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4e genomic variant features (mutations, deletions, structural variants, etc.) within gastric cancer impact its evolution and
immunogenicity. 4e tumor has developed several coping strategies to respond to these changes by DNA repair and replication
(DRR). However, the intrinsic relationship between the associated DRR-related genes and gastric cancer progression remained
unknown. 4is study selected DRR-related genes with tumor mutation burden based on the TCGA (4e Cancer Genome Atlas)
database of gastric cancer transcriptome and mutation data. 4e prognosis model of seven genes (LAMA2, CREB3L3, SELP,
ABCC9, CYP1B1, CDH2, and GAMT) was constructed by a univariate and LASSO regression analysis and divided into high-risk
and low-risk groups with the median risk score. Survival analysis showed that overall survival (OS) was lower in the high-risk
group than that in the low-risk group. Moreover, patients with gastric cancer in the high-risk group have worse survival in
different subgroups, including age, gender, histological grade, and TNM stage. 4e nomogram that included risk scores for DRR-
related genes could accurately foresee OS of patients with gastric cancer. Interestingly, the tumor mutation burden score was
higher in the low-risk group than that in the high-risk group, and the risk score for DRR-related genes was negatively correlated
with tumor mutation burden in gastric cancer. Next, we further combined the risk score and tumor mutation burden to evaluate
the prognosis of gastric cancer patients. 4e low-risk cohort had a better prognosis than the high-risk cohort in the high tumor
mutation burden subgroup.4e number of mutation types in the high-risk group was lower than that in the low-risk group. In the
immune microenvironment of gastric cancer, more näıve B cells, memory resting CD4+ T cells, Treg cells, monocytes cells, and
resting mast cells were infiltrated in the high-risk group. At last, PD-L1 and IAP expressions were negatively correlated with the
risk scores; patients with gastric cancer in the low-risk group showed better immunotherapy outcomes than those in the high-risk
group. Overall, the DRR-related gene signature based on tumor mutation burden is a novel biomarker for prognostic and
immunotherapy response in patients with gastric cancer.

1. Introduction

Gastric cancer (GC) is one of the most common malignant
tumors worldwide and the second leading cause of cancer-
related death [1, 2]. Its high incidence, high mortality, and

poor prognosis pose a severe threat to human health and life.
At present, surgical resection is the leading choice for the
treatment of patients with early GC, and chemotherapy is
the essential treatment for patients who cannot be resected
or have advanced metastasis [3, 4]. However, GC is highly
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heterogeneous in biology and genes, resulting in less optimal
surgical resection and chemotherapy results [5]. 4erefore,
there is an urgent need to explore more effective treatment
strategies.

Tumor mutational burden (TMB) is defined as the total
number of somatic gene coding errors, base substitutions,
insertions, or deletions detected per million bases [6, 7].
TMB is a quantitative biomarker that reflects the total
number of mutations carried by tumor cells, and tumor cells
with high TMB will have higher levels of neoantigens [8]. It
is thought to assist the immune system in recognizing tu-
mors and stimulating the proliferation of antitumor T cells
[9]. Both studies reported that TMB in GC was associated
with OS and clinical benefit rate, and high TMB can be used
as a biomarker for the clinical efficacy of immune checkpoint
blocker (ICB) in GC patients [6, 10].

Defects in replication repair-associated DNA polymerases
often manifest an ultrahigh TMB. DNA repair and replication
(DRR) is an essential pathway for cells to cope with DNA
damage [11, 12]. Recent studies have shown that increasing
DNA damage and decreasing the DNA repair capacity of
cancer cells lead to genomic distortion [13, 14]. Ying J et al.
found that BRCA2, ATM, MSH6, and ATR exhibited high-
frequency mutations in the DRR pathway, and TMB-high
polymerase unknown significance variants were closely asso-
ciated with DRR pathway genes and polymerase mutation
features and prolonged OS, suggesting an essential role of
DRR-related gene detection in cancer prognosis [15]. In ad-
dition, DRR-related genes are highly correlated with tumor
chemotherapy resistance [16]. A recent clinical trial showed
that cancer patients with BRCA1/2 mutations had higher re-
sponse rates when treated with poly-ADP-ribose polymerase
(PARP) inhibitors [17]. Moreover, numerous studies have
shown that tumors with DRR mutations are more sensitive to
platinum-based therapies. DRR-related genes may provide
potential biomarkers for clinical prognosis and immuno-
therapy in GC. Combining the PARP inhibitor olaparib with
the dual WEE1/PLK1 inhibitor AZD1775 to increases the
effects of olaparib on GC cell growth inhibition and induction
of apoptosis by blocking the DNA damage repair pathway [18].
Taken together, DRR-related genes may provide potential
biomarkers for clinical prognosis and immunotherapy in GC.

To identify a novel biomarker for prognosis and ther-
apeutic response in GC based on DRR-related genes, we first
screened DRR-related genes in GC based on tumormutation
burden and constructed prognostic models. 4en, we
comprehensively evaluated the DRR-related gene signature
that could predict the prognosis of GC patients and analyzed
in detail the relationship between the DRR-related gene
signature and the immune microenvironment in GC. Our
study identified seven DRR-related genes as tumor signa-
tures, with high sensitivity for GC’s prognostic and im-
munotherapeutic response.

2. Materials and Methods

2.1. Patients and Clinical Specimens. RNA sequencing
(RNA-seq) and matching complete clinical information
(age, gender, histological grade, survival status, and stage) of

GC (n� 407) were retrieved from the Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov) on July 5, 2021.
Fragments with a million per thousand base (FPKM) value
are normalized to transcripts per thousand base million
(TPM).

2.2. Identification of DRR-Related DEGs and Venn Graph.
4e limma package in R V4.0.5 (https://www.r-project.org; |
log2 fold change |>1, FDR <0.05) analyzes DEGs, the vol-
cano maps for differential genes are utilized the ggpolt2
package in R software. 4e Venn diagram of the intersecting
genes of DEGs and TMBs uses the Venn package.

2.3. Univariate Cox Analysis and Construction of the Prog-
nostic Model. Using DRR differential genes data, the sur-
vival package is used for univariate Cox regression analysis.
4e least absolute shrinkage and selection operator (LASSO)
regression algorithm for feature selection, using 10-fold
cross-validation, the above analysis uses the R software
package glmnet. For Kaplan–Meier curves, p-value and
hazard ratio (HR) with 95% confidence interval (CI) were
generated by log-rank tests and univariate Cox proportional-
hazards regression. All analytical methods above and R
packages were performed using R software version 4.0.5
(4e R Foundation for Statistical Computing, 2021). p< 0.05
was considered statistically significant.

2.4. Construction of the Nomogram Graph Based on the
Prognostic Model. 4e “rms” package in R builds a nomo-
gram based on OS with independent prognostic factors. Use
the AUC value to test the ability of the nomogram to dis-
tinguish survival. Construct a calibration curve of the no-
mogram to test the 1-, 3-, and 5-year survival probabilities
based on the nomogram and actual observations.

2.5. Estimation of Stromal and Immune Cells in Malignant
Tumor Tissues Using Expression Data. 4e ESTIMATE al-
gorithm-generated matrix and immune scores are used to
estimate the level of infiltrating matrix and immune cells in
GC tissue and tumor purity through expression profiles.
4en, we used the Wilcoxon rank-sum test to compare the
differences in tumor purity, stroma, and immune scores
between the high- and low-risk groups. Deconvolution re-
sults for the tumor-infiltrating immune component were
yielded with data gleaned from the TCGA database, which is
analyzed by the CIBERSORT algorithm.

2.6. Calculation of TMB Scores and Somatic Mutation
Analysis. TMB is defined as the total number of somatic
gene coding errors, base substitution, insertion, or deletion
detected per million bases. Perl script was used to calculate
the mutation frequency of the number of variations/exon
length of each sample.4e “Maftools” package calculated the
somatic mutations in different GCs and the mutation dis-
tribution was mapped using the ggplot2 package.
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2.7. StatisticalAnalysis. Statistical analysis is performed by R
(version 4.0.5). 4e Wilcoxon rank-sum test presents
comparisons between the two groups, while the Krus-
kal–Wallis test assesses multiple comparisons. 4e surv-
miner package determines the demarcation point of each
subgroup in R. 4e Kaplan–Meier curve of OS analysis was
presented between different subgroups, and then the log-
rank test was performed. Multivariate Cox regression
analysis is used to evaluate the association between OS and
clinicopathological characteristics and risk scores. 4e for-
estplot package visualizes these in R. AUC depicts the 1-, 3-,
and 5-year survival rates and is used to assess the predictive
power of risk score. Bonferroni’s test corrects the p-value.
p< 0.05 on both sides was considered statistically significant.

3. Results

3.1. Identification of DNA Repair and Replication-Related
Prognostic Genes in High and Low TMB GC Groups.
Firstly, GC mutation data were downloaded from TCGA,
and 816 differential genes were identified according to the
high and low TMB GC groups (Figure 1(a), |log2FC|> 1,
p< 0.05)). Moreover, the high TMB group in GC has better
survival (Figure 1(b), p< 0.05). A total of 10,315 genes were
identified by entering the search term “DNA repair and
replication” from GeneCards (https://www.genecards.org),
and the top 5000 genes were selected. 4e two groups of
genes were intersected, and 148 genes were overlapped
(Figure 1(c)). Univariate Cox regression analysis screened 14
genes (MAPK10, MEOX2, LAMA2, CREB3L3, RBMS3,
GHR, SELP, EFEMP1, ABCC9, APOH, INHA, CYP1B1,
CDH2, and GAMT) that were associated with GC prognosis
(Figure 1(d), p< 0.05).

3.2. Risk Score for DRR-Related Gene Correlated with Prog-
nosis of GC Patients. Next, we constructed a risk score of
DRR-related genes in GC. LASSO regression prognostic
model was constructed from 14 genes screened by univariate
Cox regression, and finally, a total of seven genes (LAMA2,
CREB3L3, SELP, ABCC9, CYP1B1, CDH2, and GAMT) were
constructed in this risk score (Figure 2(a)). 4e best per-
formance of the risk score was achieved using these seven
genes. 4e model function was as follows: risk
score� (0.013918321× LAMA2 expression level) +
(0.008279412×CREB3L3 expression level) + (0.71002582
×RMI2 expression level) + (0.00495859× SELP expression
level) + (0.022154282×ABCC9 expression level) + (0.01034
6169×CYP1B1 expression level) + (0.01145852×GAMT
expression level). In total, 186 of the 371GC samples were
classified as a high-risk group, and the remaining 185 were
classified as a low-risk group according to the median risk
score. Survival analysis showed that overall survival (OS) was
lower in the high-risk group than that in the low-risk group
(Figure 2(b), p< 0.05). Receiver operating characteristic
(ROC) curves verified AUC of 0.626, 0.638, and 0.623 at 1, 3,
and 5 years, respectively (Figure 2(c)). 4e risk curves
showed a positive correlation between prognostic model
scores and patient risk values, and those low-risk patients

had a higher survival rate than high-risk patients
(Figure 2(d)). Heatmap visualizing the gene expression
patterns used in the risk model showed that all seven genes
in the prognostic model were highly expressed in the high-
risk group (Figure 2(e)).

3.3. Construction and Verification of a DRR-Related Prog-
nostic Model in GC. Moreover, we evaluated the prognostic
value of risk score for DRR-related genes in different sub-
groups of GC patients. 4e risk score was higher in patients
older than or equal to 65 years than those under 65 in GC
patients (Figure 3(a)). 4ere was no difference between GC
gender subgroups (Figure 3(b)). 4e risk score was higher in
the G3 group than that in the G1-2 group for the histological
grade (Figure 3(c)). Regarding clinical TNM staging, there
was no statistical difference between the risk score of patients
with stages I-II and those with stages III-IV (Figure 3(d)).
Next, we further analyzed the predictive value of the risk
score in different clinical characteristics. In the age group
less than or equal to 65 years, the prognosis was worse in the
high-risk group, whereas in patients older than 65 years,
there was no statistical difference in survival between the
high- and low-risk groups (Figure 3(e)). 4e prognosis was
worse in both male and female groups in the high-risk group
(Figure 3(f )). 4ere were differences in the prognosis of the
high-risk and low-risk groups in the G1-2 group, whereas
there was no difference in the prognosis of the G3 group
(Figure 3(g)). In terms of clinical staging, survival was worse
in the stage I-II and stage III-IV groups in the high-risk
group (Figure 3(h)). Furthermore, multivariate analysis
showed that the risk score was an independent prognostic
factor for GC in the TCGA cohort (Figures 4(a) and 4(b)). To
further apply the risk score in clinical prognosis prediction,
we constructed the nomogram of GC that included risk
score for DRR-related gene, TNM stage, gender, grade, and
age. Attractively, the nomogram has accurate predictability
in GC patients’ 1-, 3-, and 5-year overall survival
(Figure 4(c)). At the same time, the calibration diagram is
listed in the following: decision curve analysis (DCA)
demonstrated that the prognostic nomogram was clinically
valuable (Figures 4(d) and 4(e)). In summary, the risk score
for DRR-related genes can be used as an effective model for
predicting survival outcomes of GC patients.

3.4. Relationship between Risk Score for DRR-Related Genes
and TMB. To further elucidate the relationship between
TMB and risk score and the effect of both on the prognosis of
GC, we first observed that the TMB score was higher in the
low-risk group than that in the high-risk group (Figure 5(a),
p< 0.01) and that the risk score for DRR-related gene was
negatively correlated with TMB in GC (Figure 5(b) R� −0.5,
p< 0.01). Next, we further combined the risk score for DRR-
related genes and TMB for evaluating the prognosis of GC
patients. Interestingly, GC patients with low or high TMB
can be further divided into two subgroups based on the risk
score for DRR-related genes. Moreover, GC patients with the
low-risk score have a superior prognosis than the high-risk
score in both low and high TMB subgroups (Figure 5(c),
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p< 0.001). Subsequently, we compared the variation context
of the high-risk group and low-risk group, which came from
the combination of six variation types (T>G, T>A, T>C,
C>T, C>G, and C>A) (Figure 5(d)). 4e number of each
mutation type in the high-risk group was smaller than that in
the low-risk group. 4ere was a significant difference in
somatic mutation rate among samples. 4e sweeping
landscape of somatic variation shows the various patterns of
the top 20 driving genes with the most frequent variation.
4e significant mutation gene (SMG) landscape showed that
the mutation rate of the low-risk group was higher than that
of the high-risk group among the top 20 mutation genes
(Figures 5(e) and 5(f)). 4ese findings may contribute to a
new insight into the relationship between risk scores for
DRR-related genes and somatic mutation in GC patients.

3.5. Relationship between Risk Score for DRR-Related Gene
andTIME inGC. 4eESTIMATE algorithmwas used to score
the immune microenvironment of the GC using an “estima-
tion” package to calculate the ImmuneScore, StromalScore, and
ESTIMATEScore for each GC patient resulting in four scores:
Immunoscore, StromalScore, ESTIMATEScore, and Tumor-
Purity. 4ese four scores were correlated with the risk score for
DRR-related genes. 4e results showed that ImmuneScore,
StromalScore, and ESTIMATEScores were higher in high-risk
patients and TumorPurity was higher in low-risk patients
(Figures 6(a)–6(d), p< 0.05). In addition, to determine the
relative abundance of tumor-infiltrating immune cells (TIICs)
in GC samples, the degree of infiltration of TIICs was estimated
using the CIBERSORTalgorithm. 4e immune cell infiltration
in the statistically different samples was significantly different in
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the two groups with higher initial B näıve cells, CD4+ memory
resting T cells, Treg cells, monocytes, and mast resting cells in
the high-risk patients and more elevated CD4+ memory acti-
vated Tcells in the low-risk patients (Figure 6(e), p< 0.01).4e
distribution of immune cells in the high- and low-risk groups
was also visualized and analyzed (Figures 6(f) and 6(g)).

3.6. Prognostic Models with the Correlation between Immune
Checkpoints and Immunotherapy of GC. Intending to as-
certain the efficacy of the risk group for immunotherapy, we

initially correlated six common immune checkpoints with the
risk score.4e results showed that PD-L1 and IAP expressions
were negatively correlated with the risk score (Figures 7(a) and
7(b)), R ＜0, p< 0.01); however, PD1, CTLA4, TIGIT, and
TIM-3 were positively correlated with the risk score
(Figures 7(c)–7(f)), R ＞0, p< 0.01). Subsequently, the chi-
square plot showed that 42% of the responders in the low-risk
group were effective, and 58% were ineffective in the TIDE
(Tumor Immune Dysfunction and Exclusion); 70% of the
responders in the high-risk group were effective, and 30%were
ineffective (Figure 7(g), χ2� 5.24, p � 0.022). Ultimately, we
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evaluated the relationship between risk score and immuno-
therapy in GC at the TIDE and TCIA (4eCancer Immunome
Atlas) (Figures 7(h) and 7(i), p< 0.05). 4erefore, GC patients
with the low-risk score for DRR-related genes showed better
immunotherapy outcomes thanin the high-risk group.

4. Discussion

DNA is the place where cells store genetic information. 4e
integrity of its structure and function is essential to main-
taining life. 4erefore, cells evolved specialized DNA repair
mechanisms to maintain genome integrity [19, 20]. 4e
significant feature of cancer cells is genomic instability,
conducive to the accumulation of mutations and the ex-
pansion of tumor heterogeneity [21–23]. DRR mechanism
can repair mutant genes in the early stage of the tumor and
hinder cancer development. However, DRR-related genes
may cause drug resistance of tumor cells to cytotoxic drugs
with cancer progression [24]. 4e occurrence and devel-
opment of cancer are often accompanied by the inactivation
of one or more DRR pathways [25, 26]. Current studies of
DNA repair gene prognostic models focused on immediate
attachment to DNA repair genes, ignoring the impingement
from the TMB [27–29]. 4erefore, our research constructed
a prognostic model based on a TMB filter of seven DRR-
related genes that could better predict the clinicopatho-
logical characteristics, survival prognosis, role in the im-
mune microenvironment, and efficacy of immunotherapy in
GC patients.

In this study, we have developed a comprehensive de-
scription of DRR-related genes based on TMB. 4is prog-
nostic model may better predict the prognosis and immune
microenvironment of individuals with GC, providing a
tangible contribution to immunotherapy. In this seven-gene
prognostic model, GC patients are divided into a high-risk

group and a low-risk group. 4e prognosis of the high-risk
group was worse than that of the low-risk group. 4e ROC
showed that survival at 1, 3, and 5 years had a high prog-
nostic value. Risk curves were assessed and patients’ risk
increased with increasing scores in the model. Multivariate
analysis showed that the prognostic score was an inde-
pendent prognostic factor. Nomogram showed good
prognostic value at 1, 3, and 5 years; calibration chart
analysis showed accuracy. 4ere were statistically significant
differences between the high-risk and low-risk groups in
terms of age and histological grading. At the same time,
there were no significant differences in terms of gender and
TNM staging. We observed no differences in survival curves
in the subgroup survival analysis only for patients with G3
grading. In contrast, the high-risk group had worse prog-
nostic survival than all other subgroups. We further ob-
served habitual differences between prognostic models and
tumor mutation profiles. Interestingly, the distribution of
TMB was higher in the low-risk group, and the number and
frequency of mutations were higher in the low-risk group
than those in the high-risk group. 4e above results suggest
that specific mutations in GC may be beneficial for tissue
progression. DRR-related genes promote GC progression
due to the repair of these mutations.

4e high-risk groupwill havemore Treg cell infiltration. It
has been reported in the literature that Treg cells allow tumors
to produce immune escape by suppressing CD8+ T cells and
promoting tumors to express more immunosuppressive
molecules [30]. 4is is consistent with our analysis of im-
munotherapy. 4e low-risk group had a lower TIDE and
higher TCIA score due to a greater tendency to express PD-L1
and IAP immunosuppressive molecules, suggesting greater
effectiveness of immunotherapy in the low-risk group. 4e
findings further elucidate the function of these seven DRR-
related genes in GC andmay contribute to our understanding
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of the biology of GC and provide new therapeutic targets.4e
poor prognosis of GC appears to depend on the multilayered
relationship between DNA repair gene mutations, cell pro-
liferation, and immune responses interactions.

LAMA2 is an extracellular protein and is the main
component of the basement membrane [31]. It is believed to
mediate cell attachment, migration, and tissue during em-
bryonic development through interaction with other ex-
tracellular matrix components [32]. Li et al. identified
LAMA2 as mediating the activation of the Src family of
tyrosine kinase LCK-nondependent Tcells by staphylococcal
enterotoxin E [33]. Zhang et al. firmly established LAMA2 as
an immune-related gene associated with poor prognosis in
pancreatic adenocarcinoma [34].

CREB3L3 encodes members of the alkaline leucine
zipper family and the AMP-dependent transcription factor
family. 4e encoded protein is located in the endoplasmic
reticulum and acts as a transcription factor activated by
cyclic AMP stimulation [35]. Resende et al. found that IL1β
promoted the transition from chronic gastritis to GC
through a CREB-C/EBPβ-related mechanism [36]. In the
meantime, Luan B et al. reported that targeted disruption of
CREB or cAMP-regulated transcriptional coactivators 2 and
3 (CRTC2/3) in macrophages downregulated M2 marker
gene expression and promoted insulin resistance and fa-
cilitated insulin resistance, demonstrating that CREB-re-
lated molecules could initiate the human innate immune
system [37].

SELP is stored in the alpha granules of platelets and
Weibel–Palade vesicles of endothelial cells [38]. 4is protein
redistributes to the plasma membrane during platelet acti-
vation and degranulation and mediates the interaction of
activated endothelial cells or platelets with leukocytes [39].
Dai et al. screened the TCGA database and found that SELP
was highly expressed in GC and significantly correlated with
prognosis [40]. Singel et al. analyzed ascites from patients
with advanced epithelial ovarian cancer (EOC) and iden-
tified that SELP activated neutrophil and platelet responses,
promoted metastasis, and hindered antitumor immunity
[41].

ABCC9 is a member of the ATP-binding cassette (ABC)
transport protein superfamily, transporting various mole-
cules through the outer and inner cell membranes. 4is
protein is thought to form ATP-sensitive potassium chan-
nels in cardiac, skeletal, vascular, and nonvascular smooth
muscle [42]. Mao et al. reported that ABCC9 was highly
expressed in GC and negatively correlated with prognosis,
which could be a potential biomarker for GC [43].

CYP1B1 encodes a member of the cytochrome P450
enzyme superfamily. Cytochrome P450 proteins are
monooxygenases that catalyze many reactions involving
drug metabolism and the synthesis of cholesterol, steroids,
and other lipids [44]. Kwon et al. demonstrated that the
oncogenic molecular mechanism of CYP1B1 action is as-
sociated with specificity protein one-mediated gene regu-
lation, which induces cancer cell proliferation and
migration [45]. D’Uva et al. concluded that CYP1B1 is
considered a promising target for tumor chemoprevention
in the tumor microenvironment due to the involvement of

this oncogene in a positive loop with inflammatory cyto-
kines [46]. 4us, evidence suggests that CYP1B1 may be
involved in oncogenic events associated with the immune
system.

CDH2 belongs to the calmodulin family and is involved
in CNS cell adhesion, asymmetric cell division, and pre-
synaptic/postsynaptic processes. For several cancer cells,
including lung cancer, the role of CDH2 in cell migration
and invasion has been reported. During epithelial-mesen-
chymal transition (EMT), tumor cells can transform to a
CSC-like phenotype with an increase in CDH2 [47]. Hu et al.
found that CDH2 promotes EMT in GC cells through
LOXL1 overexpression, leading to peritoneal metastasis
[48].

4e protein encoded by GAMT is a methyltransferase
that uses S-adenosylmethionine as a methyl donor to
convert guanidinoacetate to creatine. Defects in this gene
have been associated with neurological syndromes and
hypotonia, possibly due to creatine deficiency and guani-
dinoacetate accumulation in affected individuals’ brains
[49]. Liu et al. have identified GAMT as a biomarker of
prognosis in patients with advanced GC treated with
docetaxel, cisplatin, and S-1 (DCS) [50]. Chen et al. also have
demonstrated that high expression of GAMT, a gene driven
by DNA methylation, was remarkably associated with poor
prognosis [51].

4e criteria explored in this study were based on ob-
jective indicators that may be more advantageous for
detecting immune checkpoint inhibitors that were com-
monly used in clinical practice. 4erefore, the prognostic
model we developed was worthy of further study for its
predictive efficacy. However, there were inevitable limita-
tions in this study. Although high immune predictive effi-
cacy was observed in the TCGA’s STAD datasets, we could
not obtain a GC cohort associated with immunotherapy to
validate the utility of this study. Furthermore, the translation
of these targets into clinical decision-making remains
challenging. 4e mechanisms involved still need further
validation in in vivo and in vitro experiments.

5. Conclusions

In conclusion, the signature of DRR-related genes are closely
interrelated with the prognosis of GC patients. 4e model
based on these seven genes can predict GC patients’ response
to immunotherapy in GC. 4erefore, DRR-related gene
signature based on tumor mutation burden is a novel
biomarker for prognostic and immunotherapy response in
GC patients.
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