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Abstract

Major depressive disorder (MDD) is a leading cause of disability; its symptoms inter-

fere with social, occupational, interpersonal, and academic functioning. However, the

diagnosis of MDD is still made by phenomenological approach. The advent of

neuroimaging techniques allowed numerous studies to use resting-state functional

magnetic resonance imaging (rs-fMRI) and estimate functional connectivity for

brain-disease identification. Recently, attempts have been made to investigate effec-

tive connectivity (EC) that represents causal relations among regions of interest. In

the meantime, to identify meaningful phenotypes for clinical diagnosis, graph-based

approaches such as graph convolutional networks (GCNs) have been leveraged

recently to explore complex pairwise similarities in imaging/nonimaging features

among subjects. In this study, we validate the use of EC for MDD identification by

estimating its measures via a group sparse representation along with a structured

equation modeling approach in a whole-brain data-driven manner from rs-fMRI. To

distinguish drug-naïve MDD patients from healthy controls, we utilize spectral GCNs

based on a population graph to successfully integrate EC and nonimaging phenotypic

information. Furthermore, we devise a novel sensitivity analysis method to investi-

gate the discriminant connections for MDD identification in our trained GCNs. Our

experimental results validated the effectiveness of our method in various scenarios,

and we identified altered connectivities associated with the diagnosis of MDD.
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effective connectivity, deep learning, graph convolutional networks (GCNs), major depressive
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1 | INTRODUCTION

Major depressive disorder (MDD), characterized by depressed mood,

loss of interest, vegetative symptoms, and cognitive impairment, is a

mental disorder that is prevalent worldwide (American Psychiatric

Association, 2013). The lifetime prevalence of MDD was estimated to

be 10.8% (American Psychiatric Association, 2013). The symptoms of

MDD substantially interfere with social, occupational, interpersonal,
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and academic functioning (American Psychiatric Association, 2013).

Globally, the total years lived with disability (YLD) of depressive disor-

ders was 7.5% among all YLD, which has been ranked the highest of

all disease (World Health Organization, 2017). Hence, depressive dis-

orders are the leading cause of disability.

Despite the debilitating effects of MDD, the diagnosis of MDD is

still made by phenomenological approach. Given the proximity to the

psychiatric symptoms in terms of mood and cognitive dysregulation,

brain MRI has been used to investigate the neural mechanisms of

MDD (Kempton et al., 2011). Specifically, resting-state functional

magnetic resonance imaging (rs-fMRI) has been widely used for the

diagnosis of MDD by investigating altered functional networks while

a subject is at rest (Anand et al., 2005; Craddock, Holtzheimer, Hu, &

Mayberg, 2009; Greicius et al., 2007). In the meantime, more recently,

the investigation of dynamic changes between connections beyond

simple correlations has been attracting increasing interest (Geng, Xu,

Liu, & Shi, 2018; Rolls et al., 2018). The notion of effective connectivity

(EC) describes the influence of one neural system on another (Friston,

Ungerleider, Jezzard, & Turner, 1994), in contrast to functional connec-

tivity (FC) that denotes intrinsic correlations.

Several studies have revealed that the EC may be used as an effi-

cient biomarker for the diagnosis of MDD. Specifically, (Schlösser

et al., 2008) found that adolescents suffering from MDD exhibited a

significant difference in EC between the amygdala and subgenual ante-

rior cingulate cortex (ACC) during an emotion-relevant task. In addition,

Geng et al. (2018) directly utilized both FC and EC measures as features

for the diagnosis of MDD and established that the discriminative power

of EC features is higher than that of FC features. More recently, using a

large sample size (336 patients with MDD and 350 control subjects),

Rolls et al. (2018) identified significantly altered EC measures in MDD,

such as reduced connectivity from temporal lobe areas to the medial

orbitofrontal cortex. These findings imply that the EC measures are

beneficial for determining if it is altered in neurological disorders, in

addition to FC in the resting-state paradigm in neuroimaging.

Several approaches such as dynamic causal modeling (DCM)

(Park & Friston, 2013) and Granger causality (GC) (Granger, 1969)

have been suggested for estimating EC. DCM is a commonly used

approach; however, it requires the selection of seed regions of inter-

est (ROIs) that are widely known as discriminant biomarkers in rele-

vant literature rather than the whole brain connectivity due to

computational complexity (Geng et al., 2018). GC, owing to its simplic-

ity and ease of implementation, has been widely used to estimate the

EC (Hamilton, Chen, Thomason, Schwartz, & Gotlib, 2011; Liao

et al., 2011; Wu & Marinazzo, 2015). However, studies have shown

that EC estimations given by GC cannot correctly determine the

intensity of the actual causality in the time domain (Hu et al., 2012). In

the meantime, structural equation modeling (SEM) (McIntosh, Rajah, &

Lobaugh, 1999) has been successfully used as a statistical approach

for investigating the EC (Büchel & Friston, 1997; Penny, Stephan,

Mechelli, & Friston, 2004; Suk, Wee, Lee, & Shen, 2015; Wee, Yap,

Zhang, Wang, & Shen, 2014; Zhuang, Peltier, He, LaConte, &

Hu, 2008). The original work of SEM requires a large sample size to

model complex relationships between brain activities.

In recent years, beyond the group-level analyses, there has been

growing interest in using machine learning (ML) techniques to identify

clinically meaningful phenotypes for clinical diagnosis. A typical ML

pipeline for the diagnosis of MDD can be summarized as follows: fea-

ture extraction, feature selection, model training, classification, and

performance evaluation. In studies that differentiate MDD patients

from healthy controls (HC), the following have been used as features

extracted from rs-fMRI: spatial independent components (Ramasubbu

et al., 2016; Wei et al., 2013), the Hurst exponent (Jing et al., 2017),

degree centrality (Li et al., 2017), and regional homogeneity (Ma, Li,

Yu, He, & Li, 2013). In addition, many previous studies also applied

graph theory approaches (Bhaumik et al., 2017; Cao et al., 2014; Dry-

sdale et al., 2017; Guo et al., 2014; Lord, Horn, Breakspear, &

Walter, 2012; Sundermann et al., 2017; Wang, Ren, & Zhang, 2017;

Yoshida et al., 2017; Zeng, Shen, Liu, & Hu, 2014; Zhong et al., 2017)

to the preestimated FC for investigating the disrupted functional brain

networks in MDD patients. A small number of MDD classification

studies have utilized EC as the feature. In Geng et al. (2018), EC was

estimated using spectral DCM with predefined ROIs, and then, it was

used as the feature for MDD classification; in this case, four super-

vised learning classifiers are used: linear support vector machine

(SVM), nonlinear SVM, linear regression, and k-nearest neighbor.

Nonetheless, SVM (Bhaumik et al., 2017; Cao et al., 2014; Drysdale

et al., 2017; Lord et al., 2012; Sundermann et al., 2017; Wang

et al., 2017; Zhong et al., 2017) remains the most commonly used

classifier, but other ML classifiers such as partial least squares regres-

sion (Yoshida et al., 2017), maximum margin clustering (Zeng

et al., 2014), linear discriminant analysis (Ma et al., 2013), and neural

networks (Guo et al., 2014) have also been applied for the diagnosis

of MDD.

Recently, graph-based approaches have gained popularity in med-

ical applications owing to their ability to accommodate complex

pairwise similarities in imaging/nonimaging features between subjects

(Parisot et al., 2018). They model individuals as vertices and associa-

tions or similarities between them as edges, which have been widely

used for supervised (e.g., classification (Tong et al., 2017)) and

unsupervised tasks (e.g., manifold learning (Brosch & Tam, 2013; Wolz

et al., 2012) and clustering (Parisot et al., 2016)). In this study, we

focus on disease classification using a graph-based model. In particu-

lar, a generalization of convolutional neural networks (CNNs) to an

irregular graph domain, called spectral graph convolutional networks

(GCNs), has been successfully applied to perform brain disease classi-

fication (Parisot et al., 2018). Specifically, (Parisot et al., 2018) utilized

a population graph for GCNs, where a vertex represents a subject and

an edge encodes pairwise similarities of phenotypic data and/or imag-

ing features between subjects. This combines imaging and nonimaging

data in a single framework and delivers competitive classification

performance.

In this study, we go beyond the FC toward an EC-based approach

using a group sparse representation leveraged with SEM in an

unsupervised manner. Specifically, this group-constrained sparsity

imposes similar connectional patterns among subjects but maintains

individual differences in correlation weights. To identify MDD,
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inspired by Parisot et al. (2018), we exploit the spectral GCNs based

on the population graph to successfully integrate our EC features and

nonimaging demographic features. Furthermore, we devise a sensitiv-

ity analysis (SA) method for our learned GCNs to investigate discrimi-

nant EC measures for MDD identification. Through various scenarios,

our experimental results validate the effectiveness of the proposed

method in terms of extracted features, feature selection, and classi-

fiers. Our main contributions can be summarized in two aspects as

follows:

• We estimated EC by using a whole-brain data-driven approach

with low computational costs through group-constrained sparsity

leveraged with SEM-like mechanism and used it for the diagnosis

of MDD via GCNs for the first time.

• In addition to superior experimental results for MDD identification,

through an SA for our learned GCNs, we successfully identified

meaningful connectivities associated with the diagnosis of MDD

that have been reported in psychiatry literature.

2 | MATERIALS

2.1 | Participants

We collected the rs-fMRI from 29 drug-naïve MDD patients recruited

from the outpatients of the Korea University Anam Hospital (Seoul,

Republic of Korea). These patients included 8 males and 21 females;

their ages ranged from 19 to 60 years, and the mean age was

43.79 years (±13.06). The outpatients were prospectively recruited as

participants who agreed to visit the clinic after 4 weeks, 8 weeks, and

6 months. We defined drug-naïve MDD patients based on the follow-

ing two criteria: (a) those who were consistently diagnosed with MDD

over the visits, and (b) those who had no record of prescribed medi-

cine due to depressive symptoms at their first visit. The diagnosis was

determined by board-certified psychiatrists based on the Structured

Clinical Interview from the Diagnostic and Statistical Manual of Men-

tal Disorders, Fourth Edition (DSM-IV) Axis I disorders. Basic demo-

graphic and clinical information such as family history of MDD and

education level were acquired during the psychiatric interview at the

clinic. The severities of depressive symptoms in all the participants

were assessed using the 17-item Hamilton Depression Rating Scale

(HDRS-17) (Hamilton, 1960) that reflects the degree of depression.

The participants, at each visit, were assessed using the HDRS-17, and

MRI scanning was performed at the first visit.

A total of 44 HCs (17 males; 27 females) were recruited from the

community; their ages ranged from 21 to 58 years. The recruitment

was made with the help of an advertisement for those who voluntarily

responded. The similar psychiatric diagnosis was carried out for HCs

who were confirmed with none of any current symptoms and past his-

tory of psychiatric disorders. For both the groups, the participants

who satisfied the criteria such as comorbidity of any other major psy-

chiatric disorders, expressing psychotic features (i.e., delusion, halluci-

nation), having a history of a serious or unstable medical illness

including any primary neurological illness, and exhibited any contrain-

dication to MRI scanning (e.g., metal implants) were considered inap-

plicable to the study. The protocol of the study was approved by the

Institutional Review Board of Korea University Anam Hospital. In

accordance with the Declaration of Helsinki, all the 73 participants

signed a written informed consent prior to participating in the study.

All participants were acknowledged thoroughly to drop out of the

study at any stage, but there was no participant who dropped out.

The demographic information is summarized in Table 1.

There have been consistent evidences that patients with MDD

had lower educational attainment as compared to HCs (Lorant

et al., 2003). This means that lower educational level is one of the

essential components of MDD which could not be separable from the

diagnosis of MDD. So, in regard to the significant difference

(p-value = .018) between two groups in the education level, the distri-

bution of the educational level between the two groups seems to

appropriately reflect real-world clinical situations. The unbalanced dis-

tribution of the educational level between the two groups would

influence the classification results. However, there is no reason not to

utilize nonneuroimaging data with neuroimaging data in one classifica-

tion model. In clinical psychiatry, ML-based approach primarily aims to

build pragmatic model so that it can help psychiatrists to diagnose and

treat mental disorders (Steele & Paulus, 2019). Hence, it is important

TABLE 1 Demographic information,
psychiatric diagnosis and their statistical
significance of MDD patients and HCs

MDD (n = 29) HC (n = 44) p-Value (t, χ2)

Age (years) 43.79 ± 13.06 39.68 ± 11.91 .169 (t = 1.389)a

Gender (female/male) 21/8 27/17 .33 (χ2 = 0.948)b

Education level .018 (χ2 = 8.035)b

Elementary and middle school 7 2

High school or college/university 21 35

Above graduate school 1 7

HDRS-17 score 14.48 ± 4.82 1.98 ± 2.11 <.001 (t = 13.166)a

Note: Data presented as mean ± standard deviation or n, unless otherwise indicated.

Abbreviations: HC, healhy control; HDRS, Hamilton Depression Rating Scale; MDD, major depressive

disorder.
aIndependent sample t test.
bPearson chi-square.

JUN ET AL. 4999



to take full advantage of available data and maximize the performance

of the classification model. In our method, we combine imaging and

phenotypic data such as educational level in a single framework by

constructing GCNs to enhance the classifying performance.

2.2 | Data acquisition

Volumetric structural MRI scans were acquired using a 3.0 Tesla Sie-

mens Trio whole-body imaging system (Siemens Medical Systems,

Iselin, NJ). A T1-weighted magnetization-prepared rapid gradient-

echo MP-RAGE was used (repetition time [TR] = 1900 ms, echo time

[TE] = 2.6 ms, field of view = 220 mm, matrix size = 256 × 256;

176 coronal slices without gap, voxel size = 0.9 × 0.9 × 1 mm3,

flip angle = 9∘, and number of excitations = 1). Functional images were

obtained using a single-shot echo planer imaging sequence

(TR = 2,000 ms, TE = 30 ms, flip angle = 90∘, number of slices = 42,

matrix = 80 × 80, resolution = 3.0 × 3.0 × 3.0 mm3).

2.3 | Preprocessing

We preprocessed data samples using the Data Processing Assistant

for Resting-State fMRI, a convenient plug-in software based on SPM

and REST. Among the 180 collected rs-fMRI volumes, we initially dis-

carded the first 10 volumes of each subject before any further

processing to allow for magnetization equilibrium. Then, the remaining

170 volumes were slice-timing corrected, head motion corrected, and

spatially normalized to the standard Montreal Neurological Institute

space with a resolution of 3 × 3 × 3 mm3. To further reduce the

effects of nuisance signals, we performed the regressions of ventricle

and white matter signals as well as six head-motion profiles. Due to

the controversy of removing the global signal in the postprocessing of

rs-fMRI data, we did not regress out the global signal. The regressed

rs-fMRI images were parcellated into 114 ROIs1 in the cortical

regions, 57 per hemisphere, which are derived from the 17 networks

using the functional atlas in Thomas Yeo et al. (2011). Subsequently,

the mean rs-fMRI time series at each ROI was computed and band-

pass filtered from 0.01 to 0.1 Hz to exploit the characteristics of low

frequency fluctuations, thus resulting in a 114-dimensional vector for

each sample. Subjects with excessive head motion during scan acqui-

sition2 were excluded from further analysis.

3 | METHODS

In this section, we describe our experimental approaches for dis-

tinguishing drug-naïve MDD patients from HCs based on rs-fMRI time

series. As shown in the overall procedure (Figure 1), we first estimate

EC by a group sparse representation along with SEM in an

unsupervised manner. This allows to impose similar connectional pat-

terns among subjects but maintain individual differences in their net-

work characteristics. We transform the estimated connectivity map

into a vectorial feature space and further reduce its dimension based

on statistically significant features while eliminating the redundant

and less informative features in a univariate manner. The selected

imaging feature vector and the phenotypic information (e.g., age, gen-

der, etc.) of the subjects are incorporated into a population graph that

F IGURE 1 Overall framework of the proposed method for MDD identification. Test samples were marked with gray boxes to indicate that
the test sample labels are never used during training. GCNs, graph convolutional networks; GSL, group-constrained Sparse LASSO; MDD, major
depressive disorder; SEM, structural equation model
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forms the basis for our GCNs. A vertex represents each subject's

acquisition, and an edge weight encodes the pairwise similarities of

phenotypic information. By operating the spectral graph convolutions

through the layers, the GCNs perform a binary classification between

the MDD patients and HCs. In addition to MDD identification, we fur-

ther introduce an SA method for our trained GCNs to detect discrimi-

native EC measures.

3.1 | Sparse estimation of EC

To estimate the fMRI-derived features in the ML pipeline of MDD

diagnosis, FC coefficients have been typically used (Bhaumik

et al., 2017; Sundermann et al., 2017; Wang et al., 2017; Yoshida

et al., 2017; Zhong et al., 2017). However, to validate the potential of

the EC as a biomarker, we estimate the EC coefficients by leveraging

the concept of SEM (Suk et al., 2015; Wee et al., 2014). Assume that

a sequence of T-length mean time series of rs-fMRI from R ROIs is

provided for subject n, that is, Xn = x1n , � � �,xrn, � � �,xRn
� �

�RT ×R , where

xrn = xrn,1, � � �,xrn,t, � � �,xrn,T
h i

>�RT. In this study, we hypothesize that the

response of an ROI can be represented by a linear combination of

those of other ROIs. That is, given the time course of the other ROIs

excluding a target rth ROI, Xnr
n �RT × R−1ð Þ , we can formulate the time

course of the target ROI as xrn =X
nr
n w

nr
n + e , where wnr

n �RR−1 is a

regression coefficient vector, and e is a zero-mean Gaussian distrib-

uted error vector. It should be noted that these learnable regression

coefficients of N subjects, Wnr
1:N = wnr

1 , � � �,wnr
n , � � �,wnr

N

h i
�R R−1ð Þ×N , indi-

cate the causal relations between a target ROI and the other ROIs.

Further, motivated by a recent study (Supekar, Menon, Rubin,

Musen, & Greicius, 2008) that validated the effect of sparsity con-

straints for detecting robust connections from noisy connectivities, we

apply a group-constrained sparse least absolute shrinkage and selection

(LASSO) (Wee, Yap, Zhang, Wang, & Shen, 2012) into our estimation of

the EC. This sparse representation through ℓ1-norm penalization can

provide a biologically plausible interpretation, following the fact that a

brain region typically forms relatively few numbers of connections.

Hence, the objective function,ℒ(W\r), is defined as follows:

ℒ Wnr
1:N

� �
=
1
2

XN
n=1

kxrn−Xnr
n w

nr
n k22 + αkWnr

1:Nk2,1 ð1Þ

where α > 0 is a regularization parameter that indicates the magnitude of

sparsity and k � k2,1 denotes an ℓ2,1-norm. The ℓ2,1-norm is derived from

the summation of ℓ2-norms of kwnr
n k1 that is an individually imposed ℓ1-

norm for each subject. This group-constrained sparsity not only cap-

tures the consistent characteristics among subjects, but also retains

intersubject variability. It is noteworthy that self-to-self connections

are ignored by filling the rth element with zeros for each ROI, where

we newly define Ŵ
nr
1:N�RR×N . The resulting unsupervised representa-

tion, Ŵ
nr
1:N

n oR

r =1
, is regarded as the EC coefficients for all subjects.

Finally, we concatenate the estimated connectivities of all ROIs

for a subject n such that ŵn1
n , � � �,ŵnr

n , � � �,ŵnR
n

h i
�RR2

. Then, we conduct

LASSO feature selection method to select informative features, thus

resulting in fn�Rm, where m is a reduced dimension. Thus, a feature

matrix for all N subjects, F = [f1, � � �, fn, � � �, fN]>�RN×m, is fed into our

classifier as the input.

3.2 | Population graph construction

For classification, we use the GCNs (Parisot et al., 2018) based on a

population graph. The population graph is represented as a

weighted undirected graph G= V,ℰ,Wf g , where V and ℰ are finite

sets of j V j =N vertices and edges respectively, andW�RN×N denotes

an weighted adjacency matrix. Specifically, each vertex corresponds

to a subject and the edges encode the phenotypic similarities between

every pair of subjects. To construct the aforementioned graph, the

following two factors need to be determined: (a) the vertex feature

vector assigned for each vertex and (b) the weighted adjacency matrix.

In this study, we define fn described in Section 3.1 as our feature vec-

tor for each vertex. Regarding the adjacency matrix, we consider the

similarities of both imaging and nonimaging phenotypic features

(e.g., age, gender) between subjects (Parisot et al., 2018). Given a set

of H phenotypic measures pn = phn
� �H

h=1 for subject n, each weight W ij

between subject i and j is defined as follows:

W ij = exp −
kfi−fjk2
2σ2

 !XH
h=1

δ phi ,p
h
j

� �
ð2Þ

where σ is a predefined kernel width of a Gaussian similarity function.

With respect to δ(�), it depends on the type of phenotypic measure.

For example, δ(�) is defined as the Kronecker delta function for cate-

gorical measures (e.g., subject's gender) or the unistep function for

quantitative measures (e.g., subject's age) satisfying 1 iff j phi −phj j < γ ;
0 otherwise, where γ is a threshold to be determined. Therefore,

according to Equation (2), the edge weights increase when two sub-

jects have a high similarity of vertex feature vectors and/or pheno-

typic measures. It is noteworthy that this population graph

incorporates not only nonimaging features, but also imaging features,

compared with many existing studies that use only imaging features

for brain disease prediction.

3.3 | Graph convolutional networks for MDD
identification

After constructing the population graph represented in Section 3.2,

we learn the GCNs to predict the target labels of MDD/HC. To this

end, we introduce a spectral graph convolution as the main building

block in GCNs, which generalizes the conventional convolution opera-

tion in the Euclidean domain to irregular graphs. It requires the eigen-

decomposition of the graph Laplacian (Chung & Graham, 1997) to be

computed, followed by a graph Fourier transform (GFT) (Shuman,

Narang, Frossard, Ortega, & Vandergheynst, 2013).

First, our population graph is represented by its Laplacian matrix

ℒ, formulated as ℒ=D−W , where D=diag d0,…,dN−1ð Þ�RN×N is the

JUN ET AL. 5001



diagonal degree matrix and di =
P

jW ij is the degree of vertex i.

Because ℒ is a symmetric semidefinite matrix, it can be eigen-

decomposed such that ℒ = UΛU>, into a complete set of orthonormal

eigenvectors U = [u0,…, uN−1]�RN×N and the diagonal matrix of non-

negative eigenvalues Λ = diag([λ0,…, λN− 1])�RN×N (0≤ λ0 ≤ � � �≤ λN
−1). Particularly, it can be normalized as ℒ= IN−D−1=2WD−1=2, where

IN�RN×N is an identity matrix, and the eigenvalues belong to the

range of [−1, 1]. Accordingly, ℒ contains information about the con-

nections between subjects and their similarities.

Following the property of the GFT, given vertex features F and a

filter gθ that is a diagonal matrix parameterized with Fourier coeffi-

cients θ � RN, the spectral convolutions are operated in the Fourier

domain as gθ * F = gθ(ℒ)F = gθ(UΛU>)F = U gθ(Λ)U>F. Specifically, in

this study, we apply filter approximation by representing gθ(Λ) as a

Kth order Chebyshev polynomial function of the eigenvalues

(Defferrard, Bresson, & Vandergheynst, 2016; Hammond,

Vandergheynst, & Gribonval, 2011), gθ Λð Þ=PK
k =0θkΛ

k , where θkf gKk =0
is a set of polynomial coefficients. This provides the benefits of

K-localization and cost-effective computation of convolution. Thus,

the convolution can be rewritten as follows:

gθ �F=U
XK
k =0

θkΛk

 !
U>F=

XK
k =0

θk UΛkU>� 	
F=

XK
k =0

θkℒ
kF: ð3Þ

On the basis of the spectral graph convolution, the overall model

comprises multiple convolutional layers and a fully connected layer

for the final prediction. In terms of the convolutional layer, layer-wise

activations are propagated, thus resulting in the representation of the

jth output graph for the (l + 1)th layer activation from the lth layer

activation, as follows:

ℋ l+1ð Þ
j = σ

XFin
i=1

XK
k =0

θi, jkℒ
kℋ lð Þ

i

 !
+b lð Þ

j

 !
ð4Þ

where σ(�) is a nonlinear activation function such as a rectified linear

unit (ReLU) and θi, jk is the (Fin× Fout) vector of polynomial coefficients

to be learned, and b lð Þ
j denotes the (1× Fout) bias vector in the lth layer.

Here, we assume that by the GCN training, the vertices connected

with high edge weights become more similar as they pass through

multiple layers .

Finally, the final prediction layer comprises the fully connected

layer followed by a softmax activation function. That is, the GCNs

output a prediction label ŷn that describes the brain state (e.g., MDD

or HC) of a subject n. The loss function J ŷ,yð Þ is defined by the differ-

ence between ŷ and the actual label y among test vertices, where a

cross-entropy loss function is used in our implementation. Basically,

training the GCNs follows a transductive learning scheme. In other

word, during the training, we use the whole data including labeled

training and unlabeled test samples to construct the whole population

graph. In addition, the features of test samples are exploited to per-

form the convolutions of training samples. The GCNs are trained to

minimize the loss evaluated on the labeled training samples, and the

parameters are updated by backpropagating the following two

gradients:

∂J
∂θi, jk

=ℒkℋ lð Þ
i

∂J

∂ℋ l+1ð Þ
j

,
∂J

∂ℋ lð Þ
i

=
XFout
j=1

∂J

∂ℋ l+1ð Þ
j

XK
k =0

θi, jkℒ
k

 !0
@

1
A: ð5Þ

After training the GCNs, during the test, test samples are

predicted with labels that maximize the probabilities of the softmax

output.

3.4 | Sensitivity analysis for interpretation of GCN-
based prediction

Many previous works have developed the methods to explain the pre-

dictions of deep learning models such as SA (Baehrens et al., 2010;

Simonyan, Vedaldi, & Zisserman, 2013) and layer-wise relevance-

propagation (Bach et al., 2015), and so forth. Recently, SA has been

used in various applications such as medical diagnosis (Khan

et al., 2001) and ecological modeling (Gevrey, Dimopoulos, &

Lek, 2003), and so forth. However, to the best of our knowledge,

interpretation techniques for GCNs have not been investigated yet.

Thus, we devise a novel SA method for analyzing our trained GCN

model. That is, in addition to the diagnosis, it provides an interpreta-

tion of what enables the GCNs to reach their individual predictions,

thus allowing the identification of significantly altered EC measures in

MDD patients.

SA is a gradient-based model interpretation method. As shown in

the Figure 2, it computes the norm k � kq over partial derivatives for a
differentiable prediction function with respect to the input (i.e., a sen-

sitivity of the prediction based on the changes in the input). Given our

prediction function g and the vertex feature input fn for subject n, rel-

evance scores in SA are defined as follows:

Rn =
∂g
∂fn











q

�Rm: ð6Þ

where k � kq is the norm of the partial derivative. To represent the

magnitude to which variations of the input contribute to the output,

the ℓ1 or ℓ2-norm can be used (Kardynska & Smieja, 2016). A high rel-

evance score implies that changes in the EC value influence the diag-

nosis of MDD significantly.

4 | EXPERIMENTAL SETTINGS AND
RESULTS

In this section, we validate the effectiveness of the proposed method

for MDD identification by considering the following scenarios:

(a) using FC or EC as features, (b) applying the feature selection or

not, and (c) using GCNs or other ML method as a classifier.
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Furthermore, we identify the discriminant connectivities from the

magnitude of resulting relevance scores in our SA method. All the

codes are available at “https://github.com/ejju92/EC_GCN.”

4.1 | Experimental settings

For performance evaluation, we took a 10-fold stratified cross-

validation technique (Bishop, 2006). Specifically, we partitioned the

samples of each class (i.e., drug-naïve MDD patients and HCs) into

10 folds and used samples of 1 fold for testing and those of the

remaining folds for training. Since we only have a total of 73 samples,

including 29 drug-naïve MDD patients and 44 HCs, that is, about

67 samples for the training set, we used the whole data including

labeled training and unlabeled test set to construct population graph,

as described in Section 3.3. However, the features of test set were

used for the convolutions of training samples during training, and the

loss is calculated only on a subset of training set. Note that the test

sample labels were never used during training. As such, we repeated

the above process 10 times by setting another different samples of

1 fold as the test set and rest as training set. The average of the

results is reported in Section 4.2.

For constructing the population graph, we set σ = 1, γ = 2, and

considered the ages and genders of the subjects as the phenotypic

measures for adjacency matrix representation. We trained our GCNs

with a single hidden layer that approximates the convolutions with

third-order Chebyshev polynomials, with parameters optimized by a

grid search. For regularization, we applied dropout among the input,

hidden, and prediction layers during training. The training hyper-

parameters are chosen as follows: a dropout rate of 0.3, a learning

rate of 0.05, and an ℓ2 regularization of 5 × 10−4 with 200 epochs.

In this study, we considered comparable scenarios in terms of the

feature type, feature selection, and classifier. For the extracted fea-

tures, we compared FC and EC features. Many existing works (Azari

et al., 1992; Van Dijk et al., 2009; Wang et al., 2007) have used the

FC as a common measure of representative features from rs-fMRI

time-series, demonstrating competitive performances in brain disease

prediction tasks. Specifically, we estimated the FC by calculating

pairwise Pearson correlation coefficients (Ye et al., 2015) between

ROIs. Finally, we used its vectorized upper triangular part, thereby

resulting in an R(R − 1)/2-dimensional feature vector for each

subject.3

In addition, we validated the effect of feature selection. Our fea-

ture vector is high dimensional with possibilities of including noisy

features that may lead to performance degradation. Hence, we

attempted to retain the features with the highest discrimination pow-

ers while eliminating redundant and less informative features using

LASSO feature selection method.

To evaluate our proposed method, we compared it with other

ML/deep learning methods. Regarding to the ML method, a linear

SVM is exploited, which is a widely used classifier for brain disease

diagnosis (Chen et al., 2016; Craddock et al., 2009; Fan et al., 2011).

The SVM estimates an optimal hyperplane that best separates the

two classes. We selected the model parameter C that balances

between a regularization term in the set of {10−5, 10−4, …, 104} by

nested cross-validation.

F IGURE 2 A schematic diagram of sensitivity analysis (SA) for our trained graph convolutional networks (GCNs). Gray lined arrows represent
forward computation for major depressive disorder (MDD)/healthy control (HC) prediction, and purple dashed arrows denote gradient
backpropagation of prediction with respect to input, resulting in the relevance scores
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For the deep learning method, we evaluated BrainNetCNN

(Kawahara et al., 2017) and discriminative/generative long short-term

memory (LSTM-DG) (Dvornek, Li, Zhuang, & Duncan, 2019). The

BrainNetCNN (Kawahara et al., 2017) is based on a CNN framework

to capture the topological locality of structural brain networks. By

taking the connectivity matrix as input, it uses novel edge-to-edge,

edge-to-node, and node-to-graph convolutional filters for neuro-

development prediction. With respect to the LSTM-DG (Dvornek

et al., 2019), i.e., joint LSTM-DG network, it performs a multi-task

learning of brain disorder identification and rs-fMRI time-series data

generation, given the rs-fMRI ROI time-series as input.

When calculating the relevance scores in the SA, we used the

ℓ1-norm that is the absolute of the partial derivative.

4.2 | Performance results and analysis

For a quantitative evaluation of the comparable scenarios illustrated

in Section 4.1, we considered the following metrics:

• ACCuracy (ACC) = (TP + TN)/(TP + TN + FP + FN).

• SENsitivity (SEN) = TP/(TP + FN).

• SPECificity (SPE) = TN/(TN + FP).

• Area under the curve (AUC).

where TP, TN, FP, and FN denote true positive, true negative,

false positive, and false negative, respectively. Specifically, higher

values of the sensitivity and specificity represent the lower chances of

misdiagnosing each clinical label. We summarized the experimental

results under various conditions in Table 2.

As presented in Table 2, our method of GCNs w/LASSO demon-

strated the best performance with respect to all the metrics, com-

pared to other competitive methods including SVM, BrainNetCNN

(Kawahara et al., 2017), and LSTM-DG (Dvornek et al., 2019). From

the experimental results, the following findings can be inferred: fea-

ture selection helps improve the performance in all scenarios. In par-

ticular, the effect of feature selection resulted in significant

performance gains for high dimensional (R2) EC feature vector, which

is approximately twice higher than that of FC (R × (R − 1)/2) given

TABLE 2 Classification performance
of various scenarios. The mean and SD
over 10-fold cross-validation are
represented. For each imaging feature,
the highest performance is bolded in
terms of each evaluation metric

Method Metric Effective connectivity Functional connectivity

SVM ACC 0.626 ± 0.144a 0.553 ± 0.252*

SEN 0.266 ± 0.199a 0.350 ± 0.262*

SPE 0.870 ± 0.188a 0.690 ± 0.287*

AUC 0.568 ± 0.156a 0.520 ± 0.249*

SVM w/LASSO ACC 0.698 ± 0.104a 0.603 ± 0.127a

SEN 0.516 ± 0.216a 0.466 ± 0.266a

SPE 0.825 ± 0.155a 0.710 ± 0.133a

AUC 0.670 ± 0.110a 0.588 ± 0.146a

BrainNetCNN (Kawahara

et al., 2017)

ACC 0.557 ± 0.103* 0.587 ± 0.153a

SEN 0.200 ± 0.233* 0.433 ± 0.386a

SPE 0.785 ± 0.248* 0.710 ± 0.245a

AUC 0.492 ± 0.086* 0.571 ± 0.172a

LSTM-DG (Dvornek

et al., 2019)

ACC 0.564 ± 0.109*

SEN 0.333 ± 0.384*

SPE 0.745 ± 0.244*

AUC 0.539 ± 0.136*

GCNs ACC 0.591 ± 0.095* 0.539 ± 0.139*

SEN 0.283 ± 0.258* 0.066 ± 0.133*

SPE 0.820 ± 0.244* 0.850 ± 0.204*

AUC 0.563 ± 0.211* 0.428 ± 0.168*

GCNs w/LASSO ACC 0.741 ± 0.130b 0.564 ± 0.140*

SEN 0.566 ± 0.300b 0.466 ± 0.266*

SPE 0.869 ± 0.166b 0.644 ± 0.217*

AUC 0.791 ± 0.153b 0.665 ± 0.196*

Note: *: p < .05.

Abbreviations: ACC: ACCuracy; AUC, area under the curve; GCNs, graph convolutional networks; SEN,

SENsitivity; SPE, SPECificity; SVM, support vector machine.
aNo statistical difference from the McNemar's test.
bThe reference method for the statistical tests with other methods.
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R ROIs. More specifically, the quantitative improvements for FC/EC in

accuracy were 5.0/7.2% in SVM and 2.5/15% in GCNs, respectively.

In addition, the proposed method (GCNs w/LASSO) achieved the

highest AUC in both EC and FC scenarios, implying that their predic-

tions were not biased toward the majority class. It is noteworthy that

in our dataset, because the number of samples available for each class

was not balanced, that is, MDD patients (29) versus HC (44), the per-

formance results could have been likely inflated. Nevertheless, our

method achieved the AUC of 0.791 in EC and 0.665 in FC, respec-

tively, demonstrating the power of our method to still identify the

minority class well.

To demonstrate the statistical power of our method, we con-

ducted a power (1-probability of Type II error) analysis with R package

(Kohl, 2019) that is based on a previous research (Flahault, Cadilhac, &

Thomas, 2005). As shown in Table 2, the mean sensitivity (SD) of our

classifier generated from 10-fold cross-validation is 0.566 ± 0.300. As

the formula of a confidence interval is mean�Z SDffiffi
n

p , the mean sensitiv-

ity (95% CI) and marginal error is 0.566 (0.380–0.752) and 0.186,

respectively. With α (probability of Type I error) = 0.05, sensitiv-

ity = 0.566, marginal error = 0.186, Z =1.96, number of cases = 29,

and number of controls = 44, the power of our classifier is estimated

to 63.6%. When considering that most researchers set the statistical

power to the range between 60 and 80% (OECD, 2014), the value of

our statistical power is adequate.

In addition, in order to validate whether any observed difference

between the proposed method and others is statistically significant,

we conducted the McNemar' statistical test. We observed that the

proposed method outperformed statistically (p − value < .05); the

competing methods of BrainNetCNN (Kawahara et al., 2017) and

GCNs for EC feature, SVM, GCNs, GCNs w/LASSO for FC feature,

and LSTM-DG (Dvornek et al., 2019).

We compared the computational time4 of the proposed method

with that of our comparative methods in terms of training and test

time (second) per epoch, as presented in Table 3. We measured the

time on a NVIDIA GTX 1070 GPU. It is noteworthy that as our GCNs

are tuning network parameters in a transductive manner, basically the

learning process occurs in a testing phase only. Thus, the training and

test time is identical.

Furthermore, we conducted a comparative experiment to estimate

EC through GC analysis (GCA) for comparison with that of our pro-

posed method. By using the estimated EC as feature, we performed

MDD identification using GCNs, SVM, and BrainNetCNN (Kawahara

et al., 2017) as classifier. The results are summarized in Table 4. It is

noteworthy that with the GCA features, our proposed method was still

superior to the competing methods in ACC, SEN, and AUC.

4.3 | SA-based interpretation

As described in Section 3.4, we conducted the SA for our GCNs to

identify significantly altered EC measures in MDD patients compared

to HCs. From the SA, we obtained the relevance scores estimated for

N subjects, R= Rnf gNn=1 . Here, after averaging them over all subjects,

the mean relevance scores R̂ were considered for analysis. Specifi-

cally, to investigate the discriminative EC measures, we selected the

connectivities whose relevance scores were higher than (μ+ 1.5 * σ),

where μ and σ denote the mean and SD of the mean relevance scores,

respectively. The selected connections are presented in Table 5 and

Figure 3. The larger the relevance score values, the greater the impor-

tance of corresponding EC measures for the diagnosis of MDD.

Basically, we inputed the EC (EC) feature vector selected by our

feature selection method, that is, LASSO, into the GCNs, and then

applied SA to the learned GCN to investigate the discriminant connec-

tivities for MDD identification from input feature vector. Through the

LASSO feature selection, a total of 107 connectivities are selected

from the 114 × 113/2 = 6,441 connectivities when considering the

union of connectivities selected from all folds in cross-validation, as

shown in Table A2.

We examined the resulting LASSO coefficients for 13 connectivi-

ties chosen in the SA, as presented in Table 5. Considering that the

mean coefficient for 107 connectivities is −0.00024, it is noteworthy

that the coefficients for 13 connectivities have significantly high

values and thus we believe that our GCNs well captured the informa-

tive features and their relations.

5 | DISCUSSIONS

In this study, we successfully distinguished drug-naïve MDD patients

from HCs using GCNs. Hitherto, ML algorithms have been widely

used for diagnosing MDD (Gao, Calhoun, & Sui, 2018). The accuracies

of the performances ranged from good to excellent. For example, Lord

et al. (Lord et al., 2012) and Wang et al. (Wang et al., 2017) reported

99.0 and 95.0% accuracy, respectively. Therefore, from the sheer

number of reported accuracies, the difference in performance

between ours and previous studies appears slight.

However, two distinguished features ensure the intrinsic reliabil-

ity of our results. One is that we conducted a diagnostic evaluation of

participants in the drug-naïve state. Measuring neuroimaging mate-

rials in the drug-naïve state is substantially important because drugs

such as antidepressants have substantial effects on the structural

(Dusi, Barlati, Vita, & Brambilla, 2015) and functional (Wessa &

TABLE 3 Comparison of the
computational time between the
proposed method and the competitive
methods in terms of training and test
time pear epoch

Measure GCNs SVM BrainNetCNN

(Kawahara et al., 2017)

LSTM-DG

(Dvornek et al., 2019)

Training time (s) 0.00375 0.00116 0.31375 0.21620

Test time (s) 0.00375 0.00015 2.18694 0.07804

Abbreviations: GCNs, graph convolutional networks; LSTM-DG, discriminative/generative long short-

term memory; SVM, support vector machine.
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Lois, 2015) aspects of the brain. Another important methodological

factor is that we ensured diagnostic stability for 6 months. Owing to

the operational diagnostic criteria of the DSM series, diagnostic

changes are not rare from a longitudinal perspective. For example, in

the Korean population (Kim, Woo, Chae, & Bahk, 2011), the diagnostic

consistency of MDD by DSM-IV was only 84.8% in the first year. No

matter how excellent the discriminating algorithms are, they are

meaningless if the index diagnosis of MDD is changed to other

indexes. To avoid the potential pitfall of cross-sectional design, it is

necessary to ensure longitudinal diagnostic stability. However, if the

participation in the study is postponed until 1 or 2 years after the ini-

tial diagnosis, the confounding effects of the antidepressants can

become problematic. Therefore, as suggested in a recent review

(Kim & Na, 2018), we partially solved this issue using the MRI of par-

ticipants whose diagnostic stability were confirmed for at least

6 months. Many previous ML studies did not provide reliable informa-

tion of these critical methodological issues. Both the aforementioned

studies that reported better discriminating performances than our

results (Lord et al., 2012; Wang et al., 2017) did not mention the

selection procedure of participants in terms of longitudinal diagnostic

instability. Regarding antidepressants medication, one study reported

that all the participants were taking antidepressants (Lord

et al., 2012), and another study did not provide medication-related

information. We believe that the well-defined selection process of the

participants rendered our results more reliable than those of previ-

ously conducted studies.

5.1 | Discriminative features analyses

Through the SA of our GCNs, we demonstrated that the dorsal pre-

frontal cortex received decreased connectivity from the precentral

ventral, striate cortex, parietal medial, inferior parietal lobule, para-

hippocampal cortex. The dorsal prefrontal has long been known as

a key region of depression, wherein cognitive reappraisal occurs in

a top-down manner (Alexander & Brown, 2011; Ochsner, Silvers, &

TABLE 4 Performance comparison between the case of using the
GCA-EC and ours. The mean and SD over 10-fold cross-validation are
represented. For each method, the highest performance is bolded in
terms of each evaluation measure

Method Measure GCA-EC Ours

SVM ACC 0.576 ± 0.102 0.626 ± 0.144

SEN 0.066 ± 0.133 0.266 ± 0.199

SPE 0.915 ± 0.187 0.870 ± 0.188

AUC 0.490 ± 0.077 0.568 ± 0.156

SVM w/LASSO ACC 0.630 ± 0.081 0.698 ± 0.104

SEN 0.233 ± 0.152 0.516 ± 0.216

SPE 0.890 ± 0.142 0.825 ± 0.155

AUC 0.561 ± 0.073 0.670 ± 0.110

BrainNetCNN (Kawahara

et al., 2017)

ACC 0.519 ± 0.129 0.557 ± 0.103

SEN 0.266 ± 0.409 0.200 ± 0.233

SPE 0.720 ± 0.423 0.785 ± 0.248

AUC 0.493 ± 0.078 0.492 ± 0.086

GCNs ACC 0.498 ± 0.157 0.591 ± 0.095

SEN 0.100 ± 0.152 0.283 ± 0.258

SPE 0.760 ± 0.252 0.820 ± 0.244

AUC 0.368 ± 0.244 0.563 ± 0.211

GCNs w/LASSO ACC 0.658 ± 0.187 0.741 ± 0.130

SEN 0.633 ± 0.233 0.566 ± 0.300

SPE 0.684 ± 0.233 0.869 ± 0.166

AUC 0.738 ± 0.220 0.791 ± 0.153

Abbreviations: ACC: ACCuracy; AUC, area under the curve; GCA-EC,

effective connectivity estimated by Granger causality analysis; GCNs,

graph convolutional networks; SEN, SENsitivity; SPE, SPECificity; SVM,

support vector machine.

TABLE 5 Discriminant effective connectivities from the SA of our GCNs. For each connection, we presented the index and name of the ROI,
RS, and corresponding LASSO coefficient. The relevance scores are sorted in the descending order

Index Source ROI Index Destination ROI RS value LASSO coefficient

19 Precentral ventral, left 24 Dorsal prefrontal cortex, left 0.99684 −1.19076

108 Anterior temporal, right 27 Orbital frontal cortex, left 0.97552 −0.01477

112 Retrosplenial, right 56 Parahippocampal cortex, left 0.92768 −0.75947

3 Striate cortex, left 24 Dorsal prefrontal cortex, left 0.82408 0.03766

79 Parietal medial, right 24 Dorsal prefrontal cortex, left 0.81150 −0.40647

38 Inferior parietal lobule, left 39 Dorsal prefrontal cortex, left 0.73504 0.68513

23 Inferior parietal lobule, left 44 Cingulate posterior, left 0.63800 −0.06180

59 Extrastriate cortex, right 58 Striate cortex, right 0.62140 0.72370

20 Insula, left 19 Precentral ventral, left 0.61601 0.31163

109 Dorsal prefrontal cortex, right 82 Dorsal prefrontal cortex, right 0.61421 0.37992

29 Temporal pole, left 94 Cingulate anterior, right 0.59003 −0.00683

113 Parahippocampal cortex, right 24 Dorsal prefrontal cortex, left 0.54320 0.19291

93 Lateral prefrontal cortex, right 35 Lateral ventral prefrontal cortex, left 0.51404 −0.41892

Abbreviations: GCNs, graph convolutional networks; ROI, region of interest; RS, relevance score; SA, sensitivity analysis.
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Buhle, 2012). Disturbed connectivity with this region may result in

biased selective attention to negative events and the related emo-

tions such as depressive feeling, sadness, and shamefulness, which

may contribute to the pathophysiology of MDD. However, the

directions among the connectivities that contributed to the onset

of depression have not been elucidated. By measuring the EC, we

identified the directionality in the aberrant connectivity with this

region.

Another interesting finding from the results of the SA is the

abnormal connectivity from right retrosplenial cortices to the left

parahippocampal cortices. The retrosplenial cortex is located in the

posterior corpus callosum, the Brodmann areas 29 and 30. Mean-

while, the retrosplenial and parahippocampal cortices are jointly

involved in visuospatial memory (Epstein, 2008; Mitchell, Czajkowski,

Zhang, Jeffery, & Nelson, 2018); they are crucial in emotion regulation

(Bubb, Kinnavane, & Aggleton, 2017; Maddock, 1999). Animal studies

revealed that the retrosplenial cortex receives inputs primarily from

the parahippocampal and prefrontal cortex (Sugar, Witter, van

Strien, & Cappaert, 2011; Suzuki & Amaral, 1994). Indeed, the retro-

splenial cortex is activated more than other regions in response to

negative emotional words (Maddock & Buonocore, 1997). A possible

mechanism by which the disturbed connectivity between the

retrosplenial and parahippocampal cortices contribute to the MDD is

through associative functions. Both the retrosplenial and para-

hippocampal cortices play a key role in the processing of contextual

associations in MDD (Harel, Tennyson, Fava, & Bar, 2016). Broad

scope and lively association exhibit a reciprocal relationship with posi-

tive mood and increased activity; narrow scope and ruminative pat-

tern of thoughts tend to be associated with depressed mood,

pessimistic thoughts of the future, and decreased energy (Bar, 2009;

Harel et al., 2016; Nolen-Hoeksema, 2000). We speculate that the

decoupling of the retrosplenial and parahippocampal can result in

inappropriate associative processing that, in turn, contributes to the

negative view of future.

5.2 | Limitations

This study has a few limitations that must be noted. First, the sam-

ple size (29 MDD patients and 44 HCs) may not be sufficiently

large. Indeed, a recent study reported the characteristics of EC from

the rs-fMRI of MDD patients (n = 336) as compared to HC

(n = 350) (Rolls et al., 2018). However, a fundamental difference

exists between the previous study and our study. Whereas the

F IGURE 3 Discriminative effective connectivities from the sensitivity analysis (SA) of our graph convolutional networks (GCNs). Each color
denotes the following brain networks: (1) central visual network, (2) peripheral visual network, (3) somatomotor network, (4) dorsal attention
network, (5) salience/ventral attention network, (6) limbic network, (7) control network, (8) default network, and (9) temporal parietal network. All
the above networks follow 17 brain networks defined in the study of Thomas Yeo et al. (2011)
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previous study primarily examined the characteristics of EC in MDD

via group-level analysis, we aimed to discriminate MDD patients

from HCs using the individual-level approach. To the best of our

knowledge, a GCN-based deep learning model for distinguishing

MDD patients from the HCs has not been developed. Second,

detailed sociodemographic variables (e.g., marital status, cohabita-

tion, and socioeconomic status) and clinical variables (e.g., current

and past suicide attempt, family history of psychiatric disorder,

and/or suicide death) were not fully obtained in the MDD group.

Third, we discussed abnormal EC (e.g., disturbed bidirectional con-

nectivity between parahippocampal and retrosplenial cortices) in

relation with the characteristic symptoms of MDD (e.g., negative

scope and rumination). However, we could not directly confirm such

connections between EC and symptomatology in the case of MDD.

Future studies require a larger sample size and relevant instruments

for the investigation of symptoms.

6 | CONCLUSION

In this study, we successfully estimated EC from rs-fMRI and devel-

oped the GCN model for discriminating drug-naïve MDD patients

from HCs. We empirically exhibited the superiority of our method in

various MDD classification scenarios, in terms of extracted features,

feature selection, and classifiers. Because the performance ability did

not provide any insight into the discriminant connectivity for the diag-

nosis of MDD, we devised a novel interpretation approach of our

trained GCNs. Specifically, we applied the SA for the GCNs and

selected the connectivities with high relevance scores. From the

results of the SA, we could successfully identify regions that were pre-

viously identified as those associated with the MDD symptoms in the

psychiatry literature. Thus, our results showed that EC may be promis-

ing for building deep learning-based models in the field of neuroimag-

ing. Further studies with a larger sample size are required to validate

our findings.
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ENDNOTES
1 For the names of all the regions, refer to Table A1.
2 We excluded patients with a displacement of greater than 2.5 mm

and/or an angular rotation of greater than 2∘ in any direction.
3 In this paper, 114 × 113/2 = 6,441 dimensional vector.
4 The Python time module was used.
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APPENDIX

Name of the ROIs in the Yeo template

TABLE A1 The index and name of the ROIs in the Yeo template (Thomas Yeo et al., 2011). The indices 1–57 and the indices 58–114 refer,
respectively, to the left- and right-hemispheric regions

Index ROI label Index ROI label

1 Striate cortex (Striate) 58 Striate cortex (Striate)

2 Extrastriate cortex (ExStr) 59 Extrastriate cortex (ExStr)

3 Striate cortex (Striate) 60 Striate cortex (Striate)

4 Extrastriate inferior (ExStrInf) 61 Extrastriate inferior (ExStrInf)

5 Extrastriate superior (ExStrSup) 62 Extrastriate superior (ExStrSup)

6 Somatomotor A (SomMotA) 63 Somatomotor A (SomMotA)

7 Central (cent) 64 Central (cent)

8 S2 (S2) 65 S2 (S2)

9 Insula (Ins) 66 Insula (Ins)

10 Auditory (Aud) 67 Auditory (Aud)

11 Temporal occipital (TempOcc) 68 Temporal occipital (TempOcc)

12 Parietal occipital (ParOcc) 69 Parietal occipital (ParOcc)

13 Superior parietal lobule (SPL) 70 Superior parietal lobule (SPL)

14 Temporal occipital (TempOcc) 71 Temporal occipital (TempOcc)

15 Postcentral (PostC) 72 Postcentral (PostC)

16 Frontal eye fields (FEF) 73 Frontal eye fields (FEF)

17 Precentral ventral (PrCv) 74 Precentral ventral (PrCv)

18 Parietal operculum (ParOper) 75 Parietal operculum (ParOper)

19 Precentral ventral (PrCv) 76 Precentral (PrC)

20 Insula (Ins) 77 Precentral ventral (PrCv)

21 Parietal medial (ParMed) 78 Insula (Ins)

22 Frontal medial (FrMed) 79 Parietal medial (ParMed)

23 Inferior parietal lobule (IPL) 80 Frontal medial (FrMed)

24 Dorsal prefrontal cortex (PFCd) 81 Inferior parietal lobule (IPL)

25 Lateral prefrontal cortex (PFCl) 82 Dorsal prefrontal cortex (PFCd)

26 Ventral prefrontal cortex (PFCv) 83 Lateral prefrontal cortex (PFCl)

27 Orbital frontal cortex (OFC) 84 Lateral ventral prefrontal cortex (PFClv)

28 Medial posterior prefrontal cortex (PFCmp) 85 Ventral prefrontal cortex (PFCv)

29 Temporal pole (TempPole) 86 Medial posterior prefrontal cortex (PFCmp)

30 Orbital frontal cortex (OFC) 87 Cingulate anterior (Cinga)

31 Temporal (Temp) 88 Temporal pole (TempPole)

32 Intraparietal sulcus (IPS) 89 Orbital frontal cortex (OFC)

33 Dorsal prefrontal cortex (PFCd) 90 Temporal (Temp)

34 Lateral prefrontal cortex (PFCl) 91 Intraparietal sulcus (IPS)

35 Lateral ventral prefrontal cortex (PFClv) 92 Dorsal prefrontal cortex (PFCd)

36 Cingulate anterior (Cinga) 93 Lateral prefrontal cortex (PFCl)

37 Temporal (Temp) 94 Cingulate anterior (Cinga)

38 Inferior parietal lobule (IPL) 95 Temporal (Temp)

39 Dorsal prefrontal cortex (PFCd) 96 Inferior parietal lobule (IPL)

40 Lateral prefrontal cortex (PFCl) 97 Lateral dorsal prefrontal cortex (PFCld)

41 Lateral ventral prefrontal cortex (PFClv) 98 Lateral ventral prefrontal cortex (PFClv)

(Continues)
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TABLE A1 (Continued)

Index ROI label Index ROI label

42 Medial posterior prefrontal cortex (PFCmp) 99 Medial posterior prefrontal cortex (PFCmp)

43 Precuneus (pCun) 100 Precuneus (pCun)

44 Cingulate posterior (Cingp) 101 Cingulate posterior (Cingp)

45 Inferior parietal lobule (IPL) 102 Temporal (Temp)

46 Dorsal prefrontal cortex (PFCd) 103 Inferior parietal lobule (IPL)

47 Posterior cingulate cortex (PCC) 104 Dorsal prefrontal cortex (PFCd)

48 Medial prefrontal cortex (PFCm) 105 Posterior cingulate cortex (PCC)

49 Temporal (Temp) 106 Medial prefrontal cortex (PFCm)

50 Inferior parietal lobule (IPL) 107 Temporal (Temp)

51 Dorsal prefrontal cortex (PFCd) 108 Anterior temporal (AntTemp)

52 Lateral prefrontal cortex (PFCl) 109 Dorsal prefrontal cortex (PFCd)

53 Ventral prefrontal cortex (PFCv) 110 Ventral prefrontal cortex (PFCv)

54 Inferior parietal lobule (IPL) 111 Inferior parietal lobule (IPL)

55 Retrosplenial (Rsp) 112 Retrosplenial (Rsp)

56 Parahippocampal cortex (PHC) 113 Parahippocampal cortex (PHC)

57 Temporal parietal (TempPar) 114 Temporal parietal (TempPar)

Note: Central visual network = (1–12, 58–59); peripheral visual network = (3–5, 60–63); somatomotor network = (6–10, 63–67); dorsal attention

network = (11–17, 68–74); salience/ventral attention network = (18–28, 75–87); limbic = (29–30, 88–89); control network = (31–44, 90–101); default
network = (45–56, 102–113); temporal parietal = (57, 114).

TABLE A2 Discriminant effective connectivities selected by LASSO feature selection method from all folds in cross-validation. We
highlighted the connectivities selected from sensitivity analysis. For corresponding connections, the index and name of the ROI are presented

Index Source ROI Index Destination ROI

62 Extrastriate superior, right 5 Extrastriate superior, left

111 Inferior parietal lobule, right 54 Inferior parietal lobule, left

46 Dorsal prefrontal cortex, left 104 Dorsal prefrontal cortex, right

38 Inferior parietal lobule, left 39 Dorsal prefrontal cortex, left

41 Lateral ventral prefrontal cortex, left 39 Dorsal prefrontal cortex, left

20 Insula, left 19 Precentral ventral, left

35 Lateral ventral prefrontal cortex, left 84 Lateral ventral prefrontal cortex, right

54 Inferior parietal lobule, left 12 Parietal occipital, left

69 Parietal occipital, right 12 Parietal occipital, left

32 Intraparietal sulcus, left 91 Intraparietal sulcus, right

67 Auditory, right 66 Insula, right

79 Parietal medial, right 21 Parietal medial, left

88 Temporal pole, right 113 Parahippocampal cortex, right

103 Inferior parietal lobule, right 50 Inferior parietal lobule, left

48 Medial prefrontal cortex, left 46 Dorsal prefrontal cortex, left

39 Dorsal prefrontal cortex, left 82 Dorsal prefrontal cortex, right

23 Inferior parietal lobule, left 44 Cingulate posterior, left

82 Dorsal prefrontal cortex, right 39 Dorsal prefrontal cortex, left

97 Lateral dorsal prefrontal cortex, right 104 Dorsal prefrontal cortex, right

3 Striate cortex, left 24 Dorsal prefrontal cortex, left

6 Somatomotor A, left 15 Postcentral, left

75 Parietal operculum, right 84 Lateral ventral prefrontal cortex, right
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TABLE A2 (Continued)

Index Source ROI Index Destination ROI

34 Lateral prefrontal cortex, left 17 Precentral ventral, left

89 Orbital frontal cortex, right 30 Orbital frontal cortex, left

81 Inferior parietal lobule, right 75 Parietal operculum, right

15 Postcentral, left 6 Somatomotor A, left

16 Frontal eye fields, left 24 Dorsal prefrontal cortex, left

16 Frontal eye fields, left 33 Dorsal prefrontal cortex, left

19 Precentral ventral, left 24 Dorsal prefrontal cortex, left

77 Precentral ventral, right 19 Precentral ventral, left

22 Frontal medial, left 24 Dorsal prefrontal cortex, left

25 Lateral prefrontal cortex, left 24 Dorsal prefrontal cortex, left

3 Striate cortex, left 4 Extrastriate inferior, left

41 Lateral ventral prefrontal cortex, left 98 Lateral ventral prefrontal cortex, right

72 Postcentral, right 91 Intraparietal sulcus, right

20 Insula, left 78 Insula, right

80 Frontal medial, right 82 Dorsal prefrontal cortex, right

1 Striate cortex, left 58 Striate cortex, right

16 Frontal eye fields, left 22 Frontal medial, left

46 Dorsal prefrontal cortex, left 24 Dorsal prefrontal cortex, left

10 Auditory, left 67 Auditory, right

85 Ventral prefrontal cortex, right 26 Ventral prefrontal cortex, left

32 Intraparietal sulcus, left 13 Superior parietal lobule, left

112 Retrosplenial, right 55 Retrosplenial, left

18 Parietal operculum, left 94 Cingulate anterior, right

24 Dorsal prefrontal cortex, left 76 Precentral, right

47 Posterior cingulate cortex, left 105 Posterior cingulate cortex, right

109 Dorsal prefrontal cortex, right 82 Dorsal prefrontal cortex, right

93 Lateral prefrontal cortex, right 35 Lateral ventral prefrontal cortex, left

26 Ventral prefrontal cortex, left 85 Ventral prefrontal cortex, right

29 Temporal pole, left 76 Precentral, right

26 Ventral prefrontal cortex, left 94 Cingulate anterior, right

29 Temporal pole, left 94 Cingulate anterior, right

8 S2, left 65 S2, right

76 Precentral, right 24 Dorsal prefrontal cortex, left

68 Temporal occipital, right 69 Parietal occipital, right

79 Parietal medial, right 24 Dorsal prefrontal cortex, left

39 Dorsal prefrontal cortex, left 76 Precentral, right

82 Dorsal prefrontal cortex, right 24 Dorsal prefrontal cortex, left

98 Lateral ventral prefrontal cortex, right 89 Orbital frontal cortex, right

17 Precentral ventral, left 74 Precentral ventral, right

61 Extrastriate inferior, right 4 Extrastriate inferior, left

92 Dorsal prefrontal cortex, right 24 Dorsal prefrontal cortex, left

10 Auditory, left 9 Insula, left

92 Dorsal prefrontal cortex, right 33 Dorsal prefrontal cortex, left

59 Extrastriate cortex, right 58 Striate cortex, right

70 Superior parietal lobule, right 13 Superior parietal lobule, left

6 Somatomotor A, left 63 Somatomotor A, right

(Continues)
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TABLE A2 (Continued)

Index Source ROI Index Destination ROI

102 Temporal, right 24 Dorsal prefrontal cortex, left

99 Medial posterior prefrontal cortex, right 42 Medial posterior prefrontal cortex, left

55 Retrosplenial, left 112 Retrosplenial, right

17 Precentral ventral, left 27 Orbital frontal cortex, left

66 Insula, right 76 Precentral, right

91 Intraparietal sulcus, right 96 Inferior parietal lobule, right

24 Dorsal prefrontal cortex, left 27 Orbital frontal cortex, left

113 Parahippocampal cortex, right 24 Dorsal prefrontal cortex, left

77 Precentral ventral, right 76 Precentral, right

44 Cingulate posterior, left 101 Cingulate posterior, right

80 Frontal medial, right 76 Precentral, right

111 Inferior parietal lobule, right 69 Parietal occipital, right

80 Frontal medial, right 94 Cingulate anterior, right

4 Extrastriate inferior, left 61 Extrastriate inferior, right

41 Lateral ventral prefrontal cortex, left 27 Orbital frontal cortex, left

97 Lateral dorsal prefrontal cortex, right 40 Lateral prefrontal cortex, left

22 Frontal medial, left 16 Frontal eye fields, left

78 Insula, right 20 Insula, left

92 Dorsal prefrontal cortex, right 94 Cingulate anterior, right

13 Superior parietal lobule, left 70 Superior parietal lobule, right

98 Lateral ventral prefrontal cortex, right 76 Precentral, right

3 Striate cortex, left 5 Extrastriate superior, left

11 Temporal occipital, left 14 Temporal occipital, left

12 Parietal occipital, left 14 Temporal occipital, left

96 Inferior parietal lobule, right 38 Inferior parietal lobule, left

111 Inferior parietal lobule, right 103 Inferior parietal lobule, right

74 Precentral ventral, right 27 Orbital frontal cortex, left

11 Temporal occipital, left 68 Temporal occipital, right

82 Dorsal prefrontal cortex, right 27 Orbital frontal cortex, left

84 Lateral ventral prefrontal cortex, right 27 Orbital frontal cortex, left

23 Inferior parietal lobule, left 50 Inferior parietal lobule, left

75 Parietal operculum, right 81 Inferior parietal lobule, right

112 Retrosplenial, right 56 Parahippocampal cortex, left

60 Striate cortex, right 61 Extrastriate inferior, right

99 Medial posterior prefrontal cortex, right 27 Orbital frontal cortex, left

10 Auditory, left 57 Temporal parietal, left

14 Temporal occipital, left 57 Temporal parietal, left

45 Inferior parietal lobule, left 50 Inferior parietal lobule, left

108 Anterior temporal, right 27 Orbital frontal cortex, left
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