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Abstract. The aim of the present study was to identify a 
vascular invasion-associated gene signature for predicting 
prognosis in patients with hepatocellular carcinoma (HCC). 
Using RNA-sequencing data of 292 HCC samples from The 
Cancer Genome Atlas (TCGA), the present study screened 
differentially expressed genes (DEGs) between patients with 
and without vascular invasion. Feature genes were selected 
from the DEGs by support vector machine (SVM)-based 
recursive feature elimination (RFE-SVM) algorithm to build 
a classifier. A multi‑gene signature was selected by L1 penal-
ized (LASSO) Cox proportional hazards (PH) regression 
model from the feature genes selected by the RFE-SVM to 
develop a prognostic scoring model. TCGA set was defined 
as the training set and was divided by the gene signature 
into a high-risk group and a low-risk group. Involvement of 
the DEGs between the two risk groups in pathways was also 
investigated. The presence and absence of vascular invasion 
between patients of training set was 175 DEGs. A classifica-
tion model of 42 genes performed well in differentiating 
patients with and without vascular invasion on the training set 
and the validation set. A 14-gene prognostic model was built 
that could divide the training set or the validation set into two 
risk groups with significantly different survival outcomes. A 
total of 762 DEGs in the two risk groups of the training set 
were revealed to be significantly associated with a number 
of signaling pathways. The present study provided a 42-gene 
classifier for predicting vascular invasion, and identified a 
vascular invasion-associated 14-gene signature for predicting 
prognosis in patients with HCC. Several genes and pathways 
in HCC development are characterized and may be potential 
therapeutic targets for this type of cancer.

Introduction

Hepatocellular carcinoma (HCC) is a major type of primary 
liver cancer (1). The mortality rate is increasing, and patients 
with the tumor present with a poor prognosis (2). An increasing 
number of studies have demonstrated that vascular invasion 
is an adverse prognostic factor in HCC (3-5). Furthermore, 
vascular invasion is an independent predictive factor of 
long-term survival in patients with early-stage HCC, and 
is significantly associated with intrahepatic metastasis (6). 
Hence, it is extremely necessary to differentiate patients with 
HCC that present with vascular invasion from those patients 
with HCC that do not present with vascular invasion, so as to 
improve survival time.

A risk classification model of micro-vascular invasion 
based on histopathological features has been introduced 
for predicting the prognosis of patients with HCC (7). 
Differentially expressed genes (DEGs) in HCC tissue samples 
in the presence or absence of vascular invasion have been 
studied in order to extract multi-gene signatures for detecting 
vascular invasion (8,9). High-throughput technologies allow 
for the development of a classification model, wherein vascular 
invasion information can be derived from molecular features. 
The Cancer Genome Atlas (TCGA) provides comprehen-
sive maps of genomic alterations in various types of cancer 
(https://portal.gdc.cancer.gov/). A recent study derived 
a 16-miRNA-based classifier from the analysis of micro 
(mi)RNA and mRNA expression data derived from TCGA, 
which could effectively identify vascular invasion and predict 
overall survival (OS) (10). These studies indicated the feasi-
bility of these multi-gene signatures for prediction of cancer 
prognosis. Nevertheless, more efforts should be made in order 
to generate more reliable and accurate prognostic models 
based on feature genes of vascular invasion.

The present study analyzed HCC RNA-sequencing data 
from TCGA in order to identify feature genes using a recur-
sive feature elimination (RFE) method (11), thus constructing 
a support vector machine (SVM) classifier for separating 
patients with vascular invasion from patients without vascular 
invasion. Furthermore, L1 penalized (LASSO) Cox propor-
tional hazards (PH) regression model was used to determine 
prognostic genes from the identified feature genes of vascular 
invasion so as to develop a prognostic scoring model. The 
performance of the classifier and the prognostic model was 
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tested on an independent set. In addition, a function analysis 
was performed in order to provide further insights into the 
molecular mechanisms underlying HCC.

Materials and methods

Data resource. The present study obtained the RNA- 
sequencing data of 373 HCC samples from TCGA portal 
based on Illumina HiSeq 2000 RNA Sequencing platform 
(Download date: 18th, October, 2018). Among these samples, 
292 had clinical information of vascular invasion and survival 
information, including survival time and survival status, 
and were therefore selected as the training set (TCGA set). 
Furthermore, the GSE10141 (12) dataset was downloaded 
from Gene Expression Omnibus (GEO; https://www.ncbi.
nlm.nih.gov/geo/) at the National Center for Biotechnology 
Information (NCBI; https://www.ncbi.nlm.nih.gov/) based on 
the GPL5474 Human 6k Transcriptionally Informative Gene 
Panel platform, including the microarray gene expression data 
of 80 HCC tissue samples with survival information. Only 62 
HCC samples had vascular invasion, and these were selected 
as the validation set.

The present study performed uni- and multivariate Cox 
regression analyses in order to analyze the associations 
between clinical factors and OS in the training set using 
survival package v2.44-1.1 (13) of R language (http://biocon-
ductor.org/packages/survivalr/). The significant clinical factors 
(log-rank P<0.05) were selected as the cut-off to classify the 
training set.

Differential expression analysis. Data from the TCGA and 
GEO databases were normalized using R software (version 
3.4.1; https://www.r-project.org/). Following data normal-
ization, the present study performed a differential gene 
expression analysis using HCC samples with and without 
vascular invasion in the training set using the limma (14) 
package (version 3.34.7; https://bioconductor.org/pack-
ages/release/bioc/html/limma.html) of R software. The genes 
with false discovery rate (FDR) <0.05 and |log2 FC|>0.263 
were selected and subsequently underwent a two-way 
hierarchical clustering analysis based on centered pearson 
correlation (15) algorithm using pheatmap package (16) 
(version 1.0.8) of R language (version 3.34.7). The results 
were presented in a heatmap.

Development of an SVM classifier. The present study initially 
performed a Cox regression analysis to investigate the 
associations between the identified DEGs and OS. From the 
significant DEGs with log‑rank P<0.05, the present study then 
identified the optimal combination of feature genes using an 
RFE (17) algorithm in the caret (18) package (version 6.0-79; 
https://cran.r-project.org /web/packages/caret) of R language, 
which was then used to develop an SVM classifier using the 
SVM (19) function with a sigmoid kernel.

In both the training set and the validation set, the robust-
ness of the established SVM classifier was evaluated using 
concordance index (C-index) (20), Brier score (21), log-rank 
P-value of cox-PH regression, sensitivity, specificity, posi-
tive predictive value (PPV), negative predictive value (NPV) 
and area under receiver operating characteristic curve 

(AUROC). C-index and Brier score was calculated using the 
survcomp version 3.9 (22) package (http://www.bioconductor.
org/packages/release/bioc/html/survcomp.html) of R language 
(version 3.4.1), which are two metrics for assessing accuracy. 
Kaplan-Meier estimate was applied to depict survival time 
using the survival package in R language. The Log-rank 
P-value for the difference in OS time between the two groups 
was calculated. AUROC ranged from 0.5 to 1, with a higher 
value implying better performance. Sensitivity, specificity, 
PPV and NPV of ROC curves were computed using pROC 
v1.15.3 (23) package of R language (https://cran.r-project.
org/web/packages/pROC/index.html).

Development and validation of a prognostic scoring model. 
The present study further utilized the feature genes to fit a 
LASSO Cox-PH regression model (24) in order to determine 
the optimal panel of genes for prognosis using the penalized 
package (v0.9-51) of R language. Based on Cox-PH regression 
coefficients and expression levels of the identified optimal 
genes, a prognostic scoring model was built using the following 
formula:

Risk score=∑coefDEGs x ExpDEGs

CoefDEGs represents Cox‑PH regression coefficients of DEGs; 
ExpDEGs represents expression levels of DEGs.

Risk score was calculated for each sample in the training 
set. Samples in the training set were then split into a high-risk 
group and a low-risk group according to median risk score 
(0.0663803). Kaplan-Meier survival curves were plotted 
for both risk groups using survival package (version 2.41-1) 
of R language, and OS of the two groups was compared by 
log-rank test. Similarly, samples in the validation set were 
divided into a high-risk group and a low-risk group using the 
median risk score of the validation set (0.132434) so as to test 
the prognostic ability of the prognostic scoring model in this 
set. The present study further validated the results by using 
SurvExpress, which is an online biomarker validation tool 
for cancer gene expression data (25). A total of four datasets, 
including GSE10143 (12), GSE10186 (26), TCGA-Liver-cancer 
and LIHC-TCGA-Liver HCC were included into SurvExpress.

Figure 1. Kaplan-Meier curves of overall survival time of patients with or 
without vascular invasion of The Cancer Genome Atlas set. HR, hazard ratio.
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Stratified analysis. In both the high and low-risk groups of 
the training set, the present study investigated the associations 

between clinical factors and OS by performing a Cox regression 
analysis with the survival package in R language (version 2.41-1).

Table I. Uni-and multivariate Cox regression analysis of the training set.

 Uni-variable cox Multi-variable cox
 ---------------------------------------------------------- -----------------------------------------------------------
Clinical characteristics TCGA (n=292) HR (95% CI) P-value HR (95% CI) P-value

Age, years, mean ± SD 59.85±12.92 1.017 (0.999-1.035) 0.051 - -
sex (male/female) 194/98 0.731 (0.474-1.127) 0.154 - -
Pathological M (M0/M1/-) (28) 220/3/69 4.91 (1.523-15.84) 0.003 3.848 (1.089-13.588) 0.036
Pathological N (N0/N1/-) 210/2/80 1.602 (0.221-2.610) 0.638 - -
Pathological T (T1/T2/T3/T4/-) 160/75/48/8/1 1.538 (1.23-1.923) <0.001 0.607 (0.217-1.699) 0.342
Pathological stage (I/II/III/IV/-) 150/72/48/4/18 1.473 (1.153-1.881) 0.003 2.177 (0.797-5.944) 0.129
Histological grade (G1/G2/G3/G4/-) 36/141/101/12/2 1.19 (0.889-1.593) 0.243 - -
Virus infection (HBV/HCV/Mixed/-) 50/10/35/197 1.167 (0.801-1.702) 0.420 - -
Vascular invasion (yes/no) 102/190 1.353 (1.087-2.098) 0.009 1.678 (1.195-2.962) 0.037
Recurrence (yes/no/-) 119/156/17 1.343 (0.843-2.141) 0.213 - -
Status (dead/alive) 87/205 - - - -
Overall survival time, months, mean ± SD 26.52±24.43 - - - -

TCGA, The Cancer Genome Atlas; SD, standard deviation; M, metastasis; N, node; T, tumor; HBV, hepatitis B virus; HCV, hepatitis C virus; 
HR, hazard ratio; CI, confidence interval; ‑, information unavailable.

Figure 2. DEGs of patients with presence and absence of vascular invasion of the training set. (A) Volcano plot of 175 DEGs. Green spots represent DEGs; red 
horizontal dash line implies FDR <0.05; two red vertical dash lines indicate |logFC|>0.263. (B) Kernel density plot of log2 (FC) of 175 DEGs. (C) Heatmap 
for two-way hierarchical clustering of samples based on expression of DEGs. The red and green represent upregulated and downregulated genes, respectively. 
DEGs, differentially expressed genes; FDR, false discovery rate; FC, fold change.
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Functional analysis. The cases in the training set were divided 
into high- and low-risk groups according to the risk score of 
the gene signature. The present study then screened for DEGs 

in the two risk groups using a strict cut-off at FDR<0.05 and 
|log2FC|>0.263. The signficant DEGs were selected for the 
pathway enrichment analysis using Gene Set Enrichment 

Figure 3. The (A) Accuracy and (B) RMSE curves of the optimal gene combination screened by recursive feature elimination algorithm. The horizontal axis 
represents the number of gene variables, and the vertical axis represents cross-validation accuracy and RMSE, and the marked position is the number of genes 
corresponding to the optimal value. Performance of the 42‑gene classifier on (C) the training set and (D) the validation set. Left images: Scatter plots presenting 
the prediction results by the 42‑gene classifier. Black round spots represent samples from patients without vascular invasion; red triangles represent samples 
from patients with vascular invasion. Right images: Confusion matrix for the classification results. The X and Y axes represent the coordinates corresponding 
to the position in a two-dimensional plane generated by SVM. The top-left corner represents true positive rate (number), the top-right corner represents false 
negative rate (number), the left bottom represents false positive rate (number) and the right bottom represents true negative rate (number). SVM, support vector 
machine; RMSE, root-mean-square error.
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Analysis (27) (GSEA, version 3.0; http://software.broadinsti-
tute.org/gsea/index.jsp). P<0.05 was considered to indicate a 
statistically significant result.

Results

Vascular invasion is an independent predictor of prognosis. 
The present study performed uni- and multivariate Cox 
regression analyses in order to analyze the associations 
between clinical factors and OS in the training set using the 
survival package in R language. As presented in Table I, 
vascular invasion and pathological M stage (28) were identi-
fied as independent predictors of prognosis in the univariate 
and multivariate analysis (P<0.05). However, there were only 
three samples at pathological M1 stage, which was an insuf-
ficient amount for accurately assessing prognostic value of 
pathological M stage. Therefore, the present study classified 
all samples of the training set into two groups according to 
vascular invasion. Patients without vascular invasion (n=190) 
had significantly better survival time compared with patients 
with vascular invasion (n=102; P=8.609x10-3; Fig. 1).

DEGs were screened between patients with and without 
vascular invasion. Following the removal of genes with 
a median expression level of 0, a total of 13,812 genes were 
inputted into the Limma package and among them, 175 signifi-
cant DEGs in patients both with and without vascular invasion 
in the training set that satisfied the cut‑off threshold (FDR<0.05 
and |log2FC|>0.263) were identified (Table SI), consisting of 62 
(35.43%) downregulated genes and 113 (64.57%) upregulated 
genes in the HCC samples with vascular invasion (Fig. 2A-C).

SVM analysis. Of the aforementioned 175 DEGs, 51 were 
significantly associated with OS (log‑rank P<0.05) in the Cox 
regression analysis (Table SII). For the purpose of obtaining 
the optimal feature genes for predicting vascular invasion 
in HCC, the present study utilized an SVM-RFE algorithm 
based on the 51 prognosis-associated genes. Maximal predic-
tion accuracy (0.873) (Fig. 3A) and minimal root-mean-square 
error (0.1038) (Fig. 3B) were reached when using a 42-gene 
combination (Table II).

The SVM classifier was built with the 42‑gene combina-
tion and its performance was assessed in both the training 
set and the validation set. A scatter plot and confusion matrix 
for the training set or the validation set classified by the clas-
sifier are presented in Fig. 3C and D. Table III demonstrates 
that both sets generated high C-index scores (>0.75), low 
Brier scores (<0.1) and significant average log‑rank P‑values 
(2.97x10-08; 0.0264) in OS difference between the patients 
with and without vascular invasion (Fig. 4). AUROC of the 
two sets were 0.970 and 0.942, respectively (Table III; Fig. 4). 
The sensitivity, specificity, PPV and NPV values are presented 
in Table III. These results suggest that the SVM classifier was 
able to classify the samples effectively.

Prognostic model based on a 14‑gene signature. The present 
study also used the 42 feature genes to create a LASSO Cox-PH 
regression model. When the maximal value of cross-validation 
likelihood (-498.517) was achieved, the optimal lambda value 
was 13.049, and the optimal panel of 14 genes was obtained 

(Table IV), including Wnt family member 1 (WNT1), crystallin 
α A (CRYAA), RAS like estrogen regulated growth inhibitor 
like (RERGL), hydroxysteroid 17‑Beta dehydrogenase 13 
(HSD17B13), scinderin (SCIN), premature ovarian failure 
(POF)1B, erythropoietin (EPO), USH1 protein network 
component harmonin (USH1C), ADP‑ribosyltransferase 5 

Table II. Combination of 42-genes.

Gene logFC P-value FDR

DNMT3L -0.457857972 4.250x10-05 0.000344393
WNT1 -0.440653373 0.00229823 0.018624233
AVPR2 -0.337010196 0.000130506 0.001057586
CRYAA -0.327349605 5.220x10-05 0.000423239
ADRA1A -0.323457976 0.000132 0.001069691
RERGL -0.307031974 0.00027205 0.002204622
HSD17B13 -0.303883897 4.350x10-05 0.00035246
CRHBP -0.282544406 0.000378787 0.003069588
GPR17 -0.27487125 0.001557011 0.012617592
AP1M2 0.265012128 0.002298097 0.018623151
CCDC74B 0.26607111 0.005538491 0.04488242
EPHX4 0.273106635 0.001616394 0.013098814
MYLK2 0.277944797 0.001898397 0.015384094
S100P 0.280211942 0.000796024 0.006450761
SCIN 0.286745667 0.001401359 0.011356228
GULP1 0.293405465 0.002064432 0.016729591
TMC5 0.304348871 0.001717824 0.013920779
HOXD9 0.327961519 4.660x10-05 0.000377344
DHDH 0.331147822 0.001303337 0.01056189
RUNDC3A 0.344356975 0.001049184 0.0085023
FXYD3 0.347111205 0.002610568 0.021155333
FAM90A1 0.349492054 0.001789546 0.014501995
POF1B 0.353413663 0.00098377 0.007972208
FAM163A 0.357671188 0.001474436 0.01194843
KCNN1 0.365217375 0.001202203 0.009742322
TFAP2A 0.365567331 6.750x10-05 0.000547399
COL24A1 0.382367663 0.002049211 0.016606245
DIRAS2 0.405965625 0.000995196 0.0080648
FRMD1 0.411164402 0.004146525 0.033602313
EPO 0.413544952 0.000992878 0.008046009
USH1C 0.417142972 0.000668281 0.005415564
CA9 0.422098465 0.001719337 0.013933041
ART5 0.423955728 0.005437747 0.044066018
MMP12 0.43064025 0.000852896 0.006911633
TRIM54 0.438512907 0.001013864 0.008216081
PPFIA4 0.467076549 5.000x10-05 0.000405366
SLC35F3 0.503285506 0.002228769 0.018061337
ELOVL3 0.524990121 0.000117912 0.00095553
NPTX1 0.532157704 0.001637864 0.013272803
ZNF695 0.601449278 0.000219446 0.001778327
HOXD10 0.633083055 2.580x10-05 0.000209174
PPP2R2C 0.685073697 1.090x10-05 8.810x10-05

FC, fold change; FDR, false discovery rate.
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Figure 4. Kaplan‑Meier and receiver operating characteristic curves for (A) Training set and (B) the validation set classified by the 42‑gene classifier. 
TCGA, The Cancer Genome Atlas; HR, hazard ratio; AUC, area under the curve.

Table III. Performances of the SVM classifier on the training and validation sets.

 Overall survival ROC curve
 ------------------------------------------------------------------------------------ -----------------------------------------------------------------------------------------------------------
Datasets C‑index Brier score Log‑rank P‑value AUROC Sensitivity Specificity PPV NPV

Training set 0.814 0.0394 <0.0001 0.970 0.814 0.926 0.856 0.903
(TCGA, N=292)
Validation set 0.757 0.0884 0.0264 0.942 0.824 0.889 0.737 0.930
(GSE10141, N=62)

SVM, support vector machine; TCGA, The Cancer Genome Atlas; ROC, receiver operating characteristic curve; AUROC, area under receiver 
operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value.
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(ART5), matrix metalloproteinase (MMP)12, tripartite motif 
containing 54 (TRIM54), solute carrier family 35 member F3 
(SLC35F3), homeobox D (HOXD)10 and protein phosphatase 
2 regulatory subunit Bgamma (PPP2R2C). The following 
results were obtained using the risk score formula:

Risk score=(-0.2500) x ExpWNT1 + (-0.0002) x ExpCRYAA + 
(-0.0263) x ExpRERGL + (-0.0153) x ExpHSD17B13 + (0.0852) x 
ExpSCIN + (0.0756) x ExpPOF1B + (0.0616) x ExpEPO + (0.0106) x 
ExpUSH1C + (0.0134) x ExpART5 + (0.0236) x ExpMMP12 + (0.0454) 
x ExpTRIM54+ (0.0124) x ExpSLC35F3 + (0.1010) x ExpHOXD10 + 
(0.0047) x ExpPPP2R2C.

Based on the median risk score, all samples of the 
training set were divided into a high-risk group (n=146) and 
a low-risk group (n=146). As presented in Fig. 5A, the OS 
time was significantly different between the two risk groups 
(P=1.062x10-08), with an AUC value of 0.959. OS time was 
significantly different between the high‑risk group (n=40) and 
the low-risk group (n=40) in the validation set (P=0.0250), 
with an AUC value of 0.917 (Fig. 5B). These observations 
prove the predictive robustness of the 14-gene signature.

For validation of SurvExpress, five datasets, including 
GSE10143, GSE17856, GSE10186, TCGA-Liver-Cancer, and 
LIHC-TCGA-Liver HCC associated with HCC were included 
for validation in SurvExpress. The 51 screened candidate genes 
were inputted and the results revealed that the OS times were 
all significantly different between the high‑risk group and the 
low-risk group in GSE10143, GSE10186, TCGA-Liver-cancer 
and LIHC-TCGA-Liver HCC (Fig. 6). This result supported 
the reliability of the gene signature.

Stratified analysis. The present study further investigated 
the associations between the clinical factors and OS in the 
low-risk group and the high-risk group of the training set by 
performing Cox regression analyses. Vascular invasion was 

significantly associated with OS time in both risk groups 
(P=0.034 and P=1.50x10-05, respectively; Table V; Fig. 7).

Identification and pathway analysis of DEGs between the 
two risk groups in the training set. In the training set, 599 
upregulated genes and 163 downregulated genes were identi-
fied in the high‑risk group compared with the low‑risk group. 
These genes were significantly involved in pathways of ‘retinol 
metabolism’, ‘drug metabolism other enzymes’, ‘drug metabo-
lism cytochrome P450’, ‘peroxisome proliferator‑activated 
receptor (PPAR) signaling pathway’, ‘primary bile acid 
biosynthesis’, ‘steroid hormone biosynthesis’ and ‘histidine 
metabolism pathways’ (Table VI).

Discussion

HCC is an aggressive malignancy characterized by high inci-
dence rates of recurrence and metastasis (29). Vascular invasion 
is an unfavorable prognostic factor for patients with HCC (30). 
Therefore, unraveling the underlying molecular landscape of 
vascular invasion is of significance for the prognosis of HCC. In 
the present study, a total of 175 DEGs were identified between 
patients with the presence and absence of vascular invasion. 
An SVM classifier was built that consisted of 42 feature genes 
by implementing an RFE-SVM algorithm. In both the training 
and validation sets, the classifier had high C‑index values, low 
Brier scores and significant log‑rank P‑values, indicating good 
performances in separating patients with vascular invasion 
from patients without vascular invasion. Furthermore, through 
using a LASSO Cox-PH model, a 14-gene prognostic signature 
was obtained and consequently, a prognostic scoring model was 
established. The 14-gene signature was able to predict those 
patients with HCC that would have a shorter survival time, as 
evidenced by the result that OS time was significantly different 
between the predicted high-risk patients and the predicted 
low-risk patients. T prognostic performance of the 14-gene 
signature was successfully confirmed in the validation set.

The 14-gene prognostic combination included WNT1, 
CRYAA, RERGL, HSD17B13, SCIN, POF1B, EPO, USH1C, 
ART5, MMP12, TRIM54, SLC35F3, HOXD10 and PPP2R2C. 
Proto-oncogene protein Wnt-1 encoded by the WNT1 gene 
has been demonstrated as upregulated in HCC, acting as a 
direct target of miR-122 (31). RERGL is a member of the RAS 
superfamily of GTPases that participates in regulating several 
biological processes, such as cell proliferation, differentiation 
and apoptosis (32). There was one HSD17B13 protein, namely 
17β-HSD type 13, that was downregulated in HCC (33). 
There is evidence to suggest that HSD17B13 suppresses HCC 
progression by delaying the G1/S phase transition of HCC 
cells (34). Furthermore, HSD17B13 is a novel liver‑specific 
protein associated with lipid droplet, and may be a promising 
biomarker of liver cancer (35). SCIN encodes scinderin, which 
is an actin-severing protein of the gelsolin superfamily. It acts 
as a regulator of HCC cell apoptosis and growth, and has been 
identified as a transcriptional target of tumor suppressor factor 
breast cancer metastasis-suppressor 1 (36). It has long been 
established that the EPO/EPO-receptor plays an important 
role in angiogenesis and progression of HCC (37). EPO protein 
expression is positively correlated with vasculogenic mimicry 
in HCC, and has been identified as an independent predictor 

Table IV. Prognostic signature with 14 genes.

Gene Coefficient Hazard ratio (95%CI) P‑value

WNT1 -0.2500  0.602 (0.459-0.789) 2.400x10-04

CRYAA -0.0002  0.108 (0.0092-0.493) 4.963x10-02

RERGL -0.0263  0.463 (0.244-0.854) 4.533x10-02

HSD17B13 -0.0153  0.586 (0.176-0.906) 4.688x10-02

SCIN 0.0852  1.115 (1.086-1.267) 4.939x10-02

POF1B 0.0756  1.085 (1.001-1.178) 1.513x10-02

EPO 0.0616  1.068 (1.013-1.152) 4.897x10-02

USH1C 0.0106  1.043 (1.001-1.071) 4.897x10-02

ART5 0.0134  1.047 (1.035-1.171) 4.231x10-02

MMP12 0.0236  1.051 (1.048-1.165) 3.410x10-02

TRIM54 0.0454  1.059 (1.028-1.164) 2.392x10-02

SLC35F3 0.0124  1.057 (1.029-1.203) 3.974x10-02

HOXD10 0.1010  1.448 (1.127-1.924) 3.069x10-03

PPP2R2C 0.0047  1.004 (1.002-1.085) 4.926x10-01

CI, confidence interval.
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of prognosis in patients with HCC (38). Furthermore, EPO is 
upregulated in HCC and could promote HCC cell prolifera-
tion through translocation of its specific receptor induced by 
hypoxia (39). MMP12 belongs to the MMP family implicated 
in the degradation of the extracellular matrix. It is upregulated 
in HCC and is an independent predictive factor for OS in 
patients with HCC (40,41). TRIM54 is a member of the TRIM 
protein family. Several members in the TRIM family have 
been reported to be involved in biological processes, such as 
cell proliferation, differentiation and apoptosis, and may play 
a role in cancer initiation and progression (42). However, to the 
best of our knowledge TRIM54 has not been reported previ-
ously. HOXD10, a member of the Abd-B homeobox family, 

exhibits decreased expression levels in HCC and serves as 
a tumor-suppressor gene through prohibiting extracellular 
signal-regulated kinase signaling (43). PPP2R2C encodes 
serine/threonine-protein phosphatase 2A 55 kDa regulatory 
subunit B γ isoform, and has been identified as upregulated in 
HCC (44). To the best of our knowledge, there are little studies 
that focus on the function of CRYAA, RERGL, POF1B, POF1B, 
USH1C, TRIM54 and SLC35F3 in HCC. The results of the 
present study indicate that the 14 vascular invasion-associated 
genes may be prognostic biomarkers of HCC.

Another aim of the present study was identifying the 
potential roles of DEGs between the high- and low-risk groups 
of the training set. There were 762 DEGs between the two 

Figure 5. Kaplan-Meier and receiver operating characteristic curves for the training set (A) and the validation set (B) divided by the 14-gene signature. 
TCGA, The Cancer Genome Atlas; HR, hazard ratio; AUC, area under the curve.
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risk groups, which were significantly involved in a number of 
signaling pathways, such as ‘retinol metabolism’, ‘drug metab-
olism cytochrome P450’, and ‘PPAR signaling pathway’. The 

association between retinol metabolism and HCC has been 
demonstrated previously and a synthetic retinoid has been 
indicated to prevent HCC recurrence (45). Drug-metabolizing 

Figure 6. Validation analysis of the gene signature by SurvExpress. (A) GSE10143, (B) GSE10186, (C) LIHC-TCGA-Liver hepatocellular carcinoma and 
(D) TCGA‑liver cancer datasets. CI, confidence interval.

Figure 7. Kaplan-Meier and receiver operating characteristic curves for patients with and without vascular invasion in (A) the low-risk group and (B) the 
high-risk group of the training set.
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cytochrome P450 enzyme activities are severely disrupted 
in HCC (46). The PPAR signaling pathway plays a part in 
tumorigenesis and tumor progression via different metabolic 
pathways: Glycolysis/gluconeogenesis, lipid, glycerolipid and 
glycerophospholipid metabolism, protein synthesis and degra-
dation and purine metabolism (47). These findings reveal the 
critical roles of these pathways in HCC.

There are some limitations in the present study; though the 
14-gene prognostic signature has been validated by an inde-
pendent dataset, the expression levels of these 14 genes have 
not been confirmed by individual gene expression experiments.

In summary, using TCGA data, the present study defined 
a classifier of 42 feature genes for classification of patients 
with HCC with and without vascular invasion, and identified a 
vascular invasion-associated 14-gene prognostic signature for 
HCC. Several genes and pathways have been revealed to be 
critical for HCC. These results further the current knowledge 

on the molecular mechanisms underlying HCC and may aid 
in the development of personalized treatment for patients with 
HCC. Large-scale studies are required in order to further 
validate the results of the present study.
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Table V. Results of Cox regression analysis for the high- and low-risk groups of The Cancer Genome Atlas set.

 Low risk group High risk group
 --------------------------------------------------------------------- -----------------------------------------------------------------------
Clinical characteristics HR (95% CI) P-value HR (95% CI) P-value

Age, years, mean ± SD 1.018 (0.986-1.052) 0.273 1.012 (0.992-1.032) 0.257
Sex (male/female) 0.568 (0.246-1.308) 0.178 1.129 (0.676-1.886) 0.643
Pathological M (M0/M1/-) (28) 8.721 (1.090-69.77) 0.138 3.227 (0.770-13.520) 0.090
Pathological N (N0/N1/-) 3.01 (1.052-33.22) 0.763 1.429 (0.195-10.490) 0.724
Pathological T (T1/T2/T3/T4/-) 1.527 (0.955-2.443) 0.072 1.240 (0.914-1.681) 0.165
Pathological stage (I/II/III/IV/-) 1.346 (0.805-2.252) 0.254 1.215 (0.885-1.668) 0.228
Histological grade (G1/G2/G3/G4/-) 1.115 (0.630-1.971) 0.709 0.916 (0.642-1.307) 0.629
Virus infection (HBV/HCV/Mixed/-) 2.333 (1.962-5.655) 0.038 0.932 (0.613-1.416) 0.741
Vascular invasion (yes/no) 2.478 (1.044-5.885) 0.034 3.446 (1.913-6.209) <0.001
Recurrence (yes/no/-) 1.569 (0.670-3.672) 0.296 0.924 (0.526-1.623) 0.783

M, metastasis; T, tumor; N, node; HBV, hepatitis B virus; HCV, hepatitis C virus; HR, hazard ratio; CI, confidence interval.

Table VI. Significant signaling pathways.

   Normal
Pathway ES NES P-value FDR Count  Gene

Retinol metabolism -0.7987  -2.3043 0 0 6 CYP4A22, CYP26A1, CYP3A43, CYP2A7, 
      CYP2A6, CYP2A13
Drug metabolism other enzymes -0.9022  -2.2834  0 0 4 CYP3A43, CYP2A7, CYP2A6, CYP2A13
Drug metabolism cytochrome P450 -0.9011  -2.0480  0 0.0047  4 CYP3A43, CYP2A7, CYP2A6, CYP2A13
PPAR signaling pathway -0.7106  -1.9354  0.0026  0.0121  3 CYP4A22, CYP8B1, ACADL
Primary bile acid biosynthesis -0.9631  -1.9038  0 0.0124  3 CYP8B1, AKR1D1, CYP7A1
Steroid hormone biosynthesis -0.5989  -1.8162  0.0084  0.0188  6 AKR1D1, CYP7A1, HSD3B2, HSD3B1, 
      CYP11A1, CYP3A43
Histidine metabolism -0.8709  -1.6875  0.01 0.0468  3 HDC, CNDP1, UROC1

ES, enrichment score; NES, normalized enrichment score; count of genes, the number of genes enriched in a pathway; FDR, false discovery 
rate.
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