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Abstract

Background: Gene duplications are a major source of raw material for evolution and a likely contributor to the
diversity of life on earth. Duplicate genes (i.e., homeologs, in the case of a whole genome duplication) may retain their
ancestral function, sub- or neofunctionalize, or be lost entirely. A primary way that duplicate genes evolve new
functions is by altering their expression patterns. Comparing the expression patterns of duplicate genes gives clues as
to whether any of these evolutionary processes have occurred.

Results: We develop a likelihood ratio test for the analysis of the expression ratios of duplicate genes across two
conditions (e.g., tissues). We demonstrate an application of this test by comparing homeolog expression patterns of
1448 homeologous gene pairs using RNA-seq data generated from leaves and petals of an allotetraploid
monkeyflower (Mimulus luteus). We assess the sensitivity of this test to different levels of homeolog expression bias
and compare the method to several alternatives.

Conclusions: The likelihood ratio test derived here is a direct, transparent, and easily implemented method for
detecting changes in homeolog expression bias that outperforms alternative approaches. While our method was
derived with homeolog analysis in mind, this method can be used to analyze changes in the ratio of expression levels
between any two genes in any two conditions.
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Background
Gene duplications are a major source of raw material for
evolution and a likely contributor to the diversity of life on
earth [1–9]. Gene duplications are a special type of muta-
tion resulting in the multiplication of intact functional
components. These duplicate genes may either retain the
ancestral function or individual portions of the gene’s
ancestral function may be partitioned (i.e., subfunction-
alize) or evolve new functions entirely (i.e., neofunction-
alize) [10–12]. Duplicate genes may evolve new functions
either by changes in the primary coding sequence or alter-
ing where and when they are expressed. Previous work has
indicated that changes to gene expression and their regu-
latory networks may be more important, rapid, or flexible
than divergence of protein identities in the evolution of
sub- and neofunctionlization [13–19].
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There are multiple scenarios in which genes can be
duplicated, ranging from small regional gene duplications
to massive whole genome duplications (WGDs). The term
polyploid refers to cells or organisms that have under-
gone aWGD event and contain more than two paired sets
of chromosomes. Each complete set of chromosomes is
referred to as a subgenome. Homologous genes located on
separate subgenomes are referred to as homeologs.
WGDs are especially common in plants; indeed, all

extant angiosperms (i.e., flowering plants) have at least
two rounds of WGD in common [20], and up to 15%
of speciation events in angiosperms may have been the
product of WGDs [21]. Importantly, many major crops
(corn, potato, wheat, etc.) are polyploid [22]. WGD events
and the resulting polyploidy are not restricted to plants,
but have occurred in both vertebrate and invertebrate
lineages as well. For example, the African clawed frog,
Xenopus, commonly used as an experimental model sys-
tem and extensively studied in developmental biology,
includes species ranging from diploid to dodecaploid [23].

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-2709-5&domain=pdf
http://orcid.org/0000-0001-8019-9993
mailto: jrpuzey@wm.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Smith et al. BMC Bioinformatics          (2019) 20:149 Page 2 of 11

Other examples of polyploids with ancient WGD events
include the zebrafish Danio rerio [24], several salmonids
[2], and some species of fungi [25]. Interestingly, there
exists at least one polyploid mammal [26], a tetraploid rat
from Argentina that mediates gene dosage by regulation
of ribosomal RNA.
The biological consequences of gene duplications and

subfunctionalization are significant and include exam-
ples such as the evolution of eyes [27], the evolution
of hemoglobins [28], development of heat resistance in
plants [29], and insecticide resistance [30]. Given the
importance of duplicate genes in evolution, it is natural
to ask how we might quantify differences in the activ-
ity or function of homeologous genes. One way to begin
exploring this question is by analyzing gene expression
levels.
Genome-wide gene expression levels are commonly

quantified using high throughput RNA sequencing (RNA-
seq) [31]. In RNA-seq experiments, mRNA is extracted,
purified, and reverse transcribed into cDNA. This cDNA
is fragmented into smaller pieces and sequenced using
next-generation technology. The resulting millions of
sequence reads are then mapped to either a reference
genome or reference transcriptome, and the number of
sequences mapping to a particular gene is used as an
indication of the expression level of that gene.
In differential expression analysis, high-throughput

RNA-seq data is used to determine if gene expression
levels vary under different experimental conditions, or
in distinct tissues, etc. Several different approaches to
this statistical analysis exist [32–34], some of which use
methods based on maximum likelihood estimation and
likelihood ratio tests.
Homeologous gene pairs frequently have distinguish-

ing sequence differences. Therefore, sequencing reads
derived from individual homeologs can be distinguished
and expression levels can be determined for each home-
olog. The term homeolog expression bias (HEB) refers to
cases where homeologs are expressed at unequal levels in
a single experimental condition [35]. The primary objec-
tive of this paper, development of a likelihood ratio test for
statistical analysis of changes in homeolog expression bias
(denoted�HEB) is a non-trivial extension of the statistical
analysis of differential expression.
The following sections begin with the derivation of a

likelihood ratio test for HEB. This is our starting point
for the development of a likelihood ratio test for �HEB,
i.e. changes in relative expression levels between homeol-
ogous genes in two conditions. We apply this method to
RNA-seq data of homeologous gene expression in petals
and leaves of the allotetraploid Mimulus luteus. Finally,
using simulated data, we show that the likelihood ratio test
for �HEB derived here is the best choice among several
alternative methods.

Methods
Quantifying homeolog expression bias (HEB)
We will write A and B to denote a homeologous gene
pair from which RNA-seq data is generated in n biolog-
ical replicates. Typically, the mean expression levels of
the homeologs (denoted ā and b̄) are normalized by gene
length and sequencing depth, as when reported in units of
RPKM (reads per kilobase of coding sequence per million
mapped reads). We define the homeolog expression bias
(HEB) of the n replicates as

HEB = log(b̄/ā) = log b̄ − log ā ,

a dimensionless quantity with HEB = 0 indicating no bias.
If one uses the base 2 logarithm, HEB = −3 indicates 8-
fold bias towards homeolog A.

Likelihood ratio test for HEB
After accounting for the possibility of different gene
lengths, the statistical test for HEB is essentially a like-
lihood ratio test for differential expression of a pair of
homeologous genes. The goal is to determine whether
there is sufficient evidence to reject the null hypothesis
(H0) that there is no bias (i.e., equal expression levels for
homeologous genes) in favor of the alternative hypothe-
sis (H1) that bias is present, i.e., different expression levels
for homeologous genes. In mathematical terms, the null
hypothesis H0 corresponds to the parameters (denoted by
θ ) of a probability model for generating the data being in
a specified subset �0 of the parameter space �, that is,

H0 : θ ∈ �0

H1 : θ ∈ �\�0 .

Let θ = (
λa, λb

)
denote the true but unknown expression

levels (physical units of length−1, e.g., RPKM). Assum-
ing positive, i.e. non-zero, expression, the parameter space
is � = {

θ : λa, λb ∈ R+
}
. The null (H0) and alternative

(H1) hypotheses for the likelihood ratio test for homeolog
expression bias are formalized as follows,

H0 :
(
λa, λb

)
∈

{
λa, λb ∈ R+ : λa = λb

}

H1 :
(
λa, λb

)
∈

{
λa, λb ∈ R+ : λa �= λb

}
.

Equivalently, let ω = λb/λa denote the ratio of expression
levels and drop the superscript indicating the reference
homeolog (λ = λa). In that case, λb = ωλ and the
hypotheses are written as follows,

H0 : (λ,ω) ∈ {λ,ω ∈ R+ : ω = 1}
H1 : (λ,ω) ∈ {λ,ω ∈ R+ : ω �= 1} .

Once we specify a probability model for the data X ,
likelihood functions for each hypothesis, L0(θ |X ) and
L1(θ |X ), can be derived (see next section). For composite
hypotheses, the appropriate likelihood ratio test statistic is
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W (X ) = −2 ln
L̂0

L̂1
= 2

(
ln L̂1 − ln L̂0

)
, (1)

where L̂1 and L̂0 are the maximized likelihoods,

L̂1 = sup{L(θ |X ) : θ ∈ � }
L̂0 = sup{L(θ |X ) : θ ∈ �0 } .

A critical value of the test statistic (W∗) is obtained from
the Chi-squared distribution with significance level α =
0.05. The number of degrees of freedom δ is the difference
in the number of free parameters in� and�0 (here δ = 1)
[36]. The null hypothesis H0 is rejected in favor of the
alternative H1 whenW (X ) > W∗.

Probability model for RNA-seq read counts
Denote the lengths of homeologous genes a and b as 	a

and 	b (e.g., in kilobases) and let di be the sequencing
depth (e.g., in millions of mapped reads) of replicate i.
The expected number of RNA-seq reads for gene a and
replicate i is

μa
i = λa	adi = λ	adi , (2)

where in the second equality we have dropped the super-
script for the reference homeolog (λ = λa). Similarly,
the expected number of RNA-seq reads for gene b and
replicate i is

μb
i = λb	bdi = ωλ	bdi (3)

where ω = λb/λa = λb/λ.
In order to model the overdispersion commonly

observed in RNA-seq data, the probability model assumes
that the count data for each gene is drawn from a negative
binomial distribution,

f (x;μ, r) = 
(r + x)

(r)x!

(
μ

μ + r

)x (
r

μ + r

)r
,

where μ is the appropriate mean (μa
i or μb

i in Eqs. 2 and
3). That is, if Xa

i and Xb
i are random variables represent-

ing the count data for replicate i of homeologous genes A
and B,

Pr
{
Xa
i = ai

} = f
(
ai; λ	adi, ri

)

Pr
{
Xb
i = bi

}
= f

(
bi;ωλ	bdi, ri

)
,

where we have used μa
i = λ	adi and μb

i = ωλ	bdi.
In these expressions, the aggregation parameter ri is
obtained from the observed mean-variance relation for
all homeolog pairs of the ith experimental replicate (see
Appendix 1).
Assuming independence of experimental replicates, the

likelihood functions L1 and L0 are products of the likeli-
hood functions for each observation, that is,

L1(X ) = ∏n
i=1 Li

1(X ) ,

and similarly for L0(X ), where Xi = {ai, bi} indicates the
observed read counts for replicate i and X = ∪n

i=1Xi. The
likelihood function for the alternative hypothesis and the
ith replicate is

Li
1(X ) = 
(ri + ai)


(ri)ai!

(ri + bi)

(ri)bi!

×
(

λ	adi
λ	adi + ri

)ai
(

ωλ	bdi
ωλ	bdi + ri

)bi

(4)

×
(

ri
λ	adi + ri

)ri ( ri
ωλ	bdi + ri

)ri
.

The likelihood function for the null hypothesis and the ith
replicate, Li

0(X ), is given by Eq. 4 with ω = 1.

Maximum likelihood estimation
Maximum likelihood estimation is performed using the
the log-likelihood function corresponding to Eq. 4,
namely,

lnL1(X ) = ∑
i lnLi

1(X ) , (5)

where

lnLi
1(X ) = γ (ri + ai) + ln (ai! )

+ γ (ri + bi) + ln (bi! )
+ 2ri ln ri − 2γ (ri)

+ ai ln
(
λ	adi

) + bi ln
(
ωλ	bdi

)

− (ai + ri) ln
(
λ	adi + ri

)

− (bi + ri) ln
(
ωλ	bdi + ri

)]
(6)

and γ (·) = ln
(·). The log-likelihood function for the null
hypothesis (lnL0) is given by Eq. 6 with ω = 1.
The log-likelihood function lnL1(X ) is maximized by

numerically solving for λ̂ and ω̂ leading to zero partial
derivatives,

0 = ∂ lnL1
∂λ

∣
∣∣∣
λ̂,ω̂

(7)

0 = ∂ lnL1
∂ω

∣∣
∣∣
λ̂,ω̂

, (8)

as described in Appendix 2. The log-likelihood function
lnL0(X ) is maximized by solving for λ̂ leading to

0 = ∂ lnL0
∂λ

∣∣∣∣
λ̂

. (9)

The optimal parameter values λ̂ and ω̂ are used to evalu-
ate ln L̂0(X ; λ̂), ln L̂1(X ; λ̂, ω̂), and the test statisticW (see
Eq. 1).

Quantifying changes in homeolog expression bias (�HEB)
Let A and B represent homeologous genes and RNA-
seq data is generated under conditions 1 and 2 in n
biological replicates, leading to mean expression levels
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ā1, ā2, b̄1, b̄2. The change in homeolog expression bias
(�HEB) is defined as

�HEB = HEB2 − HEB1 = log
(
b̄2/ā2
b̄1/ā1

)

, (10)

where the last equality uses HEB1 = log b̄1/ā1 and
HEB2 = log b̄2/ā2.

Likelihood ratio test for�HEB
The likelihood ratio test for �HEB is designed to deter-
mine whether there is sufficient evidence to reject the null
hypothesis (H0) that homeolog expression bias is the same
under two experimental conditions (�HEB = 0) in favor
of the alternative hypothesis (H1) that there is a difference
in bias (�HEB �= 0). Following notation similar to the
previous section, our hypotheses are

H0 : θ ∈ �0 =
{
λ
a|b
1|2 ∈ R+ : λb1/λ

a
1 = λb2/λ

a
2

}

H1 : θ ∈ �\�0 =
{
λ
a|b
1|2 ∈ R+ : λb1/λ

a
1 �= λb2/λ

a
2

}
,

where λ
a|b
1|2 is an abbreviation for λa1, λ

b
1, λ

b
1, λ

b
2. Equiva-

lently,

H0 : θ ∈ �0 = {λ1|2,ω1|2 ∈ R+ : ω1 = ω2}
H1 : θ ∈ �\�0 = {λ1|2,ω1|2 ∈ R+ : ω1 �= ω2} ,

whereω1 = λb1/λ
a
1,ω2 = λb2/λ

a
2, λ1 = λa1 and λ2 = λa2. The

difference in degrees of freedom of the alternative and null
hypotheses is δ = 4 − 3 = 1.
The likelihood functions for the �HEB test are similar

to those for HEB, though the two different experimental
conditions lead to twice as many terms (cf. Eq. 4). The
likelihood function for H1 is

L1(X ) =
2∏

k=1

n∏

i=1
Lk,i
1 (X ) (11)

where Lk,i
1 , the likelihood function for the ith replicate

of the kth condition, has the form of Eq. 4 with parame-
ters indexed by condition

(
ak,i, bk,i, rak,i, r

b
k,i,ωk

)
. The log-

likelihood function for H1 is thus

lnL1(X ) =
2∑

k=1

n∑

i=1
lnLk,i

1 (X ) (12)

where

lnLk,i
1 (X ) = γ

(
rk,i + ak,i

) + ln
(
ak,i!

)

+ γ
(
rk,i + bk,i

) + ln
(
bk,i!

)

+ 2rk,i ln rk,i − 2γ
(
rk,i

)

+ ak,i ln
(
λ	adi

) + bk,i ln
(
ωkλ	bdi

)

− (
ak,i + rk,i

)
ln

(
λ	adi + rk,i

)

− (
bk,i + ri

)
ln

(
ωkλ	bdi + rk,i

)]
(13)

and γ (·) = ln
(·). The log-likelihood function for the null
hypothesis (lnL0) is given by the above expressions with
ω1 = ω2 = ω. The aggregation parameters (rk,i) are deter-
mined from the data with experimental conditions k = 1
and 2 considered separately (cf. Eqs. 17–19).
The log-likelihood function lnL1(X ) used in the analy-

sis of �HEB is maximized by numerically solving uncou-
pled systems of the form of Eqs. 7 and 8 for

(
λ̂1, ω̂1

)
and

(
λ̂2, ω̂2

)
. The log-likelihood function lnL0(X ) is maxi-

mized by solving for λ̂1, λ̂2 and ω̂ that lead to zero partial
derivatives,

0 = ∂ lnL0
∂λ1

∣∣
∣∣
λ̂1,λ̂2,ω̂

(14)

0 = ∂ lnL0
∂λ2

∣∣
∣∣
λ̂1,λ̂2,ω̂

(15)

0 = ∂ lnL0
∂ω

∣
∣∣∣
λ̂1,λ̂2,ω̂

. (16)

The optimal parameter values are used to evaluate the
likelihoods, L̂0(X ; λ̂1, λ̂2, ω̂) and L̂1(X ; λ̂1, λ̂2, ω̂1, ω̂2), and
the test statisticW (see Eq. 1).
The numerical solution of these equations was facili-

tated by transforming these equations in a manner that
ensured both parameters are positive and symmetric with
respect to the mean expression levels of homeolog A and
B (see Appendix 2).

Results
The likelihood ratio test for HEB applied to allotetraploid
Mimulus luteus
To demonstrate the application of the likelihood ratio test
for HEB, five biological replicates of RNA-seq data were
generated from petals of the tetraploid Mimulus luteus
(monkeyflower), and another five replicates were gener-
ated from the leaves (see Appendix 3 for details). We have
chosen M. luteus because it is a tetraploid with two dis-
tinct subgenomes, denoted A and B (mean synonymous
divergence is∼11.1%; for details on genome assembly, see
[37]). In this section, we use the likelihood ratio test for
HEB to find homeologous gene pairs where one homeolog
is expressed at significantly different levels than the other,
one tissue at a time. In the section on �HEB we develop
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a likelihood ratio test to determine whether there is a
significant difference in the bias between the two tissues.

Homeolog expression bias inMimulus luteus petals
Figure 1 (top panel) shows the result of applying the
likelihood ratio test for HEB to the petal data. There
are 1853 homeologous gene pairs in M. luteus that can
be identified as coming from separate subgenomes. Of
these 1853 homoeologous pairs, 1560 were testable (mea-
surable expression from each individual homeolog). Of
testable pairs, a total of 676 gene pairs show significant
bias (using a significance level of α = 0.05, and applying
the Benjamini-Hochberg correction [38, 39] to account for
multiple testing error). In the 334 pairs biased towards the
A homeolog the mean HEB is − 2.49 (5.6-fold change). In
the 342 pairs biased towards the B homeolog, the mean
HEB is 2.39 (5.2-fold change).
These results may be indicative of a number of evolu-

tionary processes. For example, one of the homeologs may
have become sub- or neofunctionalized in this tissue, or
one of the homeologs may simply be losing its function.

Homeolog expression bias inMimulus luteus leaves
Next, the likelihood ratio test for HEB was applied to the
leaf data (results shown in Fig 1, bottom panel). Of 1853

homoeologous pairs, 1498 were testable and a total of 399
gene pairs show significant bias. In the 199 pairs biased
towards the A homeolog the mean HEB is − 2.83 (7.1-fold
change). In the 200 pairs biased towards the B homeolog,
the mean HEB is 2.80 (7.0-fold change).

The likelihood ratio test for�HEB applied to allotetraploid
Mimulus luteus
The likelihood ratio test for �HEB requires each home-
olog to have at least one read in each condition. Returning
to the leaf and petal data from the previous sections on
HEB, this gives 1448 testable pairs. Figure 2 shows the
results of the likelihood ratio test for �HEB. We find a
total of 76 gene pairs show significant �HEB. Of these,
35 are more biased towards the A homeolog in the leaf
than they are in the petal. The remaining 41 gene pairs are
more biased towards the B homeolog in the leaf than in
the petal.
Figure 3 shows a scatter plot of homeolog expres-

sion bias (HEB) in leaf and petal. Colored marks indi-
cate gene pairs with statistically significant changes in
homeolog expression bias (�HEB) (these points corre-
spond to the colored bars in Fig. 2). Data points in
the top-left and bottom-right quadrants of Fig. 3 rep-
resent homeologous pairs where one homeolog is more

Fig. 1 Likelihood ratio test for HEB in petals (top) and leaves (bottom) ofM. luteus. (Top) Of 1560 testable homeologous gene pairs in the petals
(gray), a total of 676 show significant bias. Of these, 334 pairs are biased towards the A homeolog (yellow), with a mean HEB of − 2.49 (5.6×). 342
pairs are biased towards the B homeolog (blue), with a mean HEB of 2.39 (about 5.2×). (Bottom) Of 1560 testable homeologous gene pairs (gray), a
total of 676 show significant bias. Of these, 334 pairs are biased towards the A homeolog (yellow), with a mean HEB of − 2.49 (5.6×). 342 pairs are
biased towards the B homeolog (blue), with a mean HEB of 2.39 (about 5.2×). The Benajamini-Hochberg correction for multiple testing was applied
at significance level α = 0.05 (and also in Figs. 2 and 3)
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Fig. 2 Likelihood ratio test for �HEB in the leaves vs. petals ofM. luteus. Of 1448 testable homeologous gene pairs (gray), 76 show significant �HEB.
Of these, 35 are more biased towards the A homeolog in the leaves than in the petals (yellow). 41 gene pairs are more biased towards the B
homeolog in the leaf than in the petal (blue)

Fig. 3 Statistical significance of �HEB compared to homeolog expression bias (HEB) in leaf and petal. Yellow and blue indicates homeolog gene
pairs with significant �HEB. The likelihood ratio test for �HEB is distinct from HEB tests in leaf and petal (see text)
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highly expressed in one tissue and its partner is more
highly expressed in the other tissue. The top-right and
bottom-left quadrants correspond to homeologous pairs
where the difference in bias favors the same homeolog
but has become more extreme. Finally, all of the marks
that are colored blue or yellow show significant change
in bias and are candidates for tissue specific sub- or
neofunctionalization.
Although the change in homeolog expression bias is

defined by Eq. 10 as the log-fold change in homeolog
expression bias, the intercalation of significant (yellow and
blue) and not significant (gray) �HEB in Fig. 3 makes it
clear that statistical evidence for �HEB is not reducible
to the difference between HEBleaf and HEBpetal (the ver-
tical or horizontal distance to the line of slope 1 where
HEBleaf = HEBpetal).
Whether or not �HEB is statistically significant also

depends on differences in sequencing depths, mean
expression levels (e.g., lowly expressed genes are more
likely to be influenced by shot noise), and ratios of gene
lengths. All of these factors are considered simultane-
ously in the likelihood ratio test presented here. Assessing
the statistical significance of �HEB using sequential HEB
analysis would almost certainly result in a different set of
genes being called significant.

Validation of the likelihood ratio tests using simulated data
A natural question to ask about HEB and �HEB is, “How
large does the change in expression levels between home-
ologs across conditions need to be before we can detect
�HEB most of the time?” Unsurprisingly, this depends
largely on the number of biological replicates.
To explore this question, we generated simulated data

with one expression level fixed at a constant value, μa =
100, and varied the other expression level, μb = 2xμa,
with x ∈[ 0, 2] in steps of 0.1. For each value of x, we
generated 10,000 sets of data from a negative binomial dis-
tribution for N = 3, 6, 12 and 24 replicates. We fixed the
parameter r = 10 for simplicity; this is within the range of
values typically observed in RNA-seq data.
Figure 4 shows the results of the likelihood ratio test

for HEB on this simulated data set. We find that a 4-fold
change is almost always detectable, regardless of the num-
ber of replicates. However, detecting a 2-fold change at
least 95% of the time requires at least 12 replicates.
To assess the sensitivity of �HEB to different levels of

bias shift, we created a similar data set. This time, we set
3 of the expression levels equal

(
μa
1 = μb

1 = μa
2 = 100

)
,

and varied the fourth; μb
2 = 2xμa

2, with x ∈[ 0, 2] in steps
of 0.1. The aggregation parameter was again fixed at r =
10. For each value of x, 10,000 sets of data were generated
from a negative binomial distribution for N = 3, 6, 12 and
24 replicates.

Fig. 4 Ability of the likelihood ratio test for HEB to detect different
levels of bias. Simulation results show the fraction of times H0 was
rejected for 10,000 trials with the given values of x and n (parameters:
α = 0.05, μa = 100, r = 10). With n ≥ 3 replicates, a 4-fold change is
detectable over 95% of the time. Detecting a 2-fold change greater
than 95% of the time requires at least 6 replicates

Figure 5 shows the results of the likelihood ratio test for
�HEB on this simulated data set. The results are similar
to those for HEB, with the test for �HEB being slightly
less sensitive than the test for HEB. For �HEB, a 4-fold
change in bias is detectedmore than 95% of the time when
N ≥ 6. As with the test for HEB, the ability to detect
smaller changes increases significantly with the number of
replicates.

Discussion
Alternative methods
Our method is transparent, derived specifically for the
analysis of �HEB, and requires a minimal number
of assumptions; nevertheless we wished to investigate
whether other methods could achieve similar results.
Because we found only one method analogous to ours in
the literature (Homeoroq, [40]), we developed three addi-
tional ad hoc methods. To compare these methods we
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Fig. 5 Ability of the likelihood ratio test for �HEB to detect different
levels of change in bias. Simulation results show the fraction of times
H0 was rejected for 10,000 trials with given values of x and n
(parameters: α = 0.05, μa

1 = μb
1 = μa

2 = 100, r = 10). With n ≥ 6
replicates, a 4-fold change is detectable over 95% of the time.
However, detecting a 2-fold change more than 95% of the time
requires at least 12 replicates

generated simulated data sets and analyzed ROC curves.
Each data set contained 10,000 gene pairs, half of which
had �HEB fixed at a constant value (2, 8, and 16). Three
replicates were generated from negative binomial distri-
butions, and this was repeated 50 times for each value of
�HEB (150 simulations total).
First, we took a naive approach and performed t-tests

and z-tests on the ratio of log2-fold changes between con-
ditions 1 and 2. Next, we ran DESeq2 and extracted the
estimated shrunken log2-fold changes and their standard
errors, and performed a z-test (we call this method ‘DEZ’).
Unsurprisingly, the naive methods (standard t- and z-
tests) underperformed the LRT, with area under the ROC
curve (ROC area) typically less than the LRT by ≈ 0.05
to 0.36.

The LRT outperformed DEZ for �HEB = 8 and 16
(Fig. 7, top region). For �HEB = 2, both methods per-
formed poorly with mean ROC area = 0.58080 for the
LRT, while DEZ came out slightly ahead with mean ROC
area = 0.58083 (not shown). In all cases, the Homeoroq
method significantly underperformed both alternatives.
The test with largest ROC area is not necessarily the best

choice, for example, when an ROC curve accumulates a
small area for low FPR, and a large area for high FPR. To
address this, we evaluated partial ROC area for false posi-
tive rates between 0 and 0.1, as researchers typically don’t
accept FPR> 0.1. An example truncated ROC curve is
shown in Fig. 6. By this metric, the LRT outperforms DEZ
for �HEB = 8 and 16, while for �HEB = 2 both meth-
ods performed poorly, with DEZ marginally better (Fig. 7,
bottom region). Homeoroq significantly underperformed
both alternatives at all levels of �HEB.

Conclusion
Gene duplication and polyploidy are extremely important
factors in generating the diversity of life on earth. AsOhno
stated in his seminal work on gene duplication [1], “Nat-
ural selection merely modified while redundancy created”
the raw materials necessary for the diversification of life
on earth.
In this paper we have developed a robust statistical

framework specifically designed for the comparison of

Fig. 6 Example of a truncated ROC curve Comparison of the LRT, DEZ,
and Homeoroq (HRO) using partial area under their ROC curves. For
this comparison, 3 replicates of 10,000 homeolog pairs were
simulated, half of which with �HEB = 8. For most false positive rates,
the LRT achieves a higher true positive rate than DEZ and HRO. This
analysis was repeated 50 times for different levels of �HEB, and the
area under the partial and full ROC curves are summarized in Fig. 7
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Fig. 7 Comparison of the LRT, DEZ and Homeoroq (HRO) The top part
of the plot shows the distribution of area under ROC curves for 100
trials of simulated data. Each trial contained 20,000 genes, half of
which had �HEB fixed at a constant value. Results for �HEB = 2 are
not shown as they were too low (mean area for LRT= 0.5616, for
DEZ=0.5620). The bottom part of the plot shows ROC area
constrained to false positive rates less than 0.1. In both regions, boxes
indicate interquartile ranges, whiskers indicate 5th and 95th
percentiles, and black lines indicate medians

duplicate gene expression patterns. Importantly, this tech-
nique is consistent and reproducible. Through analysis of
simulated data we have shown that these methods per-
form well, especially given the small sample sizes typical
of RNA-seq experiments. We have shown that the ability
to detect small differences in expression levels increases
as a function of sample size, a fact that can be used to
aid experimental design. Other authors have noted this in
the context of traditional differential expression analysis
and made similar recommendations [41–43]. Moreover,
we demonstrate the usefulness of the likelihood ratio
test for �HEB using homeolog expression RNA-seq data

derived from a polyploid plant. While we have developed
this test for the purpose of analyzing changes in expres-
sion patterns of homeologous genes, we emphasize that
the method is suitable for the expression analysis of any
two genes (they need not be homeologs) across any two
conditions.

Appendix 1: Estimation of aggregation parameters
Due to the typically small number of replicates in RNA-
seq experiments, accurate estimation of the aggregation
parameter is not realistic on a gene-by-gene basis [34, 44].
Instead, we use the mean-variance relation of a negative
binomial distribution, namely,

σ 2 = μ + 1
r
μ2 , (17)

to compute an aggregation parameter r for each experi-
mental replicate, after rescaling to account for each repli-
cates sequencing depth.
In brief, let xij denote the count data for the jth pair of

homeologous genes obtained for experimental replicate
i ∈ {1, 2, . . . , n}. For each of the n replicates, we pro-
duce an auxiliary data set

(
yik,j

)
by rescaling the count

data for all replicates as though each were obtained in an
experiment with the sequencing depth of replicate k,

yik,j = dk
di

xij . (18)

For each gene (j), we compute a scaled mean (μk,j) and
variance

(
σ 2
k,j

)
of yik,j over replicates (i). To obtain the

aggregation parameter rk , we perform a nonlinear least
squares fit of the observed mean-variance relation across
all genes. That is, rk minimizes the sum of squares error,

E =
∑

j

(
σ 2
k,j − μk,j − 1

rk
μ2
k,j

)2
. (19)

Appendix 2: Numerical scheme for maximum
likelihood estimation
For the analysis of both HEB and �HEB, parameter val-
ues maximizing the likelihood functions L̂0 and L̂1 were
obtained using the built-in MATLAB command fsolve
applied to Eqs. 7–9 and 14–16. In both cases, the numer-
ical procedure was facilitated by changing variables from
(λ,ω) to (v, y) through

λ = ev−y

ω = e2y ,

that is, v = ln λ + y and y = (lnω)/2. This ensures posi-
tivity of λ and ω and leads to a system of equations that is
symmetric in λa ↔ λb. The new variable v is the logarithm
of the geometric mean of the expression levels λa = λ and
λb = ωλ,
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v = ln
√

λaλb = ln
√

λ · ωλ ,

that is, λa = λ = ev−y and λb = ωλ = ev+y. The
transformed partial derivatives used to maximize the log-
likelihood lnL1 (Eqs. 7–8) are

0 = ∂ lnL1
∂v

=
∑

i
Bi(v, y) + Ai(v, y) (20)

0 = ∂ lnL1
∂y

=
∑

i
Bi(v, y) − Ai(v, y) (21)

where

Ai(v, y) = ai − (ai + ri)ev−y	adi
ev−y	adi + ri

(22)

Bi(v, y) = bi − (bi + ri)ev+y	bdi
ev+y	bdi + ri

. (23)

The transformed partial derivative used tomaximize lnL0
are found by substituting y = 0 in Eq. 20,

0 = ∂ lnL0
∂v

=
∑

i
Bi(v, 0) + Ai(v, 0) .

For the analysis of �HEB, the partial derivatives used to
maximize lnL1 are two uncoupled systems of the form of
Eq. 20–23, one for each experimental condition (k = 1
and 2),

0 = ∂ lnL1
∂vk

=
∑

i
Bk,i(vk , yk) + Ak,i(vk , yk)

0 = ∂ lnL1
∂yk

=
∑

i
Bk,i(vk , yk) − Ak,i(vk , yk)

where

Ak,i(v, y) = ak,i − (ak,i + rk,i)ev−y	adi
ev−y	adi + rk,i

Bk,i(v, y) = bk,i − (bk,i + rk,i)ev+y	bdi
ev+y	bdi + rk,i

.

For the null hypothesis y2 = y1 = y we numerically solve
a system of three equations, including

0 = ∂ lnL0
∂vk

=
∑

i
Bk,i(vk , y) + Ak,i(vk , y)

for k = 1 and 2. These are coupled via

0 = ∂ lnL0
∂y

=
∑

k

∑

i
Bk,i(vk , y) − Ak,i(vk , y) .

Appendix 3: Experimental methods
Plant tissues were collected from second generation
inbred Mimulus luteus. All plants were grown in a green-
house under a 16 h light regiment at 21°C and 30%
humidity. Petal tissue was collected from the corolla
of a flower bud near blooming, and leaf tissue came

from young leaves adjacent to the stem apical meris-
tem. Five replicates of each tissue type were collected, at
the same time of day, from different individuals. Approx-
imately 100–200 mg of plant tissue was immediately
placed into liquid nitrogen. RNA was extracted by grind-
ing frozen tissue with pestles in PureLink Plant RNA
Reagent fromAmbion. Column isolation of RNAwas sub-
sequently performed using Direct-zol RNAMiniPrep Plus
Kit fromZymoResearch. Libraries were constructed using
KAPA Stranded mRNA-Seq Kit. During library construc-
tion, sequence specific Illumina TruSeqÂ� adapters were
added to distinguish each library. Using an Agilent 2100
Bioanalyzer, average fragment lengths were determined to
be between 230 and 300 bp. Libraries were then pooled
and sequenced by the Duke Center for Genomic and
Computational Biology on an Illumina HiSeq 2500 instru-
ment. The resulting reads (50 base pair, single end) were
mapped to the M. luteus genome using bowtie2 [45] with
the -very-sensitive-local option. Reads to exonic
regions were counted using htseq-count [46] with the
default settings (minimum alignment quality of 10 on the
phred scale).
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