Ca2+/calmodu-

lin-dependent protein kinase (in addition to RTKs), and we found CAMKK1 expression had a

negative correlation with survival (Fig 9B). These may also serve as a new set of drug targets

for this rarer subtype.
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Further biological implications

One interesting result from the clustering analysis was the apparent mutual exclusivity of some

kinase clusters in metastatic tumors. In particular, the isoform group involved in cell motility

(i.e., Group 3) only had high expression in samples lacking in immune response markers (i.e.,

Cluster C). It is possible samples with this expression pattern, which includes many RAS
mutants, may evade immune detection, which would explain this apparent mutual exclusivity.

But it is also possible the low purity of these samples obscures increased expression of Group

3. Additionally, cell differentiation and apoptotic markers were highly expressed in regional

soft tissue tumors (i.e., Cluster A) and RAS mutants (Cluster C), but not lymph node tumors

(i.e., Cluster B). BRAFV600E mutations are present in Clusters A and B, indicating that in addi-

tion to the driver mutation, location of the tumor and isoform content is relevant to discern

tumor biology and treatment choices. We conclude that the heterogeneity of sample types dis-

played in Clusters A-D suggests that the complexity of tumor biology is greater than indicated

by driver mutations alone, and that the isoforms in our heatmap may be useful for screening

metastatic samples.

Limitations

The present study has limitations that may impact the interpretations of our data. For example,

isoform count estimation is a computational approach to predict isoform expression levels

from short read data. Other short read algorithms–using direct alignment approaches such as

RSEM, Sailfish, or Cufflinks–may produce different count estimates than kallisto. The accuracy

of these algorithms decreases as the number of gene isoforms increases. However, one study

found that for genes with<15 isoforms, kallisto estimated counts still had>0.95 correlation

with simulated “ground truth” counts, excluding very short transcripts [81]. Tested genes in

our study had a median of 5 and mean of 6.3 coding isoforms. Nonetheless, we also analyze

reads aligned to exonic junctions to verify kallisto findings.

Because kallisto requires isoform transcript sequences, our method does not account for

novel isoforms. Specialized tools exist for this, such as psiCLASS [82], but this was not the focus

of the present study. Here we rely on a fast isoform quantification that relies on an existing

genome annotation. We compared our method to a standard approach, DEXSeq, which per-

forms local exon analysis based on the architecture of DESeq2. Our method proved more sensi-

tive to exon splicing events and is computationally faster than DEXSeq for hundreds of samples.

3rd-gen RNA sequencing technologies such as PacBio [22] and Oxford Nanopore [23] are antic-

ipated to provide more accurate knowledge of isoform sequences, both annotated and novel.

Sample artefacts could also affect our results. As indicated by the results presented, compu-

tational estimates of isoform counts are highly impacted by sample impurity or 3’ fragment

bias. We removed problem samples in our study to obtain higher confidence results. Although

our quality-controlled sample set had little difference in purity between primary tumor and

metastatic samples (two-sided Wilcoxon, p = 0.88), primary tumor samples still exhibited

increased 3’ bias compared to metastatic tumors (p = 4.4e-4). Estimates of fragment bias could

be incorporated into the existing tools to reduce artefactual results.

With one exception, the melanoma TCGA samples are not matched, i.e. the primary tumor

and metastatic samples do not come from the same patient. However, our sample size is large

enough to make meaningful comparisons between sample categories.

Summary

We have compared differential gene expression and differential isoform expression to address

the hidden effect of differential splicing of kinases in metastatic melanoma. We demonstrate
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novel, plausible stratification of tumors for clinical testing, for example, immune infiltrate vs.

cell migration groups. These groups are consistent with presence of a specific driver mutation

(i.e., BRAFV600E), but a mixture of samples could be found in each group. Additionally, we

identified a group of isoforms with significant downregulation in metastatic tumors. These

include a known suppressor of metastasis (NME1), and may provide a rich source of discovery

for additional suppressors. Although we focused here on the kinome in metastatic melanoma,

in future work we can expand the analysis to the entire human genome, as well as other cancer

types having a rich source of expression data. Further experimental work can confirm links

between isoform switching and angiogenesis or other cell processes.

Supporting information

S1 Fig. Differential protein expression analysis results for the high purity SKCM samples.

Wilcoxon’s rank-sum test was performed on 208 protein probes between 78 primary and 146

metastatic high purity tumor samples. Shown are 14 kinases that were significant at the level of

BH adjusted p-value<0.05. X-axis labels indicate the RPPA probe and the corresponding gene

encoding that protein.

(TIF)

S2 Fig. Fragment bias in primary tumor samples drives significance in EIF2AK4. (A) Two

protein coding isoforms of EIF2AK4, the full-length isoform (-201) and 3’ fragment (-205). (B)

Change in DIR significance (-log10p) as samples are removed one-by-one in order of highest

bias (red and orange dots) vs in order of lowest bias (green or blue dots). The significance

drops faster when the high-bias samples are removed. The p-value here is calculated using the

PCA method with the coin general independence test. (C) When only primary tumor samples

are removed, the differences in p-values are even more disparate, indicating that high-bias pri-

mary tumor samples drive significance. (D) Box plots for the three isoforms with the highest

number of normalized counts. Significance is driven by a higher amount of the full-length iso-

form in metastatic samples but a lower amount (on average) of the 3’ fragment. (E) Scatter

plot of the raw counts of each isoform in each sample. Circled in black are the ten isoforms

with the highest 3’ bias, indicated by high levels of the 3’ fragment and low levels of the full-

length isoform.

(TIF)

S3 Fig. Quality control reduces DIR significance of PTK2B. Expression of isoform PTK2B-
205 in particular is driven by low-purity metastatic samples. Its expression drastically decreases

when they are removed. Conversely, there is lower average expression of PTK2B-203 in pri-

mary tumor samples before samples with high 3’ bias are removed. This is likely due to the

presence of more exons on the 5’ end, which will be undercounted in samples with 3’ bias.

(TIF)

S4 Fig. Differential isoform ratios in FGFR3. Plotted are (A) TPM counts and (B) fraction of

all isoform counts for each sample. Although the trend is decreased expression, one isoform

(FGFR3-205) has mildly increased expression, resulting in highly altered isoform ratios.

(TIF)

S5 Fig. DEXSeq Results. (A-D) DEXSeq confirmed DIR in three genes: MAST4, FGFR3, and

SLK. The alternate promoter of LIMK1 was also significant before p-value adjustment. (E-F)

The 3rd exon of MAP3K3 (bin 9) and MAPK-binding region of MKNK2 (bin 4) did not test

significant with DEXSeq, even before p-value adjustment, despite testing as significant using

exon junction alignment. (G-H) The 14th bin of LMTK3 and 1st bin of PDGFRA also tested as
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highly significant. However, these two exons have low expression (median ~1 count) so this

result is likely due to noise and is unlikely to have biological relevance.

(TIF)

S6 Fig. SLK isoform expression induces apoptosis. A) Plot of uniquely mapping sequence

reads for A375 cells showing skipping of SLK exon 13. Original RNA-seq data are from the

Sequence Read Archive SRR961660, https://www.refine.bio/samples/SRR961660. B) A bar

graph showing annexin V staining over the 72h time course for 2 biological replicates. We see

an increase in percent annexin V for both SLK isoforms at 48h and 72h compared to the

eGFP-only control. All significant t-tests (�) had p-values < 0.05. All non-significant (NS) t-

tests had p-values > 0.05. T-tests for the negative control were not included on the graph.

(TIF)

S7 Fig. Analysis of annexin V staining in cells expressing GFP-fusions of SLK isoforms

after binning cells. A) Illustration of thresholds used for determining annexin V positive cells

(determined experimentally for each replicate, see Methods) in GFP-expressing cells (> 10^4

fluorescence units). Bins B1 through B5 represent cells with increasing GFP expression, and

therefore also increasing levels of corresponding SLK isoform. Bin B5 is larger to accommo-

date the reduced number of cells expressing high levels of GFP. B-E) Comparison of incidence

of annexin V positive cells in different constructs across different bins of increasing GFP

expression (B1 –lowest, B5 –highest); ��(p< 0.01), �(p < 0.05),r(p < 0.056).

(TIF)

S8 Fig. Microscopy of SLK isoform expression and actin localization. Representative images

of each construct (green) at the A) 24-hour, B) 48-hour, and C) 72-hour timepoints. At each

timepoint, cells were stained with DAPI (blue) and phalloidin (red). D) Merged channel

images of eGFP-only, SLK-202-eGFP, and SLK-201-eGFP over the time course experiment. E)

Merged channel images of41-373SLK-202 and41-373SLK-201 over the time course experi-

ment.

(TIF)

S9 Fig. Heatmap of 367 metastatic samples clustered (4x4) according to kinase isoform

counts. Red dots indicate increased expression in metastases (Quasi-Poisson GLM, p<0.05)

while blue dots indicate decreased expression (p<0.2). Shown are the 367 metastatic samples

(columns) and 235 isoforms that were altered in >13% of samples (rows). P-values were calcu-

lated using Fisher’s exact test.

(TIF)

S10 Fig. Clustering of batch A18 and non-batch A18 samples. Isoform groups are the same

as in Fig 8. Both sample subsets separated into four clusters comparable to Fig 8.

(TIF)

S11 Fig. Heightened expression of BRD4 isoforms in RAS mutant metastatic samples.

Although total BRD4 counts did not test as having significant DE between any group of pri-

mary and metastatic tumors, isoforms BRD4-203 and BRD4-205 have heightened expression

in RAS-mutant metastatic samples. Exon junction analysis could not confirm these particular

isoforms from sequence reads.

(TIF)

S1 Table. DESeq2 Results.

(XLSX)
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S2 Table. Differential expression of RTKs using two DESeq2 models.

(TIF)

S3 Table. Sample Metadata.

(XLSX)

S4 Table. BP Enrichments.

(XLSX)

S5 Table. RPPA data.

(XLSX)

S6 Table. DIR results.

(XLSX)

S7 Table. DEXSeq Results.

(XLSX)

S8 Table. Heatmap Clusters.

(XLSX)

S1 Results. Supplemental results file showing extended analyses.

(DOCX)
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