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Abstract

Background: Cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An
abnormal CTR (>0.55) is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal
CTR chest X-rays (CXRs) aids in the early diagnosis of clinical conditions.

Purpose: We propose a deep learning (DL)-based model for automatic CTR calculation to assist radiologists with rapid
diagnosis of cardiomegaly and thus optimise the radiology flow.

Material and Methods: The study population included 1012 posteroanterior CXRs from a single institution. The
Attention U-Net DL architecture was used for the automatic calculation of CTR. An observer performance test was
conducted to assess the radiologist’s performance in diagnosing cardiomegaly with and without artificial intelligence
assistance.

Results: U-Net model exhibited a sensitivity of 0.80 [95%CI: 0.75, 0.85], specificity >99%, precision of 0.99 [95%CI: 0.98, 1],
and a F1 score of 0.88 [95%CI: 0.85, 0.91]. Furthermore, the sensitivity of the reviewing radiologist in identifying cardiomegaly
increased from 40.50% to 88.4% when aided by the AI-generated CTR.

Conclusion: Our segmentation-based AI model demonstrated high specificity (>99%) and sensitivity (80%) for CTR
calculation. The performance of the radiologist on the observer performance test improved significantly with provision of
AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be
used in clinical workflows by reducing radiologists’ burden and alerting to an abnormal enlarged heart early on.
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Introduction

Chest radiography is amongst the most commonly used
diagnostic imaging techniques for disorders of the cardio-
thoracic and pulmonary systems. Chest radiographs account
for 40% of the nearly 3.6 billion radiological investigations
advised annually with the number of chest radiographs per
1000 people standing at 236 annually.1 In fact, this is one of
the most basic imaging investigations advised in nearly all
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hospitalised patients, either as part of disease evaluation or
as part of the usual workup for pre-operative assessment.

The currently used method for the assessment of CTR is
manual; expert radiologists use manual segmentation to
calculate the ratio. This is a time-consuming method. A
CTR greater than 55% may indicate cardiomegaly, which is
an indicator of multiple conditions, including hypertension,
coronary artery disease, cardiomyopathies, and valvular
heart disease. In fact, cardiomegaly is associated with ad-
verse outcomes in patients with cardiac diseases and,
therefore, may be an important clue to the initiation of early
treatment.2-4Although traditionally CTR was described for
detecting cardiac enlargement on chest radiographs, in the
past decade research has shown the advantages cardiac MRI
and that cardiac MRI is a much better modality to comment
on actual cardiac enlargement. However, MRI as a modality
is expensive, and far less accessible than a radiography
setup and the number of cardiac MRI performed are far
lesser than the number of chest radiographs performed each
year. Cardiac MRI is performed only in selected patients
who present to the hospital with cardiac symptoms and often
if there is an indication detected on preliminary echocar-
diography findings. Therefore, it only follows that the
chances of incidentally detecting cardiomegaly particularly
in cases which are not symptomatic and are presenting for
an unrelated disease and hence will not undergo a speci-
alised cardiac MRI is much higher on a chest radiograph.
This mandates the need for defining a cut-off for cardiac
enlargement and while a CTR between 45 and 55% in-
creases the sensitivity of detecting cardiomegaly, the trade-
off is a lower specificity. Direct comparisons between chest
radiographs and cardiac MRI yielded that while the dis-
criminatory power of CTR with respect to MRI is weak, the
agreement is higher when a cut-off of 55% is utilised. In
effect, while no single CTR cut-off is completely sensitive
and specific, utilising 55% as a cut-off balances the slightly
lower sensitivity with a significantly higher specificity and
hence a CTR greater than 55% should be considered highly
indicative of true cardiomegaly and further diagnostically
evaluated.2

Country-wise figures for the availability of radiologists
as a percentage of the overall workforce show a declining
trend. In Europe, there are 4–13 radiologists per
1,00,000 people with UK at the lower end of spectrum at
4.7 and Sweden at the higher end; in USA, the number
stands at 10. The situation in developing countries such as
Africa is much worse, with the ratio being under one
radiologist per 1,00,000 population.5,6 With an increase in
the population and the number of radiological examina-
tions performed each year, the relative number of qualified
radiologists is declining, resulting in backlogs and delays
in timely medical imaging even in large organisations like
the UK-National Health Service and the US-Department of
Veterans Affairs.7-9 Consequent to the increase in the

volume of scans, and a decrease in the number of radi-
ologists, are the issues of increasing radiologist burn-out
and high interpretation errors. Therefore, having in place a
system which can automate the task of quantification on
chest radiograph will imply one less thing for the radi-
ologist to worry about while ensuring that this important
parameter is not skipped over from radiology reports to
conserve time.

Herein, we evaluated the performance of our previously
developed Attention U-Net model that demonstrated ex-
cellent specificity in automatically calculating the CTR by
testing it on an external validation dataset. To assess the
actual clinical utility of employing this tool in a healthcare
setting, we have subsequently performed an observer per-
formance test with an experienced radiologist. Our seg-
mentation model classified CXRs into two categories based
on the CTR cut-off of 0.55: cardiomegaly present or car-
diomegaly absent.

Material and Methods

Data collection

A total of 1257 sequential CXRs were acquired retro-
spectively between the period of January and March 2021.
These chest radiographs were from a single institution and
acquired on multiple machines of different milliamperage
(mA). These included multiple computed radiography (CR)
systems – SIEMENS 500 mA HELIOPHOS-D, SIEMENS
100 mA GENIUS-100R, SIEMENS 300 mA MULTI-
PHOS-15R and a 600 mA digital radiography (DR) system,
the SIEMENS MULTISELECT DR. For CR systems,
AGFA 14x17 inch plate was used for adults (13–93 years).
For the Digital radiography (DR) system, the SIEMENS
14x17 inch detector was used.

Out of the 1257 CXRs, 1012 CXRs were selected to be a
part of the test set based on the inclusion and exclusion
criteria. Chest X-rays which were acquired in an AP view,
an oblique orientation, an expiratory position, or with too
many motion artefacts created by large foreign bodies,
overlying the cardiac contour were eliminated. Chest X-rays
with pathological processes which obscured the cardiac
contour like massive pleural effusion or dense consolidation
completely obscuring the lung bordering cardiac contour
were also excluded.

Study population

The study was approved by the Institutional Ethics Com-
mittee of our tertiary care hospital and research centre
(DYPV/EC/642/2021), and the need for explicit written
informed consent was waived. The study followed Health
Information Portability and Accountability Act (HIPAA)
standards for data management and anonymisation.
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Amongst 1012 CXRs, the distribution of males and females
was 61.56% (623 CXRs) and 38.44% (389 CXRs), re-
spectively, with an age range of 13–93 years. The mean age
of the cohort was nearly 42.6 years.

AI models and architecture

In our previous report by Gupte et al., 2021,10 we compared
three different U-Net based architectures on a hold-out
dataset. The three multi-class segmentation models archi-
tectures we compared-first one (Model-1) was an enhanced
UNET with spatial Attention Gate and Xception
encoder,11,12 the second one (model-2) was UNET with
squeeze and excitation network blocks incorporated with
ResNext-50 13,14 and thirdly (model-3), a simple UNET
with Efficient Net b4 encoder.15,16 All of these models were
as a first step pre-trained on an ImageNet weight. The
training was performed on a dataset of 3416 CXRs. Both the
training and validation dataset was the same for all three
models. The Adam optimiser and binary cross-entropy loss
were used with a learning rate that was reduced on the
plateau, that is, the learning rate was reduced when the
metric (validation loss) stopped improving. For each CXR,
the model predicts two regions of interest for both the
mediastinum and the chest. Although inferencing, to obtain
a clear-cut mask, the predicted pixel probabilities were
thresholded. The pixel probabilities less than the threshold
value were converted to 0, while those greater than the
threshold value were converted to 1. The output masks were
subjected to morphological transformations to reduce noise
and error. The mask, of size 512x512 pixels, was eroded for
2 iterations with a kernel of 3x3 and then dilated for 1 it-
eration with a kernel of size 3x3. This removed all the noisy
pixels on the outer edges giving a clean mask. Although the
difference in the output masks may not be apparent to
human eyes, we observe MAE reduction by 12.5% and
RMSE by 9%. Bounding boxes were constructed using the
extreme pixels of the segmented mask generated by the
model for the heart and the chest. The coordinates of the
bounding boxes were used to calculate the CTR by de-
termining the width of the chest and heart.

All of these models were trained on a common dataset to
determine which one of them outperformed the other two
and was most robust. Although primarily all were UNET
based architectures, the encoders and the intermediate layers
were different for each model. To ensure better training, we
performed hyperparameter optimisation, image augmenta-
tion, and image processing. These were tested on a hold-out
test set of 183 CXRs to evaluate model performance. The
performance of all the three models was close: Model-1 had
a sensitivity of 0.96, specificity of 0.81; Model-2 had a
sensitivity of 0.87 and specificity of 0.86; Model-3 had a
sensitivity of 0.94 and specificity of 0.83. A comparison of

the f-1score revealed the model-3 (0.88) to marginally
outperform both model-2 (0.86) and model-1 (0.87).

Although it was not possible to choose the best per-
forming model based only on sensitivity, specificity and f-1
score. A combined comparison based on the regression
metrics-mean absolute error (MAE) and root mean squared
error (RMSE) revealed that model-1 (MAE = 0.0209;
RMSE= 0.0312) slightly outperformed the other two,
model-2 (MAE= 0.0206; RMSE= 0.0317), model-3 (MAE=
0.0328; RMSE= 0.0798). Based on the performance, we
selected the Attention U-Net model for external validation
on the institutional dataset. Figure 1 is a representation of
the steps involved in processing of a chest radiograph by the
AI model to quantify it.

Establishing ground truth

To establish the ground truth, a consensus opinion of
three Board certified radiologists with 5 (Radiologist-
A1), 7 (Radiologist- A2) and 23 (Radiologist-A3) years
of experience was undertaken. Radiologist A2 had re-
ceived dedicated 1-year of subspeciality training in cross-
sectional imaging while Radiologist A3 had thoracic
subspeciality training and 23 years of experience. They
were tasked with manually calculating and annotating the
CTR and classifying the CXR as cardiomegaly positive or
negative. The cardiac size was measured by drawing a
straight line down the most lateral points of the cardiac
margins and calculating the diameter between them. To
measure the thoracic border, a straight line from the inner
margin of the rib cage on one side to the opposite was
drawn. Out of the 1012 CXRs, 242 CXRs had a CTR
greater than or equal to 0.55 (positive for cardiomegaly)
and 770 CXRs had a CTR less than 0.55. The combined
output of the three radiologists is hereafter, referred to as
the ground truth (Radiologist-A)

The observer performance test

The observer performance test was conducted to compare
the performance of the model with that of the radiologist-A
(ground truth) and to determine whether the performance of
another radiologist (Radiologist-B) be improved with the
aid of the model. The radiologist-A who participated in the
establishment of the ground truth were excluded from the
observer performance test. The test proceeded in two
phases. In the first phase, the CTR calculated by the model
was concealed, and the observer (radiologist-B) indepen-
dently assessed each CXR for the presence or absence of
cardiomegaly without the help of the model. He was ex-
plained in brief about the purpose of categorising for car-
diomegaly and was instructed to follow the method he uses
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to categorise in day-to-day reporting, which was the visual
method of assessment. In the second phase, after a gap of
one month to avoid memory bias, the observer re-evaluated
each CXR with the aid of the model. Finally, the results of
both the phases were compared to measure the agreement on
the detection of cardiomegaly.

Statistical analysis

The performance of the annotating radiologist and the AI
model was evaluated using classification metrics (sensi-
tivity, specificity, precision and F1 score) and regression
metrics (Mean Absolute Error and Mean Squared Error).
The coefficient of determination (r squared value) was
calculated to determine the goodness of fit of the model for
the given dataset. Paired t-test was used to compare the
mean difference between CTR calculated by the model
and CTR annotated by the radiologist. Intra class-
correlation statistical analysis was used to calculate the
degree of agreement between the two continuous variables
(CTR for each individual chest radiograph) – AI model
calculated and the radiologist-A annotated CTR. How-
ever, Bland–Altman analysis was utilised to interpret the
agreement based on the mean difference between the two
variables.

Specificity, sensitivity, NPV, PPV, accuracy and kappa
score were used to compare the performance of the model
with that of the reporting radiologist. These metrics were

also used to compare the performance of the aided versus
unaided radiologist.

Results

Diagnostic performance of CTR calculation model

The diagnostic performance of the CTR calculation model
(Model-1) is summarised in Table 1. The classification
metrics demonstrate how well the model performs in
clinical settings. The model was highly specific in deter-
mining the CTR, with a specificity nearly 1.00 [95% CI:
0.99,1]. The model achieved a sensitivity of 0.80 [95% CI:
0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1.0], and a
F1 score of 0.88 [95% CI: 0.85, 0.91]. The reliability of the
CTR calculation was determined by evaluating regression
metrics. The model performed extremely well in calculating
CTR with a MAE of 0.0254 ± 0.06 and an MSE of 0.0016 ±
0.014. We also computed the confusion matrix for cate-
gorising patients in the CTR ranging less than or greater
than 0.55. Most of the CTR values annotated by the radi-
ologist and calculated by the model were found to be in
great agreement. Out of 1012 CXRs, 768 CXRs that were
annotated as CTR<0.55 by the radiologist were also pre-
dicted the same by the model. Additionally, 193 CXRs that
were annotated as CTR≥0.55 by the radiologist were also
predicted the same by the model (Table 2). During the

Figure 1. The flowchart depicting the process involved in the processing and post-processing of the raw data (chest radiograph) to
quantify the CTR and categorise the result as positive or negative for cardiomegaly.
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analysis, we discovered that 636 out of 1012 CXRs, that is
62.84% of all predictions, were within +/� 5% error.

Performance of the Deep Learning Model versus
Ground truth

The performance of the model as compared to that of the
board-certified radiologist (ground truth) can be visualised
in the scatter plot (Figure 2). The coefficient of determi-
nation (r squared value) for the same was observed to be
0.809, indicating that the regression model fits the observed
data with low variance. The scatter plot also indicates that
out of 1012 samples, only 51 samples were misclassified.
There was one particular radiograph with a large discrep-
ancy between the ground truth annotated (0.5) and predicted
value (0.2), the cause for this was the error in proper de-
tection of the left cardiac border, which resulted in an er-
roneously small reading of the cardiac border.

We performed a paired t-test between the two continuous
variables of CTR calculations on the DL model and the
ground truth. The analysis revealed that the mean values of
CTR calculation by the DL model was slightly lower with a
minimal difference of 0.0079764, which was statistically
significant with a p-value of <0.001 (Supplemental Table 1)
across the entire dataset. However, since the difference was
minimal, the actual impact on classification of the model
was negligible. Additionally, an intra-class correlation co-
efficient of the two variables revealed an excellent agree-
ment between the two continuous variables to measure CTR
(Supplemental Table 2). Therefore, while the DL model
consistently underpredicted CTR when compared to the
ground truth, the difference was minimal and there was an
excellent correlation between ground truth and the DL
model predicted CTR values.

Bland–Altman plot of the difference between the CTR
calculations of the ground truth and those calculated by the
DL model reveal a high agreement between the two
(Figure 3).

AI outcome

The segmentation-based Attention U-Net model predicted
the cardiothoracic ratio with high specificity and sensitivity.
The results obtained by using this approach corresponded to
the annotations made by the expert radiologist (Figure 4).
Although the model was highly specific in calculating the
CTR, there were some instances where the model mis-
classified the cases. A sample X-ray image of misclassifi-
cation is shown in Figure 5. As shown in the figure, our
model predicted the borderline cardiomegaly condition with
a CTR=0.53, while the radiologist annotated it with a
CTR=0.56. Although there was a small difference between
the CTR values predicted by the model and those annotated
by the radiologist, these misclassifications were unavoid-
able due to observer and method variations in the dataset.
Additionally, the prediction made by the model can give a
second chance to the radiologist to review the scan before
making the final decision.

Observer performance test (Aided vs
Unaided experiment):

To assess the clinical utility of the model and its impact on
the performance of the reporting radiologist, we conducted
an experiment whereby all 1012 chest radiographs were
assessed for the presence or absence of cardiomegaly by a
radiologist (radiologist-B) with 5-years of experience. The
entire experiment was conducted in two phases: in the first

Table 1. Classification and regression metrics to evaluate the performance of the AI model-1.

Metrics Value

Classification metrics [95% CI] Sensitivity 0.80 [0.75, 0.85]
Specificity 1.00 [0.99, 1.0]
Precision 0.99 [0.98, 1.0]
F-1 score 0.88 [0.85, 0.91]

Regression metrics (± SD.) Mean absolute error (MAE) 0.0254 ± 0.06
Mean squared error (MSE) 0.0016 ± 0.014

Table 2. Confusion Matrix of Attention U- Net model for CXR image dataset.

Predicted (CTR <0.55) Predicted (CTR ≥0.55)

Annotated (CTR <0.55) 768 2
Annotated (CTR ≥0.55) 49 193
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phase, radiologist-B was not alerted to the pathology and
was simply asked to annotate all 1012 chest radiographs.
For this purpose, the radiologist was not provided with the
AI aid to read the radiograph (‘Unaided’). We compared the
performance of the unaided radiologist in classifying a CXR
as positive for cardiomegaly with the actual cases of car-
diomegaly based on the ground truth.

The analysis revealed that the unaided radiologist had a
sensitivity of 40.5% and specificity of 99.9% in detecting
cardiomegaly. The radiologist was in agreement with the
gold standard (CTR>0.55 as cardiomegaly) on 867 out of
1012 cases and demonstrated a positive predictive value
(PPV) of 99%. Negative predictive value (NPV) of 84.2%
and diagnostic accuracy of 85.67% (Table 3). The Kappa
value of 0.506 indicates a moderate agreement, with a
p-value of <0.001 (Supplemental Table 3).

For the second part of the experiment (‘Aided’), the same
radiologist re-assessed the entire dataset for multi-class
pathologies with the aid of the AI model (the model cre-
ated bounding boxes on the chest radiograph with pre-
calculated CTR for each radiograph). To eliminate memory
bias, the aided experiment was conducted one month after
the unaided experiment.

The analysis revealed that the aided radiologist had a
sensitivity of 88.4%, specificity of 89.9%, the PPVof 73.3%

and NPVof 96.1%. The aided radiologist was in agreement
with the gold standard on 906 out of 1012 cases and had a
diagnostic accuracy of 89.53% (Table 3). Also, the indi-
vidual diagnostic accuracy of the DLmodel was far superior
with a value of nearly 94.96%. The Kappa value of
0.731 indicates very good agreement with a p-value
of <0.001 (Supplemental Table 4). The overall f-1 score
also improved from 0.57 for the unaided radiologist to
0.83 for the aided radiologist. Table 3 compares different
parameters for the diagnostic performance of the model,
unaided radiologist and unaided radiologist. The tabulated
results clearly indicate that the sensitivity of the radiologist
increased from 40.5% to 88.40% with AI assistance. There
was also an improvement in the negative predictive value
(from 85.67% to 89.53%) and the overall diagnostic ac-
curacy (85.67%–89.53%) of the aided radiologist when
compared to the unaided radiologist. Although the overall
performance of the radiologist improved when assisted by
the AI system, the stand-alone performance of the DLmodel
was still statistically better.

Time factor

The stand-alone DL based model processed a radiograph in
approximately less than 2s in all cases. Although manual

Figure 2. The scatter plot between calculated (radiologist’s annotated/ground truth) CTR (X-axis) versus predicted (model-calculated)
CTR (Y-axis) indicates a close agreement between the two variables. A closer analysis of the plot reveals 51 misclassifications with
agreement on all of the remaining 961 cases.
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measurements of the CTR required approximately 19.5 ±
3s, the AI assisted radiologist could make the same CTR
measurements in 4.2 ± 1.8s (factoring in both the time taken
to generate the AI annotation and the radiologist to either
agree with the same or reposition the boxes for a more
accurate fit. Thus, the AI assisted method of quantification
was a little over 4 times faster than the manual method.

Discussion

Cardiothoracic ratio (CTR) obtained from CXR is an
important parameter for assessing heart diseases, par-
ticularly cardiomegaly.17,18 However, measuring it ne-
cessitates manual measurements that are time-intensive
and user-dependent. Despite its utility and merits, the
measurement of CTR is burdensome in clinical practice.
Additionally, manual calculation of CTR introduces
subjectivity into the diagnosis, and many borderline cases
may go undetected or incorrectly diagnosed. Recently,
the utility of AI-based tools in calculating the CTR has
been technically corroborated in many studies.19-21 In our
previous report (xxx, 2021),10 we compared three dif-
ferent segmentation model architectures for the calcu-
lation of CTR and observed that Attention U-Net yielded
better results than EfficientNet U-Net and SE-Resnext

U-Net. In the current study, we used the Attention U-Net
deep-learning model to calculate the CTR in a clinical
setting. We observed that the CTR values derived from
the Attention U-Net model exhibited excellent agreement
with the CTR values annotated by the radiologist. Out of
1012 samples, only 51 samples were misclassified by the
model, and that too by a small margin, while 961 samples
were completely consistent with the annotations provided
by the radiologist. It should be noted that most of the
misclassifications were for the borderline conditions,
with CTRs near 0.55 or chest radiographs with moderate
pleural effusion24 which was partially obscuring the
thoracic contour of lung and thus generating an errone-
ously larger CTR. Although the misclassification of
cardiomegaly is unavoidable when the CTR is close to
0.55, this is important because, in case CTR is more than
0.55, it can alert the concerned radiologist and allow the
radiologist to review the scan again before making a final
decision. The pragmatic approach of using model-
generated CTR in assisting the radiologist proved to be
beneficial in improving the diagnosis of cardiomegaly
when compared to the unaided radiologist. Since bor-
derline cases are frequently missed, the practicability of
the model will help in the radiologist’s objective decision
making. Erroneous results are a problem faced by all DL

Figure 3. Bland–Altman plot to assess the mean difference in calculation of CTR by the ground truth (radiologist annotated) and the DL
model.
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Figure 4. CXRs representing the Cardiothoracic ratio annotated by the radiologist-A (ground truth) and predicted by the model.
Bounding boxes correspond to the segmentation of the heart and thorax by the model. The predicted and the annotated values for
CTR (A) less than 0.55 (Normal) and (B) greater than 0.55 (cardiomegaly) were in complete agreement with each other.

Figure 5. An example of misclassification. Bounding boxes represent the segmentation of the heart and thorax by the model. In this
case, the radiologist annotated the CTR as 0.56, while the model predicted the CTR as 0.53.
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models in scenarios where the contours are not clearly
demarcated, as such cardiac contour has a more major
impact than the thoracic contour. 22

Saiviroonporn et al.23 used the VGG-16 U-Net model to
assess the impact of AI-enabled reporting of CTR. Their
findings concluded that AI alone had higher variations than
human readers, but it could support the radiologist by re-
ducing observer variation and operation time.24 Another
study published by Li et al.20 for the calculation of CTR
using a custom 2D-U-Net architecture discovered a good
match between the performance of the DL model and the
human reader, with the difference statistically insignificant.
Chamveha et al.24 used U-Net architecture with the VGG-
16 model and demonstrated that nearly 76.5% of the CTR
measurements performed by the DL model were acceptable
to the human reader, resulting in significant time savings.

Our model correctly classified cardiomegaly in 94.9% of
the cases, and 63.8% of all CTR calculations were
within ±5% error of that calculated by the expert reader. The
Attention U-Net based deep learning model achieved an
excellent specificity of 100% and a precision of 99% on the
clinical test dataset, which has never been reported before to
our knowledge. Additionally, the radiologist aided by AI
showed relatively higher sensitivity and negative predictive
value (88.4% and 96.10%, respectively) as compared to the
unaided radiologist (40.50% and 84.20%, respectively).
Although the number of false positives for aided radiologist
was much higher at 78, the number of false negatives was
significantly lower at 28. Curiously the number of false
negatives and positives for the DL model stand-alone was
much lower. Despite the increase in FP by the aided ra-
diologist, the probability of the radiologist missing out on
the cases of true cardiomegaly which potentially can in
future lead to increased cardiac problems was much
lower (FN)

Most of the scans (37 out of 39) with cardiomegaly,
which were missed by the radiologist-B assessing car-
diomegaly visually without AI aid, were in the borderline
category (CTR=0.55–0.60), and after the AI aid, these were
then correctly classified by the radiologists as cardiomegaly.
As a result, we conclude that our DL model based on U-Net
architecture and segmentation is successful in accurately
calculating CTR. An improvement in the radiologist’s
performance, when aided by the model, illustrates the
model’s reliability and utility. The incorporation of the AI
model into the radiology workflow for the detection of
cardiomegaly can save a radiologist’s critical time and allow
the reader to allocate more time to look for subtle and
suspicious pathologies. The diagnostic accuracy of the AI
model alone was greater than that of the aided radiologist,
which could be attributed to the borderline cases that were
misclassified by the radiologist.

Our approach to testing the model had certain limita-
tions. Although our model proved to be highly specific andT
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precise in calculating the CTR, the test set included data
from a single hospital. Future studies with data from
multiple institutions/hospitals will be beneficial for in-
creasing the generalizability and robustness of the model.
The DL model for CTR calculation demonstrated excellent
performance in the retrospective analysis; whether the
model can be implemented prospectively in clinical practice
can be validated in future research. It is this prospective
deployment in clinical setting which will establish the actual
clinical utility, as then the model will be exposed to certain
factors unique to the real world – like difference in the
image due to inspiratory/expiratory position. With in-
creasing deployment of ID based categorisation of patient
investigations into a single digital file, an opportunity exists
for the DL model to draw inferences from multiple ra-
diographs to comment on the change of CTR in a patient
over time. However, this will need to be evaluated in the real
world with specific training of the model to detect, infer and
represent the radiograph comparisons.

In conclusion, our research presents a simple and concise
approach for calculating CTR from chest radiographs. Our
model achieved a sensitivity of 80% for a specificity over
99% in calculating the CTR. The observer performance test
demonstrated a significant statistical improvement in the
performance of the clinician when AI assistance was pro-
vided and also a multi-fold decrement in time spent on
quantifying CTR. Apart from reducing the likelihood of
missed finding due to inter-observer variations and saving
radiologists’ effort by avoiding manual calculation of CTR,
our approach has the added benefit of alerting radiologists to
the borderline cases that are not evident to the unaided
human eye and thus providing the algorithmic second
opinion. Since, an AI-alone system can occasionally mis-
classify the condition, a human-in-the-loop approach can
leverage both humans and AI to repeatedly perform the task
accurately.
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