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Abstract: SARS-CoV-2 Omicron variant has been characterized by decreased clinical severity, rais-
ing the question of whether early variant-specific interactions within the mucosal surfaces of the
respiratory tract could mediate its attenuated pathogenicity. Here, we employed ex vivo infection
of native human nasal and lung tissues to investigate the local-mucosal susceptibility and innate
immune response to Omicron compared to Delta and earlier SARS-CoV-2 variants of concern (VOC).
We show that the replication of Omicron in lung tissues is highly restricted compared to other VOC,
whereas it remains relatively unchanged in nasal tissues. Mechanistically, Omicron induced a much
stronger antiviral interferon response in infected tissues compared to Delta and earlier VOC-a differ-
ence, which was most striking in the lung tissues, where the innate immune response to all other
SARS-CoV-2 VOC was blunted. Notably, blocking the innate immune signaling restored Omicron
replication in the lung tissues. Our data provide new insights to the reduced lung involvement and
clinical severity of Omicron.

Keywords: Omicron; organ culture; interferon response; nasal organ culture; lung organ culture;
COVID-19; SARS-CoV-2

1. Introduction

The recently evolved SARS-CoV-2 Omicron variant has been shown to exhibit in-
creased transmissibility and escape from humoral immunity generated by previous infec-
tions and vaccines [1–4]. Importantly, accumulating clinical–epidemiological observations
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demonstrated that Omicron is associated with a milder disease compared with Delta and
earlier variants of concern (VOC) [2,5,6]. The decreased clinical severity of Omicron has
been partly attributed to the presence of pre-existing population immunity [2]. Addition-
ally, it was proposed that intrinsic viral factors could play a part in its milder disease
course. This notion was suggested by studies in animal models showing that Omicron
infection caused milder lung pathology [7–9] and by the reported inefficient replication
of Omicron in human alveolar organoids and ex vivo infected lung tissues [10,11]. It was
further shown that Omicron enters cells by a different route than other variants and does
not spread as efficiently by fusion, thereby limiting viral infection in the lungs, where cell
fusion plays a role in viral transmission [2,10–13]. These studies highlight the multifactorial
yet incompletely resolved mechanisms underlying the decreased pathogenicity of Omicron.

The innate immune response is known to play a key role in SARS-CoV-2 infection
outcomes [14–16]. We, therefore, reasoned that the early innate immune responses to
Omicron within the respiratory tract could potentially mediate its milder clinical severity.
To investigate the local-mucosal susceptibility and response to Omicron, we used our
recently established ex vivo SARS-CoV-2 infection models in native 3D human nasal and
lung tissues, which recapitulate viral infection in the upper and lower respiratory tract [17].
We identified distinctive patterns of susceptibility and antiviral interferon responses to
Omicron, compared to Delta and precedent VOC, which were most remarkable in lung
tissues, and provide new clues to the reduced clinical severity of Omicron.

2. Materials and Methods
2.1. Cells and Viruses

Simian kidney Vero E6 (ATCC CRL-1586), Calu-3 (ATCC HTB-55), Madin-Darby Ca-
nine Kidney (MDCK, ATCC CCL-34™) cells, and H1299-ACE2 overexpressed cells (kindly
provided by Dr. Alex Sigal) [1] were maintained in Dulbecco’s Modified Eagle Medium
(DMEM; Biological Industries, Beit Haemek, Israel), supplemented with 10% fetal bovine
serum, 2 mM L-Glutamine, 10 IU/mL Penicillin, and 10 µg/mL streptomycin (Biological
Industries, Beit Haemek, Israel). An early pandemic SARS-CoV-2 D614G isolate (GISAID
ID: EPI_ISL_10125580), an Alpha B.1.1.7 isolate (GISAID ID: EPI_ISL_10125211), a Delta,
B.1.617.2 isolate (GISAID ID: EPI_ISL_9837720) and an Omicron B.1.1.529 isolate (GISAID
ID: EPI_ISL_7869197) were isolated from positive nasopharyngeal swab samples. The Beta
variant B.1.351 (GISAID ID: EPI_ISL_678615) was generously provided by Dr. Alex Sigal.
All viruses were isolated and propagated (2 passages) in Calu-3 cells and sequence verified.
Influenza virus A(H1N1) pdm09 (NIBRG-121xp, Cat# 09/268; obtained from NIBSC, Pot-
ters Bar, UK) was propagated in MDCK cells. The virus titers of cleared infected cells and
infected tissue supernatants were determined by a standard plaque assay on H1299-ACE2
cells (SARS-CoV-2) [1] or MDCK cells (influenza virus).

2.2. Preparation and Infection of Nasal Turbinate and Lung Organ Cultures

Nasal turbinate and lung organ cultures were prepared and infected as previously de-
scribed [16]. In brief, inferior nasal turbinate tissues were obtained from consented patients
undergoing turbinectomy procedures, and lung tissues (the tumor-free margins) were ob-
tained from consented patients undergoing lobectomy operations. The study was approved
by the Hadassah Medical Center (#0296-20-HMO) and the Sheba Medical Center (#2832-15-
SMC) Institutional Review Boards. Fresh tissues were kept on ice until further processed
on the same day. The tissues were sectioned by a microtome (McIlwain Tissue Chopper;
Ted Pella, Inc., Redding, CA, USA) into thin slices (250 µm-thick slices; each encompassing
~10 cell layers), and incubated in 0.3 mL of enriched RPMI medium (Biological Industries,
Beit Haemek, Israel) (for the nasal turbinate tissues) or DMEM/F-12 medium (Biological
Industries, Beit Haemek, Israel) with MEM Vitamin Solution (Biological Industries, Beit
Haemek, Israel) (for the lung tissues), with 10% fetal bovine serum, 2.5 µg glucose/mL,
2 mM glutamine, 10 IU/mL penicillin, 10 µg/mL streptomycin, and 0.25 µg/mL ampho-
tericin B, at 37 ◦C, 5% CO2. The tissues were processed and infected on the same day (the
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day of harvesting; Day 0). For infection of the organ cultures, the tissues were placed in
48-well plates and inoculated with the respective virus (1 × 105 PFU/well in 0.3 mL) for
12 h to allow effective viral adsorption. For UV-inactivated virus exposure experiments
in the lung tissues, the medium containing 1 × 105 PFU in 0.3 mL was pre-exposed to
UV for 1 h and validated for complete loss of infectivity. Following viral adsorption, the
cultures were washed three times (in 0.3 mL of complete medium) and further incubated
for the duration of the experiment, with replacement of the culture medium every 2 to
3 days. Tissue viability was monitored by the mitochondrial dehydrogenase enzyme (MTT)
assay as previously described [17]. All infection and tissue processing experiments were
performed in a BSL-3 facility.

2.3. Ruxolitinib Treatment

The lung tissues were pretreated for 16 h with 5 µM ruxolitinib (TargetMol Chemicals
Inc., Boston, MA, USA) before infection and further incubation in the presence of 5 µM
ruxolitinib for the indicated duration of the experiments.

2.4. Whole-Mount Tissue Immunofluorescence

Tissues were fixed in 4% formaldehyde for 24 h, washed in PBS, and transferred
to 80% ethanol. The tissues were permeabilized by 0.3% Triton-X100 in PBS (PBST) and
further incubated with Animal-Free Blocker® (Vector laboratories, Cat# SP-5035-100) to
block nonspecific antibody binding, followed by incubation with the primary antibodies
in Animal-Free Blocker® at room temperature overnight. The tissues were then washed
4 times in PBST, incubated with the secondary antibodies in Animal-Free Blocker® at room
temperature overnight, washed 4 times with PBST, and incubated with 4′,6-diamidino-2-
phenylindole (DAPI, 10 uM, Abcam, Cambridge, UK, Cat# ab228549) as a nuclear stain.
The following primary antibodies were used: α-E-Cadherin (Mouse monoclonal, 1:100,
Abcam, ab1416; for the detection of epithelial cells), α-SARS-CoV-2 Nucleocapsid (Rabbit
monoclonal, 1:500, Abcam, ab271180). The following secondary antibodies were used:
Donkey anti-Mouse IgG pre-adsorbed, Alexa Fluor® 568 (1:250, Abcam, Cat# ab175700),
Goat anti-Rabbit IgG Highly Cross-Adsorbed Alexa Fluor Plus 647 (1:250, Thermo Fisher
Scientific, Waltham, CA, USA, Cat# A32733). For tissue clearing, stained preparations were
dehydrated with 100% Ethanol for 1h and later submerged and mounted in ethyl cinnamate
(99%; Sigma, Tokyo, Japan, Cat# 112372), as previously described [17]. Whole-mount tissues
were visualized using a Nikon A1R confocal microscope and were analyzed using NIS
Elements software (Nikon, Tokyo, Japan).

2.5. RNA Purification and Quantification

Infected- and mock-infected organ cultures and the respective supernatants were flash-
frozen and stored at−80 ◦C until assayed. RNA was extracted using NucleoSpin RNA Mini
kit for RNA purification (Macherey-Nagel, Düren, Germany, Cat #740955.250) according to
the manufacturer’s instructions and subjected to reverse transcription using High-Capacity
cDNA Reverse Transcription Kit (Thermo Fisher Scientific, Cat#). Quantitative real-time
(RT)-PCR was performed on a Quantstudio 3™ (Thermo Fisher Scientific) instrument, using
Fast SYBR™ Green Master Mix (Thermo Fisher Scientific, Cat# 4385614) or TaqMan™ Fast
Advanced Master Mix (Thermo Fisher Scientific, Cat# 4444558). The employed primers
and probe sequences are listed in Table S1.

2.6. Statistical Analysis

All data, presented as means ± standard errors of the mean (SEM), were analyzed
using a paired, two-tailed t-test in GraphPad Prism 9 software (GraphPad Software Inc.,
San Diego, CA, USA). p values of <0.05 were considered significant.
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3. Results
3.1. SARS-CoV-2 Omicron Exhibits Restricted Replication in Human Lung Tissues

Nasal and lung tissues maintained viable as integral organ cultures as described [17],
were infected in parallel with Omicron and Delta, using the same viral inoculum. Viral
replication kinetics were monitored between 2 and 72 h post-infection by quantitative
measurements of tissue-associated viral sub-genomic (sg)-mRNA and secreted infectious
virus progeny, as described [17]. To control for the expected tissue-to-tissue variations
(reflecting the natural diversity of different donors), we used five and four independent
lung and nasal tissues, respectively. Whereas Omicron and Delta demonstrated similar
replication kinetics in the nasal tissues (Figure 1A), the replication of Omicron in the lung
tissues was highly restricted compared to the productive replication of Delta (Figure 1B).
This relative replication restriction, which was most apparent at late times post-infection,
was confirmed by confocal microscopy analysis, showing the near-absence of infected cells
in Omicron-infected lung tissues (Figure 1C). The Delta replication kinetics in the lung
tissues was overall similar to those of D614G, Alpha, and Beta variants (Figure S1). Hence,
the restricted replication of Omicron in the lung tissues distinguished it from all precedent
SARS-CoV-2 VOC examined.
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Figure 1. SARS-CoV-2 Omicron and Delta replication kinetics in human nasal and lung tissues.
Nasal (A) and lung (B) organ cultures were (each) infected in parallel with Omicron and Delta
(105 PFU/well). The levels of tissue-associated viral sub-genomic (sg)-mRNA (left panels) and
infectious virus progeny released from the same infected tissues (right panels) represent mean
values (±SEM) of four and five independent nasal and lung tissues, respectively, each tested in four
biological replicates. (C) Representative confocal micrographs of whole-mount lung tissues at 72 h
post-infection. Whole-mount tissues were visualized using a Nikon A1R confocal microscope and
were analyzed using NIS Elements software (Nikon). Scale bar = 100 µm. **, p < 0.01. Statistics were
performed using multiple paired, two-tailed Student’s t-test.

3.2. Omicron Elicits Enhanced Antiviral Interferon Response in Human Respiratory Tissues

We previously showed that SARS-CoV-2 infection (the ancestral isolate USA-WA1/2020)
induced a robust innate immune response in nasal tissues, albeit a highly restricted innate
immune response in lung tissues [17]. In order to compare the innate immune response
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triggered by Omicron versus Delta, we examined the expression of interferons (IFNs) and
representative antiviral interferon-stimulated genes (ISG) in lung tissues upon parallel
infection with the two variants. The selected ISG included MX1, IFI6, ISG15, and IFIT1,
which were previously demonstrated to exhibit broad-acting antiviral activities and inhibit
SARS-CoV-2 replication [18,19]. Interestingly, employing RT-qPCR, we showed that Omi-
cron infection elicited a vigorous lung-tissue innate immune response, with substantial
induction of the expression of IFNλ and ISGs (Figure 2A). We could not detect upregulation
of IFNα and IFNβ in the infected tissues (data not shown). The strong interferon response
induced by Omicron was in sharp contrast to the low ISG response of the same lung tissues
to Delta. We also showed, in parallel infection experiments, that the restricted lung-tissue
response to Delta was common to all other VOC tested, including D614G, Alpha, and
Beta (whereas the same lung tissues still exhibited a strong response to influenza virus)
(Figure S2). In line with the enhanced interferon response triggered by Omicron in the lung
tissues, Omicron also induced some enhancement of the interferon response in infected
nasal tissues, compared with Delta (Figure S3). However, it was notable that the nasal
tissues (unlike the lung tissues) already exhibited a strong response to Delta (Figure S3),
which was generally consistent with our previous observations [17]. Thus, the enhancement
of the innate immune response to Omicron, compared to other VOC, was most remarkable
in the lung tissues, where the response to all other SARS-CoV-2 VOC was largely restricted
and less remarkable in the nasal tissues.
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In order to further define whether the relative enhancement of the innate response
to Omicron in the lung tissues was dependent on active viral replication, we compared
the induction of ISG following exposure to infectious versus UV-inactivated Omicron
and Delta virions. Surprisingly, a significant induction of ISG was observed following
exposure of the lung tissues to UV-inactivated Omicron (but not Delta) virions (Figure 2B),
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despite the absence of de-novo viral gene expression (Figure S4). This finding indicated
that the enhanced lung-tissue response to Omicron is already triggered, at least in part,
by virion structural component/s upon initial virus-cell contact or entry, preceding viral
gene expression.

3.3. Blocking the Innate Immune Signaling Restores Omicron Replication in the Lung Tissues

Finally, to assess the impact of the enhanced interferon response to Omicron on the
observed restriction of Omicron replication in the lung tissues, we pretreated the lung organ
cultures with the Janus kinase (JAK) 1/2 inhibitor ruxolitinib for 16 h before infection. We
found that ruxolitinib treatment significantly inhibited ISG induction following infection
(Figure S5). Notably, we found that ruxolitinib treatment significantly enhanced the levels
of Omicron replication in the lung tissues with a more than 100-fold increase in Omicron
infectious virus titers (bringing Omicron-to-near-Delta replication levels) (Figure 3). The
same treatment only minimally affected the already efficient lung-tissue replication of Delta
(with a ~5-fold increase in infectious virus titers). These results suggest that the enhanced
innate immune response to Omicron plays a role in the specific restriction of Omicron
(compared to other VOC) replication in the lung tissue.
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Figure 3. Ruxolitinib treatment restores Omicron replication in human lung tissues. Lung organ cul-
tures were pretreated with 5 uM Ruxolitinib (Ruxo) 16 h when indicated. Treated and non-treated tis-
sues were infected in parallel with Omicron and Delta (105 PFU/well). The levels of tissue-associated
viral sub-genomic (sg)-mRNA (left panel) and infectious virus progeny released from the same
infected tissue (right panel) represent mean values (±SEM) of four biological replicates. **, p < 0.01;
***, p < 0.001.

4. Discussion

Omicron infection was characterized by decreased clinical severity, raising the question
of whether early variant-specific interactions within the mucosal surfaces of the respiratory
tract could mediate its attenuated pathogenicity. Using our ex vivo infection models of
native human lung and nasal tissues, we show that the replication competence of Omicron
in lung tissues is highly restricted compared to Delta and precedent VOC, whereas it
remains relatively unchanged in nasal tissues. The high susceptibility of the nasal viral
entry site to Omicron may support person-to-person transmission, whereas the restricted
replication in the lungs could contribute to the milder clinical course of Omicron.

Our findings reveal a new potential mechanism, whereby the significantly enhanced
antiviral interferon responses to Omicron compared to earlier VOC, which was most
striking in the lung tissues (where the innate immune response to all other SARS-CoV-2
VOC was blunted), could limit its replication and potential pathogenicity in the lower
respiratory tract. The differences in the interferon response triggered by Omicron versus
Delta in the nasal tissues were less remarkable, as the interferon response in the nasal
tissues was already significantly induced by Delta and only mildly further induced by
Omicron (Figure S3). Accordingly, this additional modest increment of ISG induction did
not appear to be associated with significant differences in the replication capacity between
Delta and Omicron in the nasal tissues (Figure 1A).

Innate immune defenses were shown to play a crucial role in the control of SARS-
CoV-2 infection, and impaired local interferon responses in the respiratory tract have
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been associated with severe COVID-19 [14,15,18]. Hence, an augmented mucosal innate
immune response to Omicron could capture the virus at the upper respiratory tract and
limit viral replication and consequent pathology in the lungs. In addition to the upreg-
ulated ISG, the observed induction of IFNλ by Omicron in the nasal and lung tissues
(Figure 2 and Figure S3) is noteworthy, given the reported key role of mucosal IFNλ in
the protection against infection and excessive inflammation caused by SARS-CoV-2 vari-
ants (including Omicron) in animal models, and in the protection against life-threatening
COVID-19 in humans [16,20]. A similar effect in antiviral protection, as well as in the
prevention of excessive inflammatory damage, was reported for IFNλ in experimental
influenza infection [21]. Moreover, we directly showed that the enhanced lung tissue re-
sponse to Omicron (versus Delta) was already triggered by UV-inactivated virus (incapable
of viral gene expression) and that ruxolitinib pretreatment, reducing the ISG response to
Omicron, significantly enhanced Omicron replication in the lung tissues, bringing Omicron
replication to Delta replication levels (Figure 3). Collectively, our finding that the inter-
feron response to Omicron was already triggered by virion structural components upon
initial viral attachment/entry and that blocking the viral-induced innate immune signaling
restored Omicron replication in the lung tissues imply a causative relation between the
enhanced early antiviral response triggered by Omicron (compared to other VOC) and the
restricted spread of Omicron in lung tissues. The relative early enhancement of the innate
immune response may be related to the predominant use of the endocytic entry pathway by
Omicron (as opposed to Delta) [2,10,12,13], which could lead to early activation of unique
endosomal Toll-like receptors. The mechanism by which Omicron triggers the enhanced
interferon response in human respiratory tissues remains to be elucidated.

Our study has several limitations. Native respiratory tissues in organ culture are
relatively short-lived (up to 7 days in culture). Thus, our ex vivo infection models mirror
early events of infection and do not address the late phase of viral transmission or the
combined effects of the local and systemic immune responses. Nonetheless, our studies
recapitulate SARS-CoV-2 infection and innate immune response within the authentic multi-
cellular complexity of both the upper and the lower human respiratory tract, containing
tissue-specific compositions of cell types, including immune cells and extracellular matrix.
Currently, we are not aware of studies that have examined the distinctive innate tissue
responses to Omicron as related to its altered replication phenotype in the lower respiratory
tract. Such data are critical to better understand and address the evolution of SARS-CoV-2
into a less virulent human-tropic virus.

In summary, our studies in native human nasal and lung tissues infected ex vivo
reveal a significantly enhanced interferon response to Omicron compared to precedent
SARS-CoV-2 VOC. The findings imply that the early induction of antiviral ISG, which was
most prominent in lung tissues (where it was specific to Omicron), could play a part in the
restricted replication and pathology of Omicron in the lungs. They provide insights into
the attenuated pathogenicity of Omicron and for further studies of pathways involved in
the enhanced mucosal innate immune responses to this evolving variant.
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