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Background: The transcriptome public database and advances in biological

discoveries contributed to significant progresses in identifying the drivers of

cancer progression. Cellular senescence (CS) is considered as a leading factor

resulting in cancer development. The purpose of this study was to explore the

significance of CS-related genes in the molecular classification and survival

outcome of clear cell renal cell carcinoma (ccRCC).

Methods: CS-related genes were obtained from the CellAge database, and

patients from TCGA-KIRC dataset and ICGC dataset were clustered by

ConsesusClusterPlus. The characteristics of overall survival (OS), genomic

variation, and tumor microenvironment (TME) of each cluster were analyzed.

Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression

analysis was conducted to develop a CS-related risk model to score ccRCC

patients and assess the risk scores in predicting patients’ response to

immunotherapy and chemotherapy. A nomogram based on the risk model

was established to improve the risk stratification of patients.

Results: CcRCC was divided into three molecular subtypes based on CS-

related genes. The three molecular phenotypes showed different OS and

clinical manifestations, mutation patterns, and TME states. Five genes were

obtained from nine differentially expressed CS-related genes in the three

molecular subtypes to develop a risk model. Patients with ccRCC were
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divided into high- and low-risk subgroups. The former showed an unfavorable

OS, with a significantly higher genomic variation rate, TME score, and

numerous immune checkpoint expressions when compared to the low-risk

subgroup. Risk score reflected the response of patients to axitinib, bortezomib,

sorafenib, sunitinib, and temsirolimus.

Conclusions: In general, CS-related genes divided ccRCC into three molecular

subtypes with distinct OS, mutation patterns, and TME states. The risk model

based on the five CS-related genes can predict the prognosis and therapeutic

outcome of ccRCC patients, providing a theoretical basis for further study on

the molecular mechanism of CS-related ccRCC.
KEYWORDS

cellular senescence, clear cell renal cell carcinoma, tumor microenvironment,
prognostic model, immunotherapy, chemotherapy
Introduction

Renal cell carcinoma (RCC) is a fatal cancer of the

genitourinary system caused by renal epithelial cells, mainly

including three subtypes, namely, clear cell RCC (ccRCC),

papillary RCC (pRCC), and chromophobe RCC (chRCC) (1, 2).

CcRCC is themost common histological subtype that contributes to

about 70% of all RCC cases (3). A clear morphological marker of

ccRCC is the accumulation of large amounts of fat and glycogen in

the cytoplasm of tumor cells (4). Survival of cancer patients is highly

dependent on the stage when diagnosed. Specifically, the 5-year

relative survival rate for stage I, stage II/III regional disease (local

lymph node involvement), and stage IV with metastatic disease is

93%, 72.5%, and 12%, respectively (5). In a population-based study,

after patients received nephrectomy treatment, the 5-year survival

for stage I, II, III, and IV RCC was improved to 97.4%, 89.9%,

77.9%, and 26.7%, respectively (6). This indicated that surgical

resection with a therapeutic purpose has the potential to treat

patients with localized diseases, but 20%–30% of cases relapse

within 5 years, usually with metastatic diseases (7). In recent

years, tyrosine kinase inhibitor (TKI) cabozantinib and the

immunotherapy combination of nivolumab have been considered

as the first-line treatment for advanced ccRCC (8). Risk

stratification is an important part of clinical trial design in

ccRCC, and risk status often guides first-line treatment choice (8).

Different models have been developed for patients with local and

metastatic diseases. Two of themost commonly usedmodels are the

Memorial Sloan Kettering Cancer Center (MSKCC) model and

International Metastatic Renal Cell Carcinoma Database

Consortium (IMDC) model (9). The MSKCC model divides

patients with metastatic RCC into three risk groups based on five

characteristics associated with shorter survival, namely, low

Karnofsky performance status (<80%), high serum lactate
02
dehydrogenase (>1.5 times upper limit of normal), low

hemoglobin (<lower limit of normal), high “corrected” serum

calcium (>10 mg/dl), and absence of prior nephrectomy (10). The

IMDC model segregated patients with metastatic RCC receiving

first-line VEGF-targeted therapy into three risk categories according

to the risk factors, including anemia, thrombocytosis, neutrophilia,

hypercalcemia, Karnofsky performance status <80%, and <1 year

from diagnosis to treatment (11). Although MSKCC and IMDC

models are as effective as prognostic markers in clinical practice,

their prediction of treatment sensitivity is less accurate. Therefore,

the identification of alternative markers to classify tumors based on

their major genetic characteristics and molecular pathways has long

been the focus of RCC study (12).

Cellular senescence (CS) is an irreversible state of growth

arrest, which can be triggered by a variety of mechanisms,

including telomere shortening, epigenetic disinhibition of

INK4a/ARF loci, and DNA damage. Together, these

mechanisms limit excessive or abnormal cell proliferation so

that CS can suppress cancer development (13). At present, the

identification and characterization of key features of senescence,

the induction of senescence in cancer cells, or the elimination of

senescent cells through pharmacological interventions in aging

tissues are gaining increasing attention from researchers (14).

Although CS has an intrinsic tumor suppressor effect, senescent

cells are also considered as active contributors to tumorigenesis

through externally promoting many markers of cancer,

including evading the immune system (15). Therefore, it is

necessary to better understand the effects of CS on tumors.

This study classified ccRCC by analyzing known key

regulatory factors of CS and established a risk model and a

nomogram based on genes related to CS. Moreover, the

performance of the risk model for predicting the prognosis of

ccRCC, its relationship with tumor variation and tumor
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microenvironment (TME), and patients ’ response to

immunotherapy and chemotherapeutic drugs were analyzed.
Materials and methods

Obtaining and preprocessing of ccRCC
clinical data and cellular senescence-
related gens

The KIRC dataset was retrieved from The Cancer Genome

Atlas (TCGA, https://portal.gdc.cancer.gov/), and samples with

incomplete clinical data records were eliminated. The

transcriptional spectrum and clinical data of the remaining

526 samples were included in the training set. The verification

cohort containing 91 ccRCC samples was downloaded from the

International Cancer Genome Consortium (ICGC, https://dcc.

icgc.org/projects/LIRI-JP) database. CS-related genes were

obtained from the CellAge (https://genomics.senescence.info/

cells/) database, which contained 279 entries, and the majority

of genes were associated with replicative senescence (232 genes),

stress-induced senescence (34 genes), and oncogene-induced

senescence (28 genes) (16). After obtaining the data, we

followed the steps in the flowchart (Supplementary Figure 1).
Consensus clustering analysis

Employing the ConsesusClusterPlus package (http://www.

bioconductor.org/) in R, consensus clustering analysis was

carried out using CS-related genes to classify ccRCC patients.

During the analysis, the “partition around medoids” algorithm

was used to measure the distance with “Canberra”. The

resampling rate was set to 80%, and the bootstraps was set to

500. The number of clusters (2–10) was determined by the

consistency matrix and consensus clustering c (CDF).
Somatic mutation analysis

The Mutation Annotation Format (MAF) downloaded from

TCGA was resolved using the “maftools” package. Genomic

changes were evaluated by analyzing homologous recombination

defects (HRDs), aneuploidy score, fraction altered, and number of

segments, and tumor mutation burden (TMB) of different

ccRCC samples.
Proportion of immune cells infiltrated in
the TME and overall TME score

To evaluate the distribution of immune cell infiltration in the

TME, the proportion of 22 immune cells in each sample was
Frontiers in Immunology 03
calculated by CIBERSORT. The TME could also be evaluated by

calculating the stromal score and immune score and ESTIMATE

score of each sample using ESTIMATE. The results were

converted into a box chart, with a higher stromal score/

immune score indicating more matrix/immune components.
Construction and verification of a
cellular senescence-related risk model

The expression differences of CS-related genes in each of the

two molecular subtypes were analyzed by Limma. FDR <0.05

and | log2FC | >1 were defined as the cutoff values. Least

Absolute and Selection Operator (LASSO) regression analysis

and stepwise multivariable Cox regression analysis were

conducted on DEGs to build CS-related risk models according

to the following formula: risk score = sum of coefficients ×

expression level of prognosis CS-related genes. Based on the

formula, the risk score of samples in TCGA-KIRC and ICGC

was obtained and normalized. Patients were divided into high-

risk subgroup and low-risk subgroup. The Kaplan–Meier

survival curve and receiver operating characteristic (ROC)

curve were generated using R packet “survminer” and

“timeROC”, respectively, to assess the prognostic effect of the

risk model.
Quantitative real-time PCR

Five cell lines were purchased from ATCC, namely, HK-2,

786-O, A489, CAKI-1, and ACHN. Among them, HK-2 is a

human renal proximal convoluted tubule cell, and the other four

cell lines belong to ccRCC cells. To purify RNA from cell lines,

we used TRIzol Reagent (Solarbio, Beijing, China) according to

the manufacturer’s instructions. We synthesized cDNA from

total RNA using PrimeScript® RT Reagent Kit (Takara, Kusatsu,

Japan). The SYBR® Premix Ex Taq (TaKaRa) was used for

quantitative real-time PCR (qRT-PCR) assays. GAPDH was

chosen as an internal control. All the primers for mRNAs are

as follows:
XAF1-F: 5′-CTTACTGCCTGCGGTTCCTG-3′
XAF1-R: 5′-CGTACACCCAACCTGCTGGT-3′
IRF7-F: 5′-TGGTCCTGGTGAAGCTGGAA-3′
IRF7-R: 5′-GATGTCGTCATAGAGGCTGTTGG-3′
NTN4-F: 5′-GTACTTTGCGACTAACTGCTCC-3′
NTN4-R: 5′-TCCAGTGCATGGAAAAGGACT-3′
ETS1-F: 5′-CTGCCCGGGCGGATCCATGAGCTACT

TTGTGGATTCTGC-3′
ETS1-R: 5 ′-CGGTATCGATAAGCTTTCACTCGT

CGGCATCTGG-3′
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Fron
KL-F: 5′-CCAAAGTCTGGCATCTCTACAAC-3′
KL-R: 5′-AGCCTAGCACAAAGTCAAGAGAC-3′
GAPDH-F: 5′-TGCACCACCAACTGCTTAGC-3′
GAPDH-R: 5′-GGCATGGACTGTGGTCATGAG-3′
Western blot

The cells were washed with washing buffer and lysed in RIPA

buffer (R0010, Solarbio, China) containing protease inhibitors

(Roche). The protein concentration was detected using

bicinchoninic acid (BCA) protein assay kit (Pierce, Rockford,

IL). The soluble components mixed with 5× loading buffer were

boiled for 5 min. Protein was separated by SDS-PAGE and

transferred to a PVDF membrane (Merck Millipore,

Billerica, MA).

After being blocked with 5% non-fat milk, the membranes

were incubated overnight at 4°C with appropriate dilutions of

primary antibodies against XAF1 (13805, Cell Signaling), IRF7

(sc-74471, Santa Cruz), NTN4 (sc-365280, Santa Cruz), ETS1

(14069, Cell Signaling), and KL (ab203576, Abcam). Then, the

PVDF membranes were washed with TBST; after that, they were

incubated with a corresponding secondary antibody for 2 h. The

proteins were identified by Pierce SuperSignal West Pico

Chemiluminescent Substrate (Thermo Fisher, Waltham, MA),

as described by the manufacturer. A GAPDH antibody was used

as an internal reference.
Prediction of immunotherapy response
in risk groups

The potential relationship between risk score and efficacy of

immunotherapy was evaluated through analyzing the expression

of immune checkpoint molecules, an effective marker of

immunotherapy, in different risk scores. Tumor Immune

Dysfunction and Exclusion (TIDE, http://tide.dfci.harvard.edu/)

is a computational method used to simulate two main

mechanisms of tumor immune evasion. The response to

immunotherapy was evaluated by calculating the TIDE score of

each patient in the risk group.
Prediction of chemotherapy response in
risk groups

The relationship between risk score and chemotherapy was

assessed by predicting the correlation between tumor drug

resistance-related cell tumor-associated macrophage (TAM),
tiers in Immunology 04
myeloid-derived suppressor cell (MDSC), cancer-associated

fibroblast (CAF), and risk score. According to Genomics of

Drug Sensitivity in Cancer (GDSC https://www.cancerrxgene.

org/), the half-maximal inhibitory concentration (IC50) served

as an index to compare the response of risk groups to

chemotherapeutic drugs.
Development of a nomogram

Univariate Cox and multivariate Cox regression analyses

were performed on the clinicopathological features obtained

from TCGA-KIRC and the risk score so as to screen

independent factors significantly related to the prognosis of

ccRCC. The “Rms” package was used to develop a nomogram

with comprehensive independent prognostic factors. The

consistency between nomogram-predicted ccRCC survival and

the actual survival results was analyzed by generating a

calibration plot. Decision curve analysis was performed to

compare the net benefits of different clinical features,

nomogram, and risk score.
Statistical analysis

All Kaplan–Meier survival curves were visualized by the

“survminer” package. The “forestplot” package of R was used to

display the results of univariate and multivariate Cox regression

analyses. The correlation between variables was evaluated by

Pearson correlation test. All the bioinformatics data processing

was conducted in R 4.0.1 software. If not specified, P < 0.05

indicated a statistical significance.
Results

Three molecular subtypes of ccRCC
were identified based on CS-related
genes

The expression of CS-related genes was extracted from the

expression profile of TCGA-KIRC, and 153 genes associated

with ccRCC survival were obtained using univariate Cox

regression analysis with coxph function. Five hundred twenty-

six samples in TCGA-KIRC were clustered according to the

expression of 153 genes. CcRCC was divided into three

molecular subtypes, namely, cluster 1 (C1), cluster 2 (C2), and

cluster (C3) (Figures 1A–C). We noticed significant differences

in survival rates among the three molecular subtypes of TCGA-
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KIRC. The highest survival rate was C3 (more than 75%), the

middle survival rate was C2 (between 65 and 75%), and the

lowest survival rate was C1 (close to 50%) (Figures 1D, E). There

were also significant differences in survival among the three

subtypes of ICGC. It should be pointed out that the 3-year

survival rate of the C3 subtype was significantly higher than that

of C2 and C1; however, from years 3 to 6, the survival rate of C2

was higher than that of C1 and C3 (Figure 1F). Overall, the

survival rate of C1 was lower than 50%. The proportion of

surviving patients in C2 was higher than 80%. The proportion of

surviving patients in C3 was lower than 75% (Figure 1G).
Clinical characteristics of the three
subtypes

To explore the relationship between molecular subtypes and

pathological features of patients with ccRCC, different clinical
Frontiers in Immunology 05
features of each molecular subtype in TCGA-KIRC and ICGC

data sets were analyzed. In the former data set, there were

significant differences in T stage, M stage, pathological stage,

grade, and gender among the three subtypes. Moreover, C1

patients had a more advanced T stage, M stage, and pathological

stage; a higher grade; and a large proportion of male patients

(Figure 2A). Only significant correlations between molecular

subtypes and T stage, M stage, and pathological stage were

detected in ICGC. The trend of T stage, M stage, and

pathological stage of the three subtypes was the same as that

observed in TCGA-KIRC dataset (Figure 2B).
Mutation and TME characteristics of the
three subtypes

An analysis and comparison of aneuploidy score, HRDs,

fraction altered, number of segments, and TMB of the three
B

C D

E F G

A

FIGURE 1

Three molecular subtypes of ccRCC were identified based on CS-related genes. (A) Consensus clustering cumulative distribution function (CDF)
of k = 2–10. (B) The trend under the CDF curve when k = 2 to 9. (C) Heatmap depicted sample clustering at consensus k = 3. (D) The Kaplan–
Meier curve of survival analysis for three molecular subgroups in TCGA-KIRC. (E) The proportion of patients who survived and died in each
subgroup of TCGA-KIRC. (F) The Kaplan–Meier OS curves of three molecular subtypes in ICGC. (G) Survival and mortality of each molecular
subtype in ICGC.
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molecular subtypes showed that there were significant

differences in these genomic variation indexes among the three

subtypes. C1 had the most prominent aneuploidy score, HRDs,

fraction altered, number of segments, and TMB (Figure 3A). The

waterfall chart revealed that the three subtypes had different

mutation patterns. The mutation frequency of BAP1 was the

highest. The mutation mode of C1 was mainly frame shift

deletion, and the main mutation mode of most genes in C2

and C3 was missense mutation (Figure 3B).

Because of the close relationship between TMB and TME, we

further analyzed the proportion of immune cells in the three

subtypes of TME. For the three subtypes of TCGA-KIRC, the

proportions of naive B cells, CD8 T cells, resting memory CD4 T

cells, activated memory CD4 T cells, helper follicular T cells,

regulatory T cells, activated NK cells, monocytes, M0

macrophages, M1 macrophages, M2 macrophages, resting

dendritic cells, activated dendritic cells and resting mast cells,

and neutrophils in the TME were significantly different

(Figure 4A). The stomal score of C1 was noticeably lower
Frontiers in Immunology 06
compared to C2 and C3, and the immune score and

ESTIMATE of C3 were significantly lower than those of C1

and C2. Among the three subtypes of TCGA-KIRC, C1 had the

lowest matrix content and C3 had the lowest level of immune

cell infiltration and tumor purity (Figure 4B). The three subtypes

in the ICGC dataset showed significant differences in the

proportion of memory B cells, CD8 T cells, helper follicular T

cells, regulatory T cells, M1 macrophages, resting dendritic cells,

activated dendritic cells, and resting mast cells (Figure 4C).

Moreover, significant differences in stromal score were found

among the three subtypes, and the trend was the same as that of

TCGA-KIRC (Figure 4D).
Construction and verification of the CS-
related risk model

A total of nine DEGs were identified by the difference

analysis on CS-related genes between the two molecular
B

A

FIGURE 2

Clinical characteristics of three subtypes. (A) T stage, N stage, M stage, pathological stage, grade, age, and gender characteristics of three subtypes
in TCGA-KIRC. (B) T stage, N stage, M stage, pathological stage, grade, age, and gender characteristics of three subtypes in ICGC. *P < 0.05.
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subgroups (ETS1, TLR3, KL, NTN4, SFN, IGFBP1, IRF7,

SOCS1, XAF1) (Supplementary Figure 2). The LASSO

regression analysis on the DEGs demonstrated that the

coefficients of nine DEGs were all greater than 0 according to

the optimal value of l (Figures 5A, B). To screen out the genes

with the greatest influence on ccRCC survival from nine DEGs,

stepwise multivariate Cox regression was performed, which is a

method of multiple regression analysis. Regression analysis is

used to study the interdependent relationship between multiple

variables, while stepwise regression analysis is often used to

establish the optimal or appropriate regression model, so as to

further study the dependence relationship between variables.

We constructed a multivariate COX regression model for five

genes, which were composed of two risk factors (XAF1 and

IRF7) and three protective factors (NTN4, ETS1, and KL)

(Figure 5C). The risk model calculated the risk score of each

sample in TCGA-KIRC dataset and depicted the survival

status. The death rate of patients in the high-score group

increased significantly. For the five genes, the expression of

risk factors XAF1 and IRF7 was upregulated with the increase

in risk score, while that of protective factors was opposite to
Frontiers in Immunology 07
that of risk factors (Figure 5D). The expression of each gene in

the risk model independently predicted the prognosis of

ccRCC. The high expression of each protective factor

represented a higher OS in the ccRCC sample, while the high

expression of each risk factor indicated a poor prognosis in the

ccRCC sample (Supplementary Figure 3). Besides, qRT-PCR

and Western blot were also performed to verify the mRNA

levels and expression levels of the five genes. Compared with

normal HK-2 cells, the transcription and expression levels of

XAF1 and IRF7 in ccRCC cells were significantly increased,

while NTN4, ETS1, and KL were significantly decreased

(Figure 6 and Supplementary Figure 4). For patients in

TCGA-KIRC, the OS of the low-risk score subgroup was

significantly higher than that of the high-risk score subgroup

(Figure 5E). The ROC curve showed that the AUC value of risk

score for predicting 1-, 2-, and 3-year survival rates was 0.72, 0.69,

and 0.71, respectively (Figure 5F). The risk model was used to

predict the survival of patients in ICGC. The results showed that

the long-term survival rate of patients with a low-risk score was

significantly higher than that of patients with a high-risk score

(Figure 5G). The prediction efficiency of the model in the ICGC
B

A

FIGURE 3

Mutation analysis of three subtypes. (A) The difference among three subtypes in aneuploidy score, HRDs, fraction altered, number of segments,
and tumor mutation burden. (B) Mutation frequency and mutation pattern of the 20 most frequently mutated genes in the three subtypes. *P <
0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. ns, not significant.
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cohort was also high, with AUC values of 0.67,0.69, and 0.73 for 1,

3, and 5 years, respectively (Figure 5H).
The risk score characterized by distinct
mutation profiles

HRDs, fraction altered, number of segments, and TMB in

high- and low-risk groups were analyzed o describe the

genomic abnormalities in the risk model established based on

CS-related genes, aneuploidy score. Aneuploidy score, HRDs,

fraction altered, and number of segments in the high-risk

group were significantly higher than those in the low-risk

group (Figure 7A). The correlation between risk score and

these variation types was high, and the coefficients were greater

than 0 (Figure 7B). The somatic mutations in the high-risk

subgroup were more widely distributed, and the mutation rates

were relatively higher compared to the low-risk subgroup

(Figure 7C). The results showed that the risk model could

effectively reflect the genomic mutation characteristics

of ccRCC.
Frontiers in Immunology 08
The risk score characterized by distinct
immune profiles

We further described the biological pathway of risk score

mediated by CS-related genes and analyzed the relationship

between risk score and KEGG signal pathway. Figure 8A shows

that risk scorewaspositivelycorrelatedwithbaseexcisionrepairbut

was negatively correlated with metabolic regulation signals (fatty

acid metabolism, propanoate metabolism, butanoate metabolism,

citrate cycle TCA cycle, valine leucine isoleucine degradation) and

metastasis-related signals (adherens junction and tight junction).

The difference analysis of 22 kinds of immune cell proportion

between thehigh-riskgroupand the low-riskgroupshowed that the

proportion ofmemory B cells, CD8T cells, activatedmemoryCD4

T cells, helper follicular T cells and regulatory T cells, and M0

macrophages in the high-risk score subgroup was significantly

higher than that in the low-risk score group,while the proportionof

naive B cells, resting memory CD4 T cells, monocytes, M1

macrophages, M2 macrophages, and resting dendritic cells and

resting mast cells was noticeably reduced in the high-risk score

group (Figure 8B). The results of Pearson correlation analysis

demonstrated the relation between risk score and plasma cells,
B

C D

A

FIGURE 4

TME characterization of three clusters. (A) The proportion of immune cells in the three subtypes of TCGA-KIRC dataset. (B) Stromal score and
immune score and ESTIMATE score among three subtypes in TCGA-KIRC dataset. (C) The proportion of immune cells among the three clusters
of the ICGC dataset. (D) Differences of stromal score, immune score, and ESTIMATE score among three clusters of ICGC dataset. *P < 0.05, **P
< 0.01, ***P < 0.001, ****P < 0.0001. ns, not significant.
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CD8T cells, restingmemoryCD4T cells, activatedmemoryCD4T

cells, helper follicular T cells, regulatory T cells, monocytes, M0

macrophages,M2macrophages, and restingmast cells (Figure 8C).

In addition, patients with a high-risk score showed a higher

immune score and ESTIMATE score than those with a low-risk

score (Figure 8D).
Patients’ response to immunotherapy
and chemotherapy predicted by the risk
model

We evaluated the relationship between risk model and

immune checkpoint expression. Fourteen out of the 21

immune checkpoints were detected to be differentially

expressed between the high-risk subgroup and the low-risk

subgroup. It should be noted that the expression of CTLA4

and PDCD1 in the high-risk group was significantly higher than

that in the low-risk group. Additionally, T-cell response markers

(LAG3 and BLTA) were also highly expressed in high-risk

groups (17), indicating that the risk model had the ability to
Frontiers in Immunology 09
identify potential immune disorders (Figure 9A). Then, the

relationship between risk score and immunotherapy response

was investigated. The high-risk subgroup showed higher tumor

immune dysfunction and TIDE, indicating a higher probability

of potential immune escape in the TME of the high-risk group

(Figure 9B). The value of risk score in predicting the response to

chemotherapy was also explored. Among the three tumor

immune cells associated with chemotherapy resistance, the

level of M2 TAM in the high-risk subgroup was significantly

lower than that in the low-risk group (Figure 9C). Eight clinical

chemotherapeutic drugs were selected to analyze their sensitivity

in high-risk and low-risk subgroups. Compared with the IC50

value of the two groups, the high-risk subgroup responded more

actively to axitinib. The low-risk subgroup responded better to

bortezomib, sorafenib, sunitinib, and temsirolimus (Figure 9D).

The nomogram improved the prognostic
value of the CS-related risk model

To screen the independent prognostic factors of ccRCC,

univariate and multivariate Cox regression analyses were
B C

D E

F

A G

H

FIGURE 5

Establishment and verification of the CS-related risk model. (A) The LASSO coefficient curves of nine CS-related genes. (B) Ten-fold cross-
validation of adjusting parameter selection in LASSO regression. (C) LASSO Cox coefficient of the five genes. (D) The arrangement of risk score,
the depiction of survival status, and the expression trend of five genes in the samples of TCGA-KIRC dataset. (E) Kaplan–Meier curve of survival
of the high-risk group and low-risk group in TCGA-KIRC. (F) The ROC curve showed the AUC of risk score predicting the survival of patients in
TCGA-KIRC. (G) The Kaplan–Meier curve depicts the survival trend of high-risk and low-risk patients in ICGC datasets. (H) The ROC curve for
patients OS in ICGC was predicted by the risk model.
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performed. M stage, age, and risk score had independent

prognostic values in ccRCC (Figures 10A, B). A nomogram

combining these independent prognostic variables of ccRCC was

developed (Figure 10C). The prediction lines of 1-, 3-, and 5-year

survival of the nomogram were close to the 45° dotted line of

calibration analysis, indicating that its prediction performance

was ideal (Figure 10D). The decision curve showed that the

nomogram had a higher net income than other prognostic

indicators of ccRCC (Figure 10E). These results suggested that

the nomogram improved the predictive performance of the risk

model and was a potentially ideal model for predicting the

prognosis of ccRCC.
Discussion

CcRCC is a group of highly heterogeneous renal tumors

developed from different genetic and epigenetic drive

mechanisms and molecular pathways. As a result, patients’

responses to treatment vary widely, increasing the additional

complexity to the already challenging decision-making process
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in treatment (12). A detailed pathological classification of

ccRCC is highly needed currently. The identification of

specific markers with the highest sensitivity will induce more

biologically oriented tumor classification, which will facilitate

treatment at all stages of tumorigenesis (18). Publicly available

comprehensive molecular marker libraries offer high-quality

resources for the current research. CellAge is a database that

stores CS-related genes. We analyzed the genes included in this

database and identified three molecular subtypes related to the

CS of ccRCC. The three molecular phenotypes showed

different prognoses and clinical manifestations, mutation

patterns, and TME status.

The molecular characteristics of the initiation and

progression of ccRCC are increasingly defined. The TRACERx

kidney study and other studies describing the interaction

between tumor genomics and tumor microenvironment

remodeling provide important new insights into the

molecular drivers of ccRCC ontogeny and progression (3).

CS-related genes have also been used to characterize the

clinical prognosis of a variety of cancers, such as diffuse

gliomas (19), lung adenocarcinoma (20), and gastric cancer

(21). In this study, considering the heterogeneity of ccRCC, we
FIGURE 6

Expression levels of five genes in the risk model in normal kidney cells and ccRCC cells measured by Western blot.
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established a risk model based on DEGs filtered from CS

molecular subtypes. Although the research procedure of

ccRCC in this study is similar to the new study published by

Zhou et al. (22), the risk model established was different. The

risk model constructed by Zhou is composed of nine genes

P3H1, PROX1, HJURP, HK3, CDKN1A, AR, VENTX,

MAGOHB, and MAP2K6, while the risk model constructed
Frontiers in Immunology 11
by our study included five genes (XAF1, IRF7, NTN4, ETS1,

and KL).

Senescent cells secrete a variety of proteins, such as

inflammatory cytokines, chemokines, and growth factors,

which are important components of the TME (23). Moreover,

senescent cells can reshape surrounding tissue by regulating the

properties of neighboring cells, including stromal and immune
B

C

A

FIGURE 7

The risk score characterized by distinct mutation profiles. (A) Aneuploidy score, HRDs, fraction altered, number of segments, and TMB
between high-risk and low-risk subgroups. (B) Correlation analysis between risk score and aneuploidy score, HRDs, fraction altered, number
of segments, tumor mutation burden. (C) Distribution of gene mutations in the high-risk and low-risk subgroups. **P < 0.01, ****P < 0.0001.
ns, not significant.
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cells (24). Therefore, CS-related genes may affect the TME.

Additionally, pan-cancer analysis showed that ccRCC was one

of the tumors with the greatest immune infiltration (25).

Therefore, we also analyzed the TME effect of CS-related

genes on ccRCC. Risk models established using CS-related

genes were associated with the proportion of most immune

cells. In the high-risk score subgroup, the proportion of memory

B cells, CD8 T cells, activated memory CD4 T cells, helper

follicular T cells, and regulatory T cells and M0 macrophages

was significantly higher, while that of naive B cells, resting

memory CD4 T cells, monocytes, M1 macrophages, M2

macrophages, and resting dendritic cells and resting mast cells

was significantly reduced.

Another remarkable feature of ccRCC is great changes in

cell metabolism (4). The results of this study showed that the

risk model was closely associated with a variety of metabolic

biological pathways, such as fatty acid metabolism, propanoate

metabolism, butanoate metabolism, citrate cycle TCA cycle,

and valine leucine isoleucine degradation. Previous reports

mentioned that truncal mutations in ccRCC including

mutations in VHL, SET2, PBRM1, and BAP1 may lead to

genomic instability and promote defects in the DNA repair

pathway (3). Here, the BAP1 mutation frequency was the

highest in the high-risk group, and DNA damage-related
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patterns including aneuploidy score, HRDs, fraction altered,

number of segments, and TMB were associated with the high-

risk group. Genomic instability is one of the important markers

of cancer including ccRCC, which is a feature that promotes

cancer progression and resistance to treatment (26). Higher

HRD scores were associated with poorer outcomes for several

cancers (27). In addition, markers of genomic stability

including fraction altered, number of segments, and TMB

usually have a consistent trend in cancer (28). Four of the

markers here assessed for genomic instability were significantly

higher in the high-risk group, providing evidence for poor

outcomes in the ccRCC samples in the high-risk group.

The characteristics of the TME could affect disease biology

as well as the response to systemic therapy (25). Here, we

detected a significant increase in the expression of CTLA4 and

PDCD1 in the high-risk group. In addition, T-cell response

markers LAG3 and BLTA were also highly expressed in the

high-risk subgroup, indicating that the risk model had the

ability to identify potential immune disorders. Furthermore,

correlation analysis of risk score and tumor immune

dysfunction and TIDE confirmed the existence of immune

escape in ccRCC. Interestingly, our analysis also showed that

risk score was related to the tumor immune cell level associated

with drug resistance.
B

C D

A

FIGURE 8

The immune characteristics of ccRCC were characterized by the risk model. (A) The relationship between risk score and KEGG signal pathway.
(B) Analysis for the difference in the proportion of 22 kinds of immune cells between the high-risk subgroup and low-risk subgroup. (C) Pearson
correlation between risk score and 22 kinds of immune cells. (D) The difference of three TME-related scores between the high-risk subgroup
and low-risk subgroup. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. ns, not significant.
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The genes in the risk model should also be more

comprehensively studied. XAF1 has been reported as a

prognostic biomarker and therapeutic target for lung

squamous cell carcinoma (29) and pancreatic cancer (30).

AXF1 has previously been found to contribute to endothelial

cell senescence (31). Interferon regulatory factor 7 (IRF7) was

overexpressed in gastric adenocarcinoma, which was

significantly correlated with poor OS and immune infiltration

(32). The reactivation of IFN-regulated genes by transcription

factors IRF7 is sufficient to induce cellular senescence (33).

IRF7 was involved in the immune response of low-grade

glioma to influence tumor progression (34). The expression

of nerve guidance factor 4 (NTN4), which is a regulatory

molecule of epithelial–mesenchymal transformation in breast

adenocarcinoma, was reduced in breast cancer samples (35).

More importantly, NTN4 protected glioblastoma cells from

drug temozolomide-induced senescence, indicating its effect on

tumor CS (36). KL deficiency reduces telomerase activity by

altering the expression of TERF1 and TERT, leading to stem
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cell senescence (37). Ets1 belongs to the large family of the ETS

domain family of transcription factors and is associated with

poor prognosis in most cancers (38). ETS1 has already been

reported to be strongly associated with the aging of 27 different

tissues in two different species (39). These CS-related genes in

the risk model played important roles in a variety of cancers,

and their combination in one model was acceptable.

There are several limitations to this study. First, we only

considered heterogeneity between ccRCC samples and ignored

heterogeneity within tumors. Secondly, the sample size of the

study is relatively limited and lacks the support of a large

amount of data. In addition, the results still need further

experimental verification.

In brief, this study analyzed the molecular classification of

ccRCC based on CS-related genes and revealed the clinical

characteristics, prognosis, and TME characteristics of different

molecular categories. A new molecular model related to CS was

developed, which could effectively reflect the genomic

mutation and TME characteristics of ccRCC and the effect of
B C

D

A

FIGURE 9

Risk model predicted response to immunotherapy and chemotherapy. (A) The level of 21 immune checkpoints in the high-risk subgroup and
low-risk subgroup. (B) The relationship between risk score and tumor immune exclusion, tumor immune dysfunction, and TIDE. (C) Association
of risk score with chemotherapy-resistant cells MDSC, CAF, and M2 TAM. (D) Sensitivity of eight types of chemotherapeutic drugs in high-risk
and low-risk subgroups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns, not significant.
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immunotherapy/chemotherapy. The current model should be

further explored and may provide some novel insights into the

study of the regulatory mechanism underlying the CS

in ccRCC.

Data availability statement

The datasets presented in this study can be found in online

repositories. All data relevant to the study are included in the

article or uploaded as online supplemental information.

Author contributions

ZW, SW, and CL designed the research. CL, YW, LN, LC,

ML, HQ, SL, and SW collected and analyzed the data. CL, YW,
Frontiers in Immunology 14
and LN drafted the manuscript. ZW and SW reviewed and

revised the manuscript. All authors contributed to the article and

approved the submitted version.
Funding

This study was supported by the Appropriate Health

Technology Promotion Project of Chongqing (2020jstg030),

Science and Technology Innovation Projects for Social

Undertakings and Livelihood Security of Chongqing

(cstc2017shmsA130106), Clinical Medical Research Talents

T r a in i ng P rog r am o f Army Med i c a l Un i v e r s i t y

(2018XLC3029), and National Natural Science Foundation of

China (nos. 81472698).
B

C D

A

E

FIGURE 10

Construction and evaluation of nomogram based on independent prognostic indicators of ccRCC. (A, B) Univariate and multivariate Cox
regression analyses screened the independent prognostic indicators of ccRCC from the clinical features of ccRCC and risk score. (C)
Construction of a nomogram in conjunction with variables that independently predict ccRCC prognosis. (D) The calibration plot of the
nomogram. (E) Decision curve analysis for ccRCC prognosis-related index and nomogram.
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