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ABSTRACT: Electrical coupling in circuits can pro-

duce non-intuitive circuit dynamics, as seen in both exper-

imental work from the crustacean stomatogastric

ganglion and in computational models inspired by the con-

nectivity in this preparation. Ambiguities in interpreting

the results of electrophysiological recordings can arise if

sets of pre- or postsynaptic neurons are electrically cou-

pled, or if the electrical coupling exhibits some specificity

(e.g. rectifying, or voltage-dependent). Even in small cir-

cuits, electrical coupling can produce parallel pathways

that can allow information to travel by monosynaptic and/

or polysynaptic pathways. Consequently, similar changes

in circuit dynamics can arise from entirely different

underlying mechanisms. When neurons are coupled both

chemically and electrically, modifying the relative

strengths of the two interactions provides a mechanism

for flexibility in circuit outputs. This, together with neuro-

modulation of gap junctions and coupled neurons is

important both in developing and adult circuits. VC 2016
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INTRODUCTION

The first demonstrations of electrical coupling were

made nearly sixty years ago (Furshpan and Potter,

1959), but the myriad potential roles of electrical

coupling in circuit function are still often neglected

or underestimated. In this paper we use the well-

studied circuits of the decapod crustacean stomato-

gastric nervous system (STNS) (Maynard, 1972;

Marder and Bucher, 2007) to illustrate some of the

potential for circuit flexibility that arises from com-

bining electrical and chemical synapses within cir-

cuits. At the same time, we highlight some of the

confounds in understanding circuit performance and

interpreting connectomes that result directly from the

presence of electrical coupling in circuits (Marder,

1984; Gutierrez and Marder, 2013; Gutierrez et al.,

2013; Gutierrez and Marder, 2014).

The STNS consists of the single stomatogastric

ganglion (STG), which has 26-30 neurons depending

on species (Kilman and Marder, 1996; Bucher et al.,

2007), and three anterior ganglia from which
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modulatory projection neurons influence the STG cir-

cuits (Dando and Selverston, 1972; Nagy and Dickin-

son, 1983; Nagy et al., 1988; Nusbaum and Marder,

1989a; Nusbaum and Marder, 1989b; Nusbaum et al.,

1992; Bal et al., 1994; Bartos and Nusbaum, 1997;

Blitz and Nusbaum, 1997; Blitz et al., 1999; Been-

hakker and Nusbaum, 2004; Beenhakker et al., 2007;

Blitz et al., 2008; Blitz and Nusbaum, 2012).

The STG contains neurons that are components of

the central pattern generating networks that produce

several different feeding-related rhythmic motor pat-

terns. These include the distinct but interacting fast

pyloric rhythm (pumping/filtering of chewed food;

cycle period �1 s), and slower gastric mill rhythm

(chewing; cycle period �10-20 s). All STG neurons

are physiologically identified, with many present as a

single copy per STG (Kilman and Marder, 1996;

Bucher et al., 2007).

Electrical Coupling Complicates Circuit
Analysis

The earliest intracellular recordings from pyloric net-

work neurons revealed electrical coupling between

the Pyloric Dilator (PD) and Anterior Burster (AB)

neurons (Maynard, 1972; Selverston and Miller,

1980; Eisen and Marder, 1982; Miller and Selverston,

1982b, a; Eisen and Marder, 1984; Marder and Eisen,

1984a,b). Intracellular recordings also revealed that

the Lateral Pyloric (LP) and Pyloric (PY) neurons

(not shown in [Fig. 1(A)] are inhibited during each

burst of the AB and PD neurons [Fig. 1(A)], and that

LP neuron action potentials in turn evoke IPSPs in

the AB and PD neurons [Fig. 1(A)]. If one simply

looks at these recordings, one would assume that the

connectivity is represented by the diagram shown in

the top left panel of Fig. 1(B). However, Eisen and

Marder (1982) realized that there were actually 9 dif-

ferent connectivity diagrams [Fig. 1(B)] that are con-

sistent with the intracellular recordings seen in

Figure 1(A). To disambiguate this circuit, Eisen and

Marder (1982) used the then recently developed

method of photoinactivation subsequent to dye-filling

(Miller and Selverston, 1979) to kill either the two

PD neurons or the single AB neuron. Doing so

revealed the actual circuit [Fig. 1(B), bottom left,

black). Notice that the electrical coupling creates an

ambiguity on both the presynaptic and postsynaptic

side (Marder, 1984). In other words, it wasn’t clear

before the photoinactivation experiments whether the

inhibition of the LP neuron came from the PD neu-

rons, the AB neuron, or both. Likewise, it wasn’t

clear whether the LP inhibited the PD neurons, the

AB neuron, or both. In the former case, it was both.

In the latter case, the LP neuron only inhibits the PD

neurons directly, and the IPSPs recorded in the AB

neuron occur as a result of its electrical synapse with

the PD neurons (Eisen and Marder, 1982). Disambig-

uating these circuit interactions is not simply useful

for “dotting i’s and crossing t’s”, but is pivotal to

understanding circuit function and its flexibility

Figure 1 Ambiguous connectivity diagrams can result

from electrophysiological recordings of electrically cou-

pled neurons. A) Simultaneous intracellular recordings

from three neurons of the STG of the lobster, Panulirus
interruptus. Note that each action potential in the LP neu-

ron evoked a unitary IPSP in both the PD and AB neurons.

Also, the synchronous AB/PD neuron bursts evoked large

IPSPs in the LP neuron. B) Nine connectivity diagrams that

are all consistent with the recordings seen in (A). Photoi-

nactivation experiments were done to determine the actual

circuit (black circuit diagram, bottom left). Adapted from

(Eisen and Marder, 1982). In this and later diagrams, chem-

ical synapses are portrayed as balls on sticks (inhibitory

connections) and bars (excitatory connections). Electrical

coupling is indicated with resistor symbols between cou-

pled neurons.
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(Hooper and Marder, 1987). Any circuit with a com-

bination of electrical and chemical synapses is likely

to have similar ambiguities, whether on the presynap-

tic or postsynaptic side.

Photoinactivation studies also demonstrated that

(1) the AB neuron is glutamatergic while the PD neu-

rons are cholinergic (Marder and Eisen, 1984b), (2)

the AB and PD neurons respond differently to modu-

lators and modulatory inputs (Marder and Eisen,

1984a), and (3) their intrinsic membrane properties

are different (Miller and Selverston, 1982a).

In the above example, different classes of identi-

fied neurons are electrically coupled. It is often

assumed that electrical coupling primarily occurs

within a population of cells of the same type, as

occurs in many tissues in the body (Sherman and Rin-

zel, 1992). Nonetheless, it is important to remember

that coupling between neurons with different intrinsic

properties occurs routinely in the nervous system,

and this can produce complex dynamics (Kepler

et al., 1990; Coleman et al., 1995; Kopell et al., 1998;

Soto-Trevino et al., 2005).

Electrical Coupling can be Paradoxical

Electrical coupling often tends to synchronize cou-

pled neurons (Manor et al., 1997; Mancilla et al.,

2007; O’Brien, 2014). This can even occur when

reciprocally inhibitory neurons are also electrically

coupled (Lewis and Rinzel, 2003; Bem et al., 2005;

Bem et al., 2008). Moreover, synchrony need not be

the outcome of electrical coupling (Sherman and

Rinzel, 1992). In the STG there are electrically-

coupled neurons that fire out of phase, including

coupled neurons such as the AB and Ventricular

Dilator (VD) neurons [Fig. 2(A)]. In Figure 2(B)

the AB and VD neurons fire in alternation despite

being electrically coupled, because the AB neuron

also chemically inhibits the VD neuron [Fig. 2(A)].

When the chemical inhibition is blocked pharmaco-

logically or the AB neuron is photoinactivated [Fig.
2(C)], the PD and VD neurons fire in phase with each
other (Eisen and Marder, 1982). These parallel con-
nections provide circuit flexibility. Specifically,
depending on the relative strength of these two oppos-
ing factors, the relative synchrony of the neurons is
altered (Eisen and Marder, 1982; Marder, 1984; John-
son et al., 1994).

Electrical Coupling and the Functional
Connectivity Diagram of the Crab STG

Ensembles of electrically coupled neurons are found

not only in the STG but in circuits in many (presum-

ably all) other animals. One effective approach to

demonstrate this coupling is to assess the extent of

dye-coupling, or tracer-coupling, throughout a net-

work (Tornqvist et al., 1988; McMahon et al., 1989;

Peinado et al., 1993). In sets of such experiments

involving identified circuit neurons, individual STG

neuron somata were physiologically identified and

localized, after which Neurobiotin tracer was injected

in one soma in each STG and allowed to diffuse. Fig-

ure 3 shows the results of 4 such experiments, includ-

ing injections into the single AB neuron [Fig. 3(A)],

one of the two PD neurons [Fig. 3(B)], one of the two

Lateral Posterior Gastric (LPG) neurons [Fig. 3(C)]

and into the single VD neuron [Fig. 3(D)]. These four

neuron types were determined previously to be elec-

trically coupled. Note that the pattern of Neurobiotin-

spread is similar but not identical through this net-

work. For example, when the AB and PD neurons

were directly injected, the VD neuron filled, but

Figure 2 Cell kills produce phase shifts in electrically coupled neurons. A) Circuit diagram

showing the connections between the AB, PD, and VD neurons. B) Intracellular recordings of the AB

(top) and VD (bottom) neurons in P. interruptus. They burst in anti-phase in the intact circuit. C)

When AB was killed, the PD (top trace) and VD neurons became active in phase. Scale bars apply to

the top and bottom rows, respectively, of B and C. Adapted from Eisen and Marder (1982).
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when the VD neuron was directly filled, the tracer

did not spread into the AB and PD neurons. What

cannot be determined from these experiments is

whether all of these neurons are directly coupled to

each other, or whether some of the tracer-coupling

results from transit through an intermediary neuron.

Examination of the full connectivity diagram of the

STG circuit of the crab Cancer borealis (Fig. 4)

shows that there are potentially multiple direct and

indirect routes by which neurons might be electrically

coupled, and this could contribute to the asymmetry

in tracer-coupling seen in Figure 3.

Distinguishing between direct coupling and cou-

pling through an intermediate would require a sys-

tematic set of photoinactivation experiments. Even in

a small nervous system as intensively studied as the

STG, extensive electrical coupling and the fact that

many synapses are highly modulated (Dickinson

et al., 1990; Johnson and Harris-Warrick, 1990; John-

son et al., 1994; Thirumalai et al., 2006; Zhao et al.,

2011) can make it difficult to unambiguously deter-

mine a connectivity diagram using electrophysiology

alone. For example, there are some synaptic poten-

tials that are virtually silent in control saline, but are

Figure 3 Neurobiotin fills reveal electrical synapses between neurons in the STG of the crab

Cancer borealis. A) The AB neuron was intracellularly filled with Neurobiotin, which diffused into

both LPG neurons and both PD neurons. Neurobiotin also crossed into VD, but to a lesser extent.

B) The PD neuron was filled with Neurobiotin which crossed into AB, both LPGs, and the other

PD neuron in the circuit. C) One LPG was injected with Neurobiotin and it filled the other LPG,

both PDs, and the AB neuron. D) VD was filled with Neurobiotin and it traversed into both LPGs

and Int1. Note that, despite the strong tracer-coupling here between VD and the LPGs, Neurobiotin

failed to cross into VD when the LPG was filled. Unpublished data from the Nusbaum laboratory.
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strong in the presence of a modulator (Thirumalai

et al., 2006). These synapses are presumably present

anatomically, but require either neuromodulation of

the presynaptic terminal to allow transmitter release

and/or modulation on the postsynaptic side to

increase the number of available receptors. This kind

of ambiguity illustrates the advantage of having a

high-quality electron microscope-determined connec-

tome (Briggman et al., 2011; Helmstaedter et al.,

2013; Kasthuri et al., 2015; Mikula and Denk, 2015),

although those high-density connectomes were done

with methods that didn’t have sufficient resolution to

reveal the electrical synapses.

The connectivity diagram of the C. borealis STG

in Figure 4 includes several of the connections that

have been recorded in some but not all preparations.

What is not clear is whether these connections

are always anatomically present but might be physio-

logically silent in some preparations under some

conditions, or whether there could be real animal-to-

animal variability in some of the connections. If the

latter is the case, it would be fascinating to ask

whether there are correlated circuit configurations,

such that a missing synapse in one animal might be

compensated by other changes in the circuit.

Coupling between Circuit Inputs and
Circuit Elements

While Figure 4 is a connectivity diagram describing

the interactions among STG neurons themselves,

there are approximately 25 pairs of descending mod-

ulatory input neurons whose terminals interact both

chemically and electrically with STG neurons in the

neuropil of the STG (Coleman et al., 1992; Nusbaum

et al., 1992; Coleman and Nusbaum, 1994; Coleman

et al., 1995). One of the most striking features of the

interactions between the modulatory inputs to the

STG and their target neurons are electrical synapses

between the STG neurons and the terminals of the

projection neurons in the STG neuropil. These can be

revealed with tracer-fills (Fig. 5) and with direct elec-

trophysiological recordings (Fig. 6) (Nusbaum et al.,

1992; Coleman et al., 1995; Blitz and Nusbaum,

1997; Bartos et al., 1999; Blitz and Nusbaum, 2012).

An example of the tracer-coupling that supports the

Figure 4 Crab STG connectivity diagram. The neurons

of the crab stomatogastric ganglion are schematized along

with their connections. Modified from Marder and Bucher

(2007).

Figure 5 Descending modulatory neurons are electrically coupled to STG neurons. A) The

terminals of MCN1, a descending modulatory neuron, were injected with Neurobiotin. The tracer

secondarily filled the MG, LG, IC, and three of the four GM neurons. B) When CPN2, another

descending neuromodulatory neuron, was injected with Neurobiotin the tracer crossed into a similar

ensemble of gastric mill neurons. Unpublished data from the Nusbaum lab.
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presence of electrical coupling between the terminals

of identified modulatory projection neurons and spe-

cific STG neurons is shown in Figure 5. Filling the

descending modulatory neuron MCN1 with Neuro-

biotin reveals extensive coupling among the gastric

mill neurons in the STG [Fig. 5(A)]. Another

descending modulatory neuron, CPN2, is similarly

tracer-coupled to many of the same gastric STG neu-

rons [Fig. 5(B)].

Figures 6(A,B) shows simultaneous intracellular

recordings from the axon of the MCN1 neuron where

it enters the STG and from the soma of the LG neu-

ron. Figure 6(A) shows that a MCN1 action potential

first evokes a small, rapid depolarization in LG fol-

lowed by a larger, slower EPSP. Figure 6(B) shows

that hyperpolarization of the MCN1 terminal evokes

a smaller but quite noticeable hyperpolarization of

the LG neuron. Figure 6(C) shows a connectivity dia-

gram that highlights the interactions of the MCN1

terminals with STG neurons that underlie gastric mill

rhythm generation (Coleman et al., 1995; Bartos and

Nusbaum, 1997; Nadim et al., 1998; Bartos et al.,

1999). Connectivity diagrams rarely provide suffi-

cient information to explain how a circuit works. For

example, one pivotal event that is not discernable

from this connectivity diagram is the fact that the

indicated electrical coupling between the MCN1 ter-

minals and the LG neuron is voltage-dependent such

that it contributes significantly during one phase of

the gastric mill rhythm and is relatively ineffective

during the other phase (Coleman et al., 1995). As this

example portrays, the extensive interactions between

the terminals of the descending modulatory neurons

and STG neurons are crucial for understanding the

dynamics of the STG motor patterns (Nusbaum and

Beenhakker, 2002; Blitz and Nusbaum, 2008;

DeLong et al., 2009a; DeLong et al., 2009b; Blitz

and Nusbaum, 2011; Rodriguez et al., 2013) but these

interactions mean that the connectivity diagram in

Figure 4 is missing all of the circuitry that involves

the terminals of the modulatory neurons in the STG,

with their often complex array of co-transmitter

actions (Blitz and Nusbaum, 1999; Stein et al., 2007;

Marder, 2012). Consequently, it is not surprising that

despite universal consensus about most of the con-

nectivity in the C. borealis STG, there are several

connections that are weak and/or state-dependent and

so are not recorded in every electrophysiological

experiment.

Molecular Substrates of Coupling in the
STG: Innexin Expression

In invertebrates, electrical-coupling and dye-coupling

are mediated by gap junction proteins encoded by

innexin genes (Phelan et al., 1998; Phelan, 2005;

Ducret et al., 2006; Phelan et al., 2008). There are six

innexin genes in the transcriptomes of C. borealis
and H. americanus (Shruti et al., 2014). Innexins 1-6

are expressed in the C. borealis STG, but single neu-

ron analyses showed animal-to-animal variability in

some of the innexin expression, consistent with the

possibility that this variability could cause some

animal-to-animal variations in the presence and/or

strength of some electrical synapses (Shruti et al.,

2014).

Figure 6 MCN1 and LG are electrically coupled. A) MCN1 action potentials (bottom superim-

posed traces) evoked an EPSP in LG (top superimposed traces) preceded by a small, rapid depolari-

zation. B) Hyperpolarizing MCN1 (bottom trace) also hyperpolarized LG (top trace), indicating the

electrical synapse between the two neurons. Periodic current pulses were delivered to MCN1. C)

Schematic of a portion of the STG circuit illustrating how the electrical coupling between MCN1

and LG acts in parallel with the neuromodulatory effects of MCN1 on the rest of the circuit. Traces

from A and B adapted from Nusbaum et al (1992). Circuit in C from Bartos et al (1999).
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Electrical Coupling Creates Parallel
Pathways

The extent of electrical coupling in the connectivity

diagram of the STG (Fig. 4) produces the potential

for information to flow through multiple parallel

pathways. In other words, there are many examples

of two neurons connected by both monosynaptic and

polysynaptic pathways. The existence of these paral-

lel pathways creates potential degenerate circuit

mechanisms: multiple changes in circuit parameters

that can elicit the same or similar changes in circuit

behavior.

Figure 7 shows an example illustrating this general

principle: a circuit of 5 model neurons is coupled

with a mixture of chemical and electrical synapses,

according to the diagram shown (Gutierrez et al.,

2013). Note that there are parallel pathways connect-

ing the f1 and hn neurons and the s1 and hn neurons,

including both monosynaptic inhibitory connections

and those mediated via the electrical synapses. What

this model demonstrates is that three different

changes in circuit parameters can produce essentially

the same change in circuit output! In this case, the

degeneracy is a direct consequence of the electrical

coupling in the circuit. Similarly, two different path-

ways, including the projection neuron MCN1 and the

bath-applied neuropeptide CabPK, elicit the same

gastric mill rhythm by configuring different circuits

(Saideman et al., 2007) The aforementioned coupling

between MCN1 and the LG neuron is pivotal to

MCN1-gastric mill rhythm generation, but not during

CabPK-gastric mill rhythm generation because

MCN1 is silent at that time (Saideman et al., 2007;

Rodriguez et al., 2013).

The strength of electrical coupling can influence

the extent to which modulation of a single neuron

alters the activity of an entire group of neurons. In

the simulation shown in Figure 8 (Gutierrez and

Marder, 2014) the intrinsic properties of the hn neu-

ron were altered so that the isolated hn neuron

showed different wave-forms, although its frequency

was maintained [Fig. 8(A)]. Then these modulated

neurons were embedded into two circuits. The circuit

shown in Figure 8(B) has relatively weak electrical

synapses but strong chemical synapses and is thus

dominated by the inhibitory interactions through the

chemical synapses. In this case, although the hn’s

waveform was altered, it continues to oscillate at

approximately the same frequency in time with the

intrinsically slow oscillators while the other 4 neu-

rons in the circuit are relatively unaffected. In con-

trast, in Figure 8(C) we see the opposite case. Here

the electrical synapses are strong and the chemical

synapses are relatively weak. In this regime,

electrical-coupling dominates and modulation of the

hn’s intrinsic properties alters the output of all of the

neurons in the circuit, entirely changing the circuit

dynamics (Gutierrez and Marder, 2014). Compare

the first two panels of traces in Figure 8(C). The fast

and slow oscillators maintain distinct oscillatory

rhythms while neuromodulation of the hn is able to

switch it from being active with the slow oscillators

Figure 7 The neuromodulation of different synaptic connections can produce the same modi-

fication in circuit behavior. Panel A) is the control in this computational simulation of a 5-cell cir-

cuit. Voltage traces corresponding to the five neurons are displayed below each circuit and colored

according to cell type (orange, fast oscillators; black, intermediate; blue, slow). B) Inhibitory syn-

apse strengths from f1 and s1 are reduced resulting in a switch of hn (hub neuron) from the slow to

the fast rhythm. C) Electrical coupling is reduced while all chemical synapses are left intact result-

ing in the same switch of the hn. D) Mutual inhibition is reduced for both half centers and the same

switch is achieved. From (Gutierrez et al., 2013).
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to being active with the fast part of the circuit. Neuro-

modulation of the hub neuron in this model circuit

thus changes the network-wide activity as illustrated

in the last two panels of traces in Figure 8(C). In the

third panel, all of the neurons oscillate at the same

frequency and the distinct sub-rhythms are no longer

present. This work shows that the effect of modula-

tion of a single circuit element can indirectly influ-

ence neurons that are not themselves the direct

targets of a modulatory input.

Rectifying and non-Rectifying Synapses

Some electrical synapses show rectification, defined

as current flowing preferentially in one direction

(Furshpan and Potter, 1959; Phelan et al., 2008;

Shruti et al., 2014). Rectification may arise as a con-

sequence of different innexins expressed by different

cell types that are electrically coupled (Phelan, 2005;

Phelan et al., 2008). The electrical connections in the

STG show a range of rectification properties (Shruti

et al., 2014), but as each STG neuron expresses mul-

tiple innexins and is electrically coupled to many dif-

ferent neurons, it is difficult to know the extent to

which different innexin genes are involved in specific

STG electrical connections.

Rectification is illustrated in Figure 9. The impact

of rectification on the synchronization of two neurons

is shown (Gutierrez and Marder, 2013). The maximal

conductance through the electrical synapse is a func-

tion of the junctional potential [Fig. 9(A)] which per-

mits current flow when neuron 1 is more depolarized

than neuron 2 but not when neuron 1 is more hyper-

polarized than neuron 2. For example, if one of the

neurons is an oscillator while the second is not oscil-

latory, the direction of the current flow completely

Figure 8 The circuit-wide effects of local neuromodulation depend on the parameters of the

circuit connectivity. A) Example voltage traces from an isolated hub neuron (hn) that were taken

from a frequency-invariant manifold in intrinsic conductance space. The changes in these voltage

waveforms are due to changes in the intrinsic conductances, which simulates the effects of neuro-

modulation. B) The output pattern of a circuit dominated by inhibition is robust to neuromodulation

of hn, as schematized in the circuit diagram to the left. In this case, the circuit only produces one

pattern in which the hn oscillates with the slow part of the circuit regardless of the neuromodulation

of the hn. This is shown in the circuit traces (right) which correspond to the neuromodulatory

changes in hn in the traces in A (traces are colored according to cell type (orange, fast oscillators;

green, intermediate; blue, slow). The circuit output pattern is also summarized by the

“parameterscape” points that accompany each set of traces. Each concentric shape corresponds to a

neuron in the circuit (outer circles, f1 and f2; square, hn; inner circles, s1 and s2) and is color-

coded for the neuron’s oscillation frequency (red, high frequencies; to blue, low frequencies). C) A

circuit dominated by electrical coupling transitions between several different circuit patterns as the

hn is modulated. From (Gutierrez and Marder, 2014).
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changes the output of this two-neuron circuit [Figs. 9

(B,C,D)]. With a rectifying electrical synapse that

allows hyperpolarizing current to flow from the oscil-

lator to the non-oscillator [Fig. 9(C)], the non-

oscillating neuron is hyperpolarized during the

troughs of its partner’s oscillations, but does not

depolarize with it at the peaks. In Figure 9(D), the

polarity of the rectifying electrical synapse is

reversed and both neurons depolarize together at the

peaks of the oscillatory neuron’s trajectory, however

the formerly non-oscillatory neuron also hyperpolar-

izes with its partner due to the activation of its own

intrinsic hyperpolarizing conductances. Even with a

two-cell circuit, the unintuitive effects that can result

from the interactions between the electrical coupling

and the intrinsic neuron properties are evident. If

three neurons with different intrinsic oscillating fre-

quencies are electrically coupled, their ability to

Figure 9 Rectifying electrical synapses complicate the functional outcome of electrical cou-

pling. A) Plot of junctional conductance for one of the neurons as a function of the junctional

potential between it and its coupled partner (V1 – V2). When the junctional potential is negative

(neuron 1 is more hyperpolarized than neuron 2), there is little conductance across the gap junction.

When neuron 1 is more depolarized than neuron 2, electrical synapse conductance is increased. B)

The voltage traces of two neurons (one is an intrinsic oscillator and the other is intrinsically quies-

cent) plotted when the neurons are not coupled. C) A rectifying electrical synapse is placed between

the neurons such that hyperpolarizing current is able to flow from the oscillator to the quiescent

neuron while the opposite current flow is restricted. The quiescent neuron hyperpolarizes with the

oscillator but does not depolarize with it. D) When the polarity of the rectifying synapse between

the neurons is reversed, depolarizing current flows from the oscillator to the quiescent neuron while

current flow of the opposite sign is restricted. The quiescent neuron is entrained by the intrinsic

oscillator. The quiescent neuron traverses above and below its baseline voltage because its intrinsic

hyperpolarizing currents are activated by the upswing. E) In a circuit with 3 oscillator neurons with

different intrinsic frequencies, the properties of the electrical synapses connecting them govern the

resulting circuit behavior. When both synapses are symmetrical, the three neurons synchronize their

oscillation frequencies with a moderately small maximal coupling conductance (Case 0). Likewise

when the electrical synapse between the intrinsically fast and medium neurons is rectifying such

that depolarizing current passes easily from the fast to the intermediate neuron (2nd panel from the

left; Case 1) and when a rectifying synapse between the medium and the slow oscillators permits

hyperpolarizing current to pass easily from the slow to the medium neuron (right panel; Case 4).

The reversed polarity of those same rectifying synapses requires a higher maximal coupling con-

ductance to synchronize all 3 neurons (Cases 2 and 3). From (Gutierrez and Marder, 2013).
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synchronize could depend on the type and strength of

electrical coupling [Fig. 9(E)]. The coupling configu-

rations in Case 1 and Case 4 effectively behave as

Case 0, where all electrical synapses are non-

rectifying. There, only a small amount of coupling

conductance is required to fully synchronize the three

neurons, while stronger electrical coupling is required

for synchrony in Cases 2 and 3.

Modulation of Coupling

In many physiological systems the strength of electri-

cal coupling is modulated by hormones and neuro-

transmitters (Piccolino et al., 1984; Spray and

Bennett, 1985; Neyton and Trautmann, 1986a,b;

Tornqvist et al., 1988; McMahon et al., 1989; Con-

nors and Long, 2004; O’Brien, 2014). In all cases, it

is necessary to distinguish between changes in appar-

ent coupling due to modulation of the impedance of

one or both of the coupled neurons, versus changes in

coupling caused by direct actions on the gap junc-

tions themselves. It is worth noting that, even when

modulation directly alters gap junctional conduc-

tance, there are additional physiological conse-

quences for the coupled neurons because the event

will alter the impedance of each neuron either locally

(near the gap junctions) or globally (throughout the

neuron). Although in the STG there are numerous

indications that neuromodulators can alter coupling

coefficients (Johnson et al., 1993; Johnson et al.,

1994), the direct demonstration that the gap junction-

al conductance is the target of neuromodulation has

not been accomplished.

Electrical Coupling in Development

Early in development it is common to find extensive

electrical coupling (e.g. Peinado et al., 1993).

Neurobiotin-fills of individual embryonic and larval

neurons from the lobster Homarus americanus result

in labelling of 10-15 STG neurons (Rehm, 2007);

many more than are seen in the adult preparations.

This is consistent with either a developmental

decrease in electrical coupling, or a consequence of

the need to inject much more dye into the significant-

ly larger adult neurons for it to travel into other neu-

rons (Rehm, 2007). Nonetheless, it has been argued

that changes in electrical coupling early in develop-

ment are critical for the maturation of adult motor

patterns (Ducret et al., 2006; Ducret et al., 2007).

The embryonic STG generates relatively irregular

motor patterns (Richards et al., 1999) in which the

neurons that will eventually be part of the separate

pyloric and gastric mill rhythms fire together

(Casasnovas and Meyrand, 1995). The modulatory

inputs to the STG develop sequentially during the

embryonic and larval stages (F�enelon et al., 1999;

Kilman et al., 1999; Pulver and Marder, 2002; Pulver

et al., 2003) and responses to modulators are present

quite early (Le Feuvre et al., 1999; Richards and

Marder, 2000; Le Feuvre et al., 2001; Rehm et al.,

2008a; Rehm et al., 2008b). Ducret et al. (2007)

argue that a GABAergic input is responsible for con-

trolling the strength of the electrical coupling that

allows the emergence of adult rhythms. While this

may be part of the story, the responses of the embry-

onic and larval preparations to neuromodulators are

not fully mature (Rehm et al., 2008a), so modulatory

control of the electrical coupling may be important

but not the only determinant of the transition from

embryonic to adult rhythms.

CONCLUSIONS

Even with the expectation that there is more to be

learned about the roles of electrical coupling in neu-

ral circuits, it is already clear that such coupling pro-

vides a number of additional degrees of freedom to

circuit operation. So far, electrical coupling is best

known for its synchronizing actions in circuits, but it

can also provide non-intuitive actions and it is likely

that the establishment of parallel pathways by electri-

cal coupling may be as important, or more important,

for how signals propagate through circuits under dif-

ferent modulatory conditions.
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