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Mild traumatic brain injury (mTBI) is usually caused by a bump, blow, or jolt to the

head or penetrating head injury, and carries the risk of inducing cognitive disorders.

However, identifying the biomarkers for the diagnosis ofmTBI is challenging as evident

abnormalities in brain anatomy are rarely found in patients with mTBI. In this study,

we tested whether the alteration of functional network dynamics could be used as

potential biomarkers to better diagnose mTBI. We propose a sparse dictionary learn-

ing framework to delineate spontaneous fluctuation of functional connectivity into

the subject-specific time-varying evolution of a set of overlapping group-level sparse

connectivity components (SCCs) based on the resting-state functional magnetic

resonance imaging (fMRI) data from 31 mTBI patients in the early acute phase (<3

days postinjury) and 31 healthy controls (HCs). The identified SCCs were consistently

distributed in the cohort of subjects without significant inter-group differences in

connectivity patterns. Nevertheless, subject-specific temporal expression of these

SCCs could be used to discriminate patients with mTBI from HCs with a classifica-

tion accuracy of 74.2% (specificity 64.5% and sensitivity 83.9%) using leave-one-out

cross-validation. Taken together, our findings indicate neuroimaging biomarkers for

mTBI individual diagnosis based on the temporal expression of SCCs underlying

time-resolved functional connectivity.
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1 INTRODUCTION

The vast majority (70%−90%) of traumatic brain injury cases are

mild and include those diagnosed as concussions (Cassidy et al.,

2004; Roozenbeek et al., 2013). The actual number of mild traumatic

brain injury (mTBI) cases may be much higher than those reported

by hospitals due to generic symptoms in the early stage, such as

headaches, dizziness, fatigue, and problems with concentration and
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memory (DeKosky et al., 2010; McCrea, 2008). Following the early

acute stage (<3 days postinjury), mTBI may be associated with neuro-

logical symptoms and cognitive impairment that can impact an individ-

ual’s quality of life (McAllister et al., 2006; R. Ruff, 2005). For example,

a previous study found that patients withmTBI hadworse visual track-

ing than healthy control subjects, which could lead to chronic disability

(Maruta et al., 2010). Thus, it is critical to detect mTBI during the acute

stage for guiding personalized interventions and treatment.
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However, evaluating mTBI during the acute stage is challenging

because existing mTBI diagnosis methods lack evidence of validity and

reliability (Borg et al., 2004; R. M. Ruff et al., 2009; Vergara et al.,

2017), especially for distinguishing mTBI from trivial head injury or

moderate TBI (Kristman et al., 2014). Despite studies reporting that

medical imaging methods—such as diffusion tensor imaging (DTI) and

computed tomography (CT)—aid in diagnosing patients and evaluating

injury severity (Huisman et al., 2004; Lipton et al., 2012), most patients

withmTBImaynot showobviousmorphological abnormalities (Milman

et al., 2005). Additionally, previous studies have shown that there are

abnormal functional connectivities of mTBI patients in the prefrontal

cortex (Slobounov et al., 2010), default mode network (DMN) (Sours

et al., 2013; Zhou et al., 2012), sensorimotor network (SMN) (Vakhtin

et al., 2013), and cerebellum (Nathan et al., 2015). Early abnormal find-

ings on CT and magnetic resonance imaging (MRI) can improve long-

term clinical outcome predictions. For example, one study found clini-

cal relevance of the early CT and MRI features to 3-month outcomes

in patients with mTBI (Yuh et al., 2013). Madhavan et al. (2019) and

Palacios et al. (2017) demonstrated that functional connectivity at the

semiacute stage (<3 weeks postinjury) could predict clinical outcomes

after 3 weeks or later of injury. Therefore, it is vital to seek objec-

tive criteria for better detection of mTBI, especially in the early acute

phase.

Recently, dynamic functional connectivity (dFC) based on functional

magnetic resonance imaging (fMRI) has proven its effectiveness in the

prediction and analysis of neuropsychiatric disorders, such as depres-

sion and schizophrenia (Damaraju et al., 2014; Liu et al., 2018; Qin,

Chen, et al., 2015; Qin, Shen, et al., 2015; Su et al., 2016). More-

over, dFC can help characterize the aberrant interaction between func-

tional brain networks, thus revealing the underlying disease pathology

(Damaraju et al., 2014). Dynamic interactions across functional brain

networks are related to behavioral and cognitive abilities (Hutchi-

son et al., 2013; Qin, Chen, et al., 2015), and cognitive and behav-

ioral impairment has been observed in patients with mTBI. Hence, we

assumed that mTBI patients would exhibit abnormal dynamic interac-

tions across functional brain networks, which could be used as poten-

tial neuroimaging biomarkers for individual diagnosis of mTBI.

Here, we propose a novelmethod to delineate the evolution of func-

tional brain dynamic networks over time with time-varying combina-

tions of a set of overlapping sparse connectivity components (SCCs)

based on dFC. This model is based on previous findings that a sin-

gle region of the brain contributes to multiple functional networks (Lv

et al., 2015; Shen et al., 2017) and that neural activity is not necessar-

ily independent (Daubechies et al., 2009; Lee et al., 2011). The main

idea of this method is to separate time-resolved functional connectiv-

ities across brain networks into subject-specific spatiotemporal struc-

tures that allow us to identify subtle postinjury abnormalities in these

spatiotemporal structures as potential neuroimaging-based biomark-

ers for individual diagnosis of mTBI. We demonstrate that the result-

ing SCCs reliably recur among subjects, without significant differences

between mTBI patients and healthy controls (HCs). In addition, the

temporal expression of these SCCs could discriminate mTBI patients

from HCs. Therefore, the time-varying combinations rather than the

coupling profiles of SCCs are essential for revealing the pathologic

basis of mTBI.

2 MATERIALS AND METHODS

This studywas approved by the Institutional ReviewBoard (IRB) of the

Third Xiangya Hospital of Central South University and carried out in

accordance with relevant Measures for the Ethical Review of Biomed-

ical Research Involving Humans (Gursel, 2008). All study participants

signed an informed consent form.

2.1 Participants

The dataset for this study included 31 mTBI patients and 31 HCs. The

31 mTBI patients (mean day postinjury = 2.1 ± 0.8) were recruited in

the emergency department of the Third Xiangya Hospital of Central

South University. All the patients were included based on the criteria

of the American Congress of Rehabilitation Medicine (Mayer et al.,

2015; Medicine, 1993; Vergara et al., 2017). The specific inclusion and

exclusion criteria could be found in our previous study (Shi et al., 2021).

Thirty-one HCs matched on age, gender, and education were

recruited from the surrounding community. More detailed demo-

graphic characteristics of participants are presented in Table 1. More-

over, each participant completed the behavioral and cognitive tests

administered by a trained neuropsychologist, including the Wechsler

adult intelligence scale test (WAIS-IV) (Coalson et al., 2010), stroop

test (Das, 2015), and the digit symbol test (Demakis et al., 2001).

Resting-state fMRI images were collected on a 3.0 T Philips MRI scan-

ner with a 15-channel head coil using an axial-gradient spin-echo

sequence. Subjects were required to keep eyes closed and be awake

TABLE 1 Demographics and clinical characteristics of participants

mTBI patients

(N= 31)

Healthy controls

(N= 31) p-Value

Sex (M/F) 18/13 17/14 N/A

Age (year) 29.3± 5.2 33.1± 4.9 .58

Height (cm) 169.5± 10.1 170.1± 10.0 .41

Weight (kg) 70.4± 10.9 69.9± 9.2 .94

Education (year) 14.3± 3.1 13.0± 3.4 .12

Mechanism of

injury

Traffic accident (22)

Falling (6)

Sport activity (3)

N/A N/A

GCS score 13 (19)

14 (10)

15 (2)

N/A N/A

LOC <10min (8)

10–20min (18)

20–30min (5)

N/A N/A

Abbreviations: GCS,Glasgow coma scale; LOC; loss of consciousness;mTBI,

mild traumatic brain injury.
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during scanning. The parameters of data are as follows: repetition

time/echo time (TR/TE)= 2000/30ms, field of view (FOV)= 240mm×

240mm, flip angle (FA)= 90◦, matrix size= 80× 80, thickness= 3mm,

slices= 36, and volumes= 240.

2.2 Data preprocessing

The first five volumes of fMRI for each subject were removed because

of magnetic saturation. The images then underwent motion correc-

tion, reslicing, and normalization to the Montreal Neurological Insti-

tute (MNI) space using SPM8 (http://www.fil.ion.ucl.ac.uk/spm), result-

ing in a voxel size of 3 mm × 3 mm × 3 mm. Next, the images were

spatially smoothed using a 6-mm full width at half maximum (FWHM)

Gaussian kernel and temporally bandpass filtered from0.01 to 0.08Hz.

Finally, we regressed the head movement, cerebrospinal fluid (CSF)

signal, white matter (WM) signal, and their first-order deviations to

reduce spurious changes which were unlikely to be related to neural

activity. In the current study, all 62 subjects had lowmean headmotion

(Xu et al., 2018;<1mmor 1◦) during the scan andwere included for the

following analysis.

2.3 Time course extraction and dynamic
functional connectivity estimation

A total of 160 regions of interest (ROIs)were used in this study (Dosen-

bach et al., 2010). Each ROI consisted of 27 voxels, including the cen-

troid of theROI and the26 circumjacent voxels (radius=6mm). Briefly,

the reliably activated voxels were identified based on meta-analyses

of fMRI activation data focused on memory, sensorimotor, language,

default mode, and error-processing functions. Then, for each meta-

analysis, peak-finding algorithms were used for identifying the cen-

troids of reliably activated groups of voxels. Finally, 160 ROIs were

generated by combining the centroids and their circumjacent voxels in

6mmdiameter spheres. These ROIs covermuch of the cerebral cortex.

ROI-based signals were generated by averaging voxel signals within

each ROI. The voxels located outside the gray matter were excluded

when calculating the ROI-based signals. In addition, the 160ROIswere

grouped into six major functional networks, including the cerebellar

(CB), cingulo-opercular network (CON), DMN, fronto-parietal network

(FPN), occipital network (OCN), and SMN.

ROI time courses were generated by averaging BOLD signals of the

center voxel and its neighboring 26 voxels. dFC was computed using a

sliding-window method with a window size of 60 s (30 TRs) and step

size of 4 s (2 TRs), which was thought to achieve a balance between

the ability to resolve the dynamics and quality of the covariancematrix

estimation (Allen et al., 2012; Qin, Chen, et al., 2015). Specifically,

the temporal correlations between all paired ROIs within each time

window were calculated using Pearson’s correlation coefficient, fol-

lowed by Fisher’s r-to-z transformation to achieve variance stabiliza-

tion. Thus, a series of 160 × 160 correlation matrices were generated

for each subject. The vectorized upper triangular part of each correla-

F IGURE 1 The process of decomposing resting-state dynamic
functional connectivity into sparse connectivity components (SCCs).
(a) The group-level sparse representation and (b) the subject-specific
sparse representation

tion matrix was extracted for further analysis. Consequently, for each

subject, we obtained a sliding-window correlation matrix S(i) ∈ Rw×p,

where i = 1,2,… , m is the index of subjects, w is the number of win-

dows, and p = 160(160 − 1)∕2 is the number of node pairs.

2.4 Identification of SCCs

A schematic diagram illustrating our sparse learning approach is

depicted in Figure 1. First, we combined the sliding-window cor-

relation matrices derived from all subjects into one matrix S =

[S(1); S(2);… ; S(m)] ∈ Rt×p, where t = w ×m is the total number of win-

dows for all subjects. Then,weused a generic formulationofmatrix fac-

torizations to decompose the concatenated structure into a fixed num-

ber of common SCCs as follows (Figure 1a):

S = T × C. (1)

The concatenated sliding-window correlation matrix S can be rep-

resented as the multiplication of k common SCCs, stored as the rows

of the matrix C = [c1:; c2:;… ; ck:] ∈ Rk×p, and their associated time-

dependentweights inT = [t:1, t:2,… , t:k] ∈ Rt×k . Each column inT is the

time course of the corresponding common SCC. Computing the row

norms of C allowed us to rank the common SCCs according to their

importance for decomposition.

Equation (1) aims to solve an L1-regularized LASSO problem:

min
T∈Rt×k,C∈Rk×p

1
2
‖S − TC‖2

2
+ 𝜆‖𝛼‖1, (2)

where λ is a parameter for a regression residual and sparsity level

trade-off. In addition, each column of T is constrained by Equation (3)

http://www.fil.ion.ucl.ac.uk/spm
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to avoid a trivial solution of the optimization.

D
Δ
=
{
T ∈ Rt×k, s.t.∀j = 1,… , k, tT

:j t:j ≤ 1
}
. (3)

The Sparse Modeling Software toolbox of MATLAB (SPAMS,

http://spams-devel.gforge.inria.fr/) was used to find the optimal solu-

tion in Equation (2) by alternately updating either matrix T or C while

the other was held constant (Mairal et al., 2009).

Next, we split the common temporal matrix T into m subsets, each

of which corresponds to one subject. Therefore, Equation (1) can be

rewritten as follows:

⎡⎢⎢⎢⎣
S(i)

⋮

S(m)

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
T(i)

⋮

T(m)

⎤⎥⎥⎥⎦
× C, (4)

where S(i) represents the sliding-window correlation matrix of the ith

subject, and T(i) ∈ Rw×k is the subject-specific temporal matrix corre-

sponding to the ith subject. Thus, for the subject i, the subject-specific

SCCsC(i)
∈ Rk×p can be obtained by resolving an L1-regularized LASSO

problem as follows:

min
C(i)∈Rk×p

1
2
‖S(i) − T(i)C(i)‖2

2
+ 𝜆‖C(i)‖1. (5)

This would produce the projection of individual data S(i) on the

subject-specific SCCs C(i)
and the corresponding temporal matrix T(i).

Thus, we can reconstruct the individual data S(i) as follows (Figure 1b):

S(i) = T(i) × C(i). (6)

We also used SPAMS to find the optimal solution in Equation (5) by

updating C(i)
while T(i) was held constant.

To evaluate the significance of each SCC, we first identified the

subject-specific SCCswith the corresponding time-varyingweights for

each subject. Then, a one-sample t-test (p < .05, false discovery rate

[FDR] correction) with the null hypothesis of disconnection was con-

ducted on each subject-specific SCC across subjects. Connectivity that

did not survive the test was set as zero. The resulting t-maps were

regarded as the group-level SCCs. In addition, we also detected the

potential changes in the coupling strength of SCCs between mTBI

patients and HCs by performing a two-sample t-test on each SCC

across subjects.

We reconstructed thenetworkdynamics viamultiplying the learned

common SCCs with their associated time-dependent weights, and

the potential effects of this reconstruction were explored from a

frequency-domain view. Specifically, the residual correlation time

series was obtained by subtracting the reconstructed correlation time

series from the original correlation time series for each subject. Then,

the fast Fourier transform (FFT) was applied to the original, recon-

structed, and residual correlation time series to evaluate the spectral

distributions of each connection pair.

2.5 Parameter selection

The free parameters of this model are the number of SCCs k and the

sparsity level of each SCC λ, which may affect the model’s perfor-

mance of fitting the observed data. In particular, the approximation

error declines when k is increased or λ is reduced. However, this may

result in over-fitting beyond a certain value of k or λ. A grid search

based on a twofold cross-validationmeasurewas performed to find the

optimal parameters. First, for each pair of k and λ, we calculated the

matrix of the common SCCs Ctrain on the training dataset as given in

Equation (2). Then, for each subject in the testingdataset,wecalculated

the subject-specific temporal matrix as follows:

T(i)test = S(i)test × CT
train

, (7)

where i = 1,2,… ,mtest andmtest is the number of subjects in the test-

ing dataset. The subject-specific SCCs C(i)
test for each subject in the test-

ing dataset can then be obtained as given in Equation (5). Finally, the

cross-validation measure of the error was computed on the testing

dataset relative to the variance in the test data as follows:

Test error =

∑mtest

i=1 ‖S(i)test − T(i)test × C(i)
test‖22∑mtest

i=1 ‖S(i)test − S̄test‖22
, (8)

where S̄test is the subject-average correlation matrix of the testing

dataset. The values of k and λ at which the error does not drop signifi-
cantly are chosen as the operating point.

2.6 Classification of mTBI using temporal
features of SCCs

To test the capacity of our method for classification, the support vec-

tormachine (SVM) classifier was employed for discrimination between

mTBI patients and HCs based on the temporal features of SCCs (mean

intensity and temporal variance of time courses) with leave-one-out

cross-validation. In each cross-validation run, the k commonSCCswere

first identified based on the training dataset. Then, the subject-specific

temporal matrix corresponding to the SCCs was calculated for each

subject in the training and testing datasets as given in Equation (5). The

mean intensity and temporal variance of the time course of SCCs were

calculated and concatenated as temporal features (2 × k dimension) of

SCCs for each subject. Finally, a linear SVM classifier was trained on

the training dataset and applied to the testing samples. We performed

the classification analysis with different values of k to find the optimal

point with the highest classification accuracy.

2.7 Reproducibility and control analysis

To assess the reproducibility of the SCCs across subsamples, we first

randomly divided the 62 subjects mentioned above into three groups.

http://spams-devel.gforge.inria.fr/
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Then, the sparse dictionary learning approachwas repeated to capture

the SCCs for each group. The SCCs derived from the groups and those

from the full sample were further compared. To determine whether

the SCCs critically depended on the window or step size in the sliding-

window analysis, we repeated the analysis with different window sizes

(30−120 s with a step of 10 s) and step sizes (1−20 TRs with a step of

2 TRs) on the full sample. The SCCs derived with different parameters

were then comparedwith the SCCs derivedwith thewindow size of 30

s and step size of 1 TR.Herein, we used the 𝜂2 to estimate the similarity

of two SCCs as follows:

𝜂2 = 1 −

∑p
i = 1

[
(ai −mi)

2
+ (bi −mi)

2
]

∑p
i = 1

[(
ai − M̄

)2
+
(
bi − M̄

)2] , (9)

where ai and bi are the values in position i of SCC a and SCC b,mi is the

mean of ai and bi, and M̄ is the grand mean value across all positions in

the two vectors.

3 RESULTS

3.1 Clinical results

As shown in Table 1, there were no significant differences (p > .10)

between the mTBI patients and HCs on the demographics, which indi-

cated that the participants were matched. The behavior statistics and

two-sample t-test results formTBI patients andHCs are summarized in

Table 2. We found a significant difference between mTBI patients and

HCs for only the digit symbol task (p< .05).

3.2 Group-level SCCs underlying functional
network dynamics

The output of the cross-validation for parameter selection is illustrated

in Figure 2a. The cross-validation error saturated beyond 𝜆 = 0.1, and

a clear elbow point of the cross-validation was observed beyond k =

10, indicating that a number of SCCs above 10 can sufficiently fit the

TABLE 2 Behavioral measures and two-sample t-test analysis
results (*p< .05)

Mean± SD

Index Metrics mTBI patients Healthy controls p-Value

1 WAIS-IV 102.80± 13.36 97.94± 13.28 .159

2 Digit symbol 54.70± 9.81 62.29± 13.41 .015*

3 Stroop_W 24.21± 5.78 22.22± 7.28 .242

4 Stroop_C 36.99± 5.34 37.25± 11.85 .913

5 Stroop_D 61.14± 14.27 64.33± 22.87 .517

6 Stroop_F 1.20± 1.42 1.74± 2.16 .254

7 Stroop_D-C 24.15± 12.07 27.08± 14.65 .397

Abbreviations: mTBI, mild traumatic brain injury; WAIS- IV, Wechsler adult

intelligence scale test.

observed data. Thus, the point of k = 10 and 𝜆 = 0.1 was chosen as

the operating point.

Consequently, 10 group-level SCCs were obtained for all partic-

ipants. These SCCs were ranked according to their importance for

decomposition by calculating the row norm of each SCC (Figure 2b).

The t-value maps (one-sample t-test, p < .05, FDR-corrected) of the

resulting 10 SCCs are shown in Figure 2c. These SCCs exhibited struc-

turalized correlation patterns.

Among these 10 SCCs, SCC 1 is notable due to its predominantly

strong positive correlation within the six functional networks. More

importantly, SCC 1 showed a highly similar connectivity profile to the

static connectivitymaps ( 𝜂2 = 0.83, Figure 2d). The spatial similarities

across SCCs were further evaluated using Pearson’s correlation coef-

ficient. Notably, significant spatial correlation or anticorrelation was

observed in some pairs across the low-index SCCs. In contrast, high-

index SCCs exhibited relatively weak spatial similarity partially due to

the increased sparsity of connectivity within these SCCs (Figure 3a).

Intriguingly, strongnegative correlationswere found in the SCC5–SCC

7 and SCC 6–SCC 10 pairs (Figure 3b). An anticorrelation between the

DMN regions and task-positive systems was observed within the SCC

5–SCC 7 pair. This anticorrelation has been suggested to index moder-

ately stable individual behavioral differences (Kelly et al., 2008) and is

linked to individual attention level (Thompson et al., 2013).

3.3 SCCs temporally disengage functional
network dynamics

We demonstrated that the resting-state network dynamics were lin-

early disentangled into a time-varying combination of SCCs with

component-specific temporal characterization. For the group-level

SCCs (Figure 2c), we calculated the mean intensity and temporal vari-

ance of the SCCs (left panel in Figure 4a,b). We observed differenti-

ated temporal properties of these SCCs, with the first SCC possessing

the highest mean intensity and minimal temporal fluctuation. The low-

index SCCs, especially SCC1, had relatively small variances across sub-

jects in terms of mean intensity and temporal variance of time courses.

This result indicates that SCC 1 has higher inter-individual consistency

in the statistics of temporal evolution. When the SCC index increased,

higher variances in terms of mean intensity and temporal variance of

time courses suggested an increased inter-individual difference in the

extent to which the SCC contributes to functional network dynam-

ics. This observation was also supported by the group-level contrast of

mean intensity and temporal variance across the 10 SCCs (two-sample

t-test, p < .05) in which we observed significantly higher intensity and

lower temporal variability of SCC 1 relative to other SCCs (right panel

in Figure 4a,b).

3.4 Reconstruction of dynamic functional
connectivity

We further explored the potential effects of this reconstruction from a

frequency-domain view. Figure 4c plots the median frequency spectra
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F IGURE 2 Extracting the group-level sparse connectivity components (SCCs) of resting-state functional network dynamics. (a) Grid search
results for parameter selection. (b) The SCCswere ranked according to their importance for decomposition by their row norm. (c) The correlation
maps of SCCs. (d) SCC 1 exhibits a highly similar connectivity profile to the static connectivity map (𝜂2 = 0.83)

F IGURE 3 (a) The spatial similarity map across the sparse connectivity components (SCCs) was calculated using Pearson’s correlation
coefficient. (b) The strong negative correlations of SCC pairs

of the original, reconstructed, and residual correlation time series

averaged over all connection pairs for an exemplar subject. A substan-

tial decrease of high-frequency (>
1

𝜔
Hz) spectral power was observed

in the reconstructed correlation time series in contrast to the original

time series. Given that the meaningful components concentrate in the

frequency interval [0,
1

𝜔
] Hz due to the low-pass filtering effects of the

sliding window on dFC (Leonardi & Van De Ville, 2015), our findings

revealed a significant de-noise effect of SCC-based reconstruction on

dFC estimation.

3.5 Significant differences in the temporal
expression of SCCs and classification performance

Intriguingly, we found few significant differences in the connection

strength of SCCs between patientswithmTBI andHCs (see Figure A1).

However, significant changes (two-sample t-test, p < .05) in the mean

intensity (Figure 5a) and temporal variance (Figure 5b) of the SCC

time courses were detected in resting-state scans in mTBI patients

compared with HCs, involving SCC 1, SCC 2, SCC5, SCC 7, and
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F IGURE 4 (a and b) The statistical properties of the temporal expression of the 10 group-level sparse connectivity components (SCCs). (c) The
median frequency spectra of the original, reconstructed, and residual correlation time series averaged over all connection pairs were compared for
an exemplar subject

F IGURE 5 The temporal expression of sparse connectivity components (SCCs) differentiatedmild traumatic brain injury (mTBI) patients from
healthy controls (HCs). Significant changes in themean intensity (a) and temporal variance (b) of the SCC time courses (* two-sample t-test, p< .05)
are observed. (c) The temporal expression of SCCs exhibited high classification performance using increasing numbers of SCCs k

SCC 9. As shown in Figure 2c, these SCCs were related to multiple

brain networks such as DMN, CB, FPN, and SMN, indicating that the

interactions of functional networks were more likely to be damaged

in mTBI patients compared with HCs. We further tested whether the

temporal expression of SCCs could discriminate mTBI patients from

HCs. Figure 5c shows the classification accuracies using different

numbers of SCCs k. The SCC-based classifier achieved an optimal

classification accuracy of 74.2% (64.5% for HCs, 83.9% for mTBI)

with k = 40. The two-sample t-test results of behavior performances

between HCs and mTBI patients are provided in Table 2. We found a

significant difference between mTBI patients and HCs in only the digit

symbol task (p < .05). However, we found no significant correlation

between mean intensity or temporal variance of the SCCs and digit

symbol task. Overall, the SCC-based classifier showed a high classi-

fication performance, suggesting its potential in assisted diagnosis of

mTBI.
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F IGURE 6 Sparse connectivity components (SCCs) exhibited great reproducibility and reliability. (a) The 10 SCCs had high spatial similarity
with the SCCs on three subsamples of the dataset. (b) Highmean and low variance of the similarities of correlationmaps were observed across the
10 SCCs comparedwith the baseline in different combinations of window size and step size, demonstrating high reproducibility of SCCswith
varying sliding-window parameters

3.6 Reproducibility and reliability of SCCs

The reproducibility and reliability of SCCs in various conditions were

further assessed.Notably, the obtained SCCshadhigh spatial similarity

to the SCCs on three subsamples of the dataset (𝜂2 = 0.79 ± 0.08; Fig-

ure 6a). In addition, we observed higher means and lower variances in

the similarity of SCCs for smaller window sizes (Figure 6b). Compared

to the window size, the sliding step has less impact on the SCCs. All of

these results demonstrated the high reproducibility of SCCswith vary-

ing sliding-window parameters.

4 DISCUSSION

In our study, the temporal evolution of functional brain networks was

delineated by time-varying combinations of a set of overlapping SCCs

with sparse dictionary learning based on dFC. Then, using the subject-

specific temporal expression of these SCCs, we achieved a classifica-

tion accuracy of 74.2% between mTBI patients and HCs (64.5% for

HCs, 83.9% for mTBI patients).

The identified SCCs exhibited meaningful spatiotemporal configu-

rations, which extends our understanding of spontaneous fluctuation

in resting-state FC. SCC 1, which had the maximal norm, exhibited the

greatest importance in the temporal expression of functional network

dynamics. This result was supported by converging evidence. For

example, SCC 1 had the maximal mean intensity as well as the minimal

variance in the corresponding time courses among the 10 SCCs. SCC 1

was expressed more consistently across subjects, suggesting its over-

whelming stability across subjects as a source in network dynamics.

More importantly, SCC 1, which is spatially characterized by a clear

separation of six functional brain networks with strong intra-network

connectivity, showed a highly similar connectivity profile to the static

connectivitymaps. Taken together, these specific spatiotemporal prop-

erties suggest that SCC1mayplay abaseline role in functional network

dynamics. Those high-index SCCswith smallmean expression intensity

and great temporal variability possess significant between-network

connectivity patterns, indicating that functional network dynamics are

predominantly situated across networks (Shen et al., 2016). This archi-

tecture of functional coupling reflects the nature of cognitive informa-

tion processing via dynamic interplay across different functional sub-

systems in the brain (Power et al., 2013; Zalesky et al., 2014). Finally,

whilewe are unable to explicitly link these SCCswith specific cognition

functions in this study, some of the identified connectivity configu-

rations within individual SCCs likely imply the underlying biological

meaning. For instance, the well-known anticorrelation between the

DMN and task-positive networks was evident in both SCC 5 and SCC

7, suggesting these two components respond to the task-negative or

task-positive brain states, respectively. Some focal between-network

couplings were separately identified by some SCCs, such as the DMN-

FPN interaction in SCC 8 and the SMN-DMN connection in SCC 7.

Significant changes in the mean intensity and temporal variance

of some SCCs’ time courses were detected in the patients with mTBI

compared with the HCs, especially that of SCC 1, SCC 2, SCC 5, SCC 7,

and SCC 9. The connections with high t-values (|t|> 6.0) of these SCCs

are depicted in Figure 7. SCC 1 shows a highly similar connectivity pro-

file to the static connectivity maps, indicating that mTBI may strongly

affect static functional connectivity between various brain regions.

Similarly, it was reported that patients with mTBI show greater static

functional connectivity in cingulate, temporal, and frontal regions than

HCs (Tang et al., 2011). Furthermore, therewere significant differences

in SCCs related to several networks, which is consistent with previous

studies (Johnson et al., 2012; Kasahara et al., 2010; Mayer et al., 2011;

Palacios et al., 2017; Sours et al., 2013; Vakhtin et al., 2013; Vergara

et al., 2017; Zhou et al., 2012). Specifically, decreased functional

connectivity was found in the DMN and frontal cortex, whereas the

visual network showed increased functional connectivity (Mayer et al.,

2011; Palacios et al., 2017). It was also shown that abnormal functional

connectivity alterations in the DMN mainly existed in the semiacute

phase of injury (Johnson et al., 2012; Palacios et al., 2017; Sours et al.,

2013; Zhou et al., 2012). Early studies also reported alteration of

functional connectivity in sensorimotor areas (Kasahara et al., 2010;

Vakhtin et al., 2013). Moreover, significant abnormal connections
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F IGURE 7 Connectivity patterns of five significant different
sparse connectivity components (SCCs) between themild traumatic
brain injury (mTBI) patients and healthy controls (HCs). The size of
nodes indicates the amount of connectivity of the regions of interest
(ROIs). Different colors of the nodes indicate different brain regions.
The yellow and bule lines represent significant positive and negative
correlations, respectively

within the cerebellum have been observed, which was considered an

important region for mTBI (Nathan et al., 2015; Vergara et al., 2017).

Connectivity disruption of other areas was also reported including

the hippocampal, primary visual, dorsolateral prefrontal cortexes (S.

Slobounov et al., 2011), and the thalamus (Tang et al., 2011; Zhou et al.,

2014).

The findings of functional connectivity alterations are significant

and important to achieve applications in clinical settings. The changes

in functional coupling across regions could serve as a biomarker in the

diagnosis of mTBI andmay aid clinicians in diagnosis. For example, Kim

et al. (2013) reported an optimal classification accuracy of about 71%

in discriminating mTBI in the semiacute phase of injury and healthy

brains with diffusion tensor imaging (DTI). Functional connectivity has

also been used for discriminatingmTBI patients in the semiacute injury

stage and achieved an accuracy of 84.3% (Mayer et al., 2011). However,

these previous studies were based on the semiacute stage, and indi-

viduals may not show obvious structural changes or symptoms during

the early acute stage (Mayer et al., 2010; Milman et al., 2005). Thus,

the evaluation of mTBI in the early acute stage is more challenging.

Our findings demonstrated that the temporal expression of SCCs could

achieve a high classification performance in classifying mTBI patients

in the early acute phase, suggesting that the changes in dynamic func-

tional coupling across regions serve as neurobiological biomarkers in

the diagnosis of mTBI.

From behavioral data, we found that the significant difference

between mTBI patients and HCs existed only in the digit symbol task

(p < .05). This may be attributed to the fact that most of the mTBI

patients may have unapparent symptoms in the early acute stage (Mil-

man et al., 2005). However, at the semiacute stage or later, patients

withmTBI start to exhibit neurological symptomsand cognitivedefects

(Madhavan et al., 2019; McAllister et al., 2006; R. Ruff, 2005). Some

patients will even develop persistent neurological symptoms and cog-

nitive defects after 1 year.

Some limitations should be mentioned for the present study. The

small sample size of subjects and lack of longitudinal clinical data are

major issues limited by the rareness of available patients with mTBI.

Prior studies have reported the longitudinal correlation betweenwhite

matter microstructural changes and neuropsychological performance

(Palacios et al., 2020). Therefore, in future work, we will include lon-

gitudinal data to better explore potential associations between imag-

ing abnormalities and behavior changes. Another potential limitation

is the use of a 15-channel head coil for data acquisition. TheMRI scan-

nerwith32-channel headcoil couldprovidehigher signal-to-noise ratio

and sensitivity fMRI data (Kaza et al., 2011), which would be beneficial

to capturemore subtle functional alterations inmTBI.However, the15-

channel head coil is widely used in clinical settings, and therefore may

bemore applicable in those settings.

5 CONCLUSIONS

In conclusion, we applied a methodology built on sparse dictionary

learning of windowed correlation to delineate subject-specific time-

varying evolution using a set of overlapping group-level SCCs. The

identified SCCs with hierarchical spatial structures were consistently

distributed in the cohort of subjects without significant differences

between patients with mTBI and HCs. Further, the observed temporal

expression profiles of the SCCswere predictive of mTBI, whichmay be

helpful for the individualized diagnosis of this disease. These findings

suggest that the time-varying combinations rather than the coupling

profiles of the SCCs are essential for revealing the pathologic basis of

mTBI.
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APPENDIX

ICP 1 ICP 2 ICP 3 ICP 4 ICP 5 ICP 6 ICP 7 ICP 8 ICP 9 ICP 10
CB
CON

DMN

SMN

OCN
FPN

mTBI patients vs. HCs

-1 1
t-value

0

F IGURE A1 A random effect analysis of a two-sample t-test was performed on themild traumatic brain injury (mTBI) patients and healthy
controls (HCs) to test the significance of between-group differences in sparse connectivity components (SCCs). Intriguingly, few significant
differences of connection strength in SCCswere found between themTBI patients and the HCs (p< .05, false discovery rate (FDR)-corrected)
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