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Abstract

Deficits in cognition, reward processing, and motor function are clinical features relevant to both 

aging and depression. Individuals with late-life depression often show impairment across these 

domains, all of which are moderated by the functioning of dopaminergic circuits. As dopaminergic 

function declines with normal aging and increased inflammatory burden, the role of dopamine 

may be particularly salient for late-life depression. We review the literature examining the role 

of dopamine in the pathogenesis of depression, as well as how dopamine function changes with 

aging and is influenced by inflammation. Applying a Research Domain Criteria (RDoC) Initiative 

perspective, we then review work examining how dopaminergic signaling affects these domains, 

specifically focusing on Cognitive, Positive Valence, and Sensorimotor Systems. We propose a 

unified model incorporating the effects of aging and low-grade inflammation on dopaminergic 
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functioning, with a resulting negative effect on cognition, reward processing, and motor function. 

Interplay between these systems may influence development of a depressive phenotype, with an 

initial deficit in one domain reinforcing decline in others. This model extends RDoC concepts into 

late-life depression while also providing opportunities for novel and personalized interventions.

INTRODUCTION

Late-life depression (LLD), or Major Depressive Disorder (MDD) in older adults, is a source 

of disability, increased risk for suicide, and elevated mortality [1]. LLD is a heterogeneous 

disorder, including individuals with an earlier life onset and recurrent episodes, and 

individuals with their first depressive episode occurring in late life. Cerebrovascular changes 

are common in LLD [2] and some individuals may experience neurodegenerative processes 

[3]. Given this heterogeneity, the clinical presentation of LLD often differs from depression 

in younger adults [4], with cognitive deficits including executive dysfunction, motivational 

deficits, and comorbid physical disability and mobility impairment being common [5]. 

As dopaminergic processes mediate or influence these behaviors, this constellation of 

symptoms suggests that dopaminergic dysfunction may be a common contributor to LLD 

symptoms.

The specific mechanisms, degree of influence, and reversibility of dopaminergic circuit 

contributions to LLD are unclear. Human studies of dopamine signaling in MDD often 

focus on reward processing in younger adults to the exclusion of cognitive and sensorimotor 

domains relevant for older adults. Normal aging and age-related proinflammatory processes 

are further associated with declines in dopaminergic molecular functioning and impairment 

in dopamine signaling [6–8], while depression itself may accelerate aging processes [9]. 

The confluence of age-related declines and pre-existing dopaminergic system functional 

alterations may increase vulnerability to depression and exacerbate the presentation of 

episodes in later life.

This manuscript synthesizes work elucidating the role of dopamine within a Research 

Domain Criteria (RDoC) framework, focusing on cognitive function, reward processing, and 

sensorimotor system function. We focus on evidence supporting dopaminergic contributions 

to these domains in the context of depression, aging, and inflammation. As work in this 

area is relatively sparse, we review studies of younger populations when geriatric data 

are unavailable. We then present an integrative model positing that aging, in concert with 

pro-inflammatory shifts, decreases dopamine signaling. Resultant changes in behaviors 

supported by these circuits then combine and interact to influence LLD phenotypes. Finally, 

we discuss the potential significance and treatment implications of this line of research in 

older adults.
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DOPAMINERGIC SYSTEM CHANGES SEEN IN DEPRESSION AND THE 

EFFECTS OF AGING AND INFLAMMATION

Dopamine Circuit Anatomy

Dopamine-producing neurons originate in brainstem nuclei, with well-described projections 

through the medial forebrain bundle that innervate disparate cortical and subcortical regions 

[10] (Table 1; Figure 1). Key pathways include 1) the mesocortical pathway projecting 

from the ventral tegmental area to frontal and temporal cortices, important for attention, 

executive function, and working memory. 2) The mesolimbic pathway projects from the 

ventral tegmental area to the ventral striatum (VS) / nucleus accumbens (NAc) and is 

involved in motivation and reward processes. 3) The nigrostriatal pathway, projecting from 

the substantia nigra, pars compacta to the caudate and putamen of the dorsal striatum, plays 

a role in the planning and execution of motor function. Despite this classical delineation 

of function, and regional variations in some dopamine effects, modern work associates 

the firing of all midbrain dopamine cell groups with reward-based learning supporting 

goal-directed behaviors [11]. Animal models suggest that dopamine is also co-released 

with norepinephrine from locus coeruleus neurons [12,13]. While dopamine is a precursor 

of norepinephrine, locus coeruleus release of dopamine may be important for hippocampal-

dependent memory processes [14,15].

Dopaminergic System Differences in Depression

Most studies examining dopamine’s role in MDD focus on aspects of reward processing 

mediated by mesolimbic projections [16]. While published data are consistent that dopamine 

release in the NAc influences motivation and approach responses [17–19], it has been 

challenging to precisely specify the nature of dopaminergic disturbances in MDD. Studies 

of D2/D3 receptor binding using PET in young or midlife populations are mixed, with 

some finding increased receptor availability in MDD, potentially reflecting decreased 

dopaminergic activity and homeostatic receptor upregulation [20–22], while others report 

no differences [23–25]. In contrast, PET and postmortem studies of adult MDD [26,27] 

and PET studies in geriatric LLD [28] consistently demonstrate lower dopamine transporter 

(DAT) availability in the putamen, NAc, ventral tegmental area, and superior midbrain. This 

reduction in DAT availability has been interpreted as possible compensatory downregulation 

due to low dopamine signaling. Functional MRI studies using reward tasks in MDD can 

report divergent results, although decreased striatal activation to reward emerges as a 

reasonably consistent finding in meta-analyses [29,30]. Variability across broader cortico-

striatal networks innervated by dopamine may be related to heterogeneity within the clinical 

diagnosis of MDD and a lack of focus on specific symptoms or behavior.

Given MDD’s heterogeneity, a superior approach may be to focus on endophenotypes 

characterized by prominent behavior or symptoms influenced by dopamine. Relevant 

phenotypes where dopaminergic system dysfunction may play a role include MDD 

characterized by prominent anhedonia [20] or psychomotor retardation [21]. LLD 

phenotypes, including LLD characterized by prominent apathy, may be particularly 

informative as dopaminergic function declines with aging. Although often associated with 

Alzheimer’s disease [31], apathy is particularly common in LLD, occurring in 30–40% of 
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patients [32]. Apathy may be more common in LLD patients with a later-life onset or who 

are amongst the oldest-old [33,34]. Such a focus on pertinent clinical phenotypes may help 

identify the relationship between measures of dopamine signaling and key features of MDD.

Dopaminergic System Changes with Aging

Aging is associated with widespread changes in dopamine signaling. There is a significant 

loss of dopaminergic neurons in the substantia nigra [35] during aging potentially with 

additional cell loss in parts of the ventral tegmental area [36]. Post-mortem and in vivo 
neuroimaging studies demonstrate that aging is also associated with decreased dopamine 

receptor binding potential and loss of dopamine transporters (DAT) [6–8]. This decline 

results in an average loss in D2-like receptor concentrations on the order of 9% per decade 

from early adulthood [8]. Even without Parkinson’s disease (PD), 25% of older adults have 

a striatal DAT binding threshold more than 3 standard deviations below that of younger 

subjects [37]. Vesicular monoamine transporter 2 (VMAT2) binding also declines with 

aging, which is important as VMAT2 transports dopamine and other monoamines from the 

cytosol into synaptic vesicles. Age-related D2/D3 receptor binding loss is not uniform across 

brain regions. Temporal and frontal cortical regions exhibit higher rates of decline at 6–16% 

per decade, while the parahippocampal gyrus, caudate, putamen, thalamus and amygdala 

exhibit slower declines of 3–5% per decade [7]. This diminishment of dopaminergic 

tone contributes to decreased processing speed [38] and reaction time [39], fine motor 

dysfunction [40], slowed gait, and impaired balance [41,42].

Such age-related changes in dopamine function, occurring diffusely across the striatum 

and other regions including the midbrain, anterior cingulate cortex, and insula [43–45], are 

distinguishable from denervation patterns seen in PD [43,46]. Similarly, histological changes 

in the substantia nigra differ between PD and normal aging [47]. As dopamine synthesis 

shows weaker rates of decline than other measure of dopamine function [8], normal aging 

may be characterized by a compensatory process wherein dopamine synthesis increases in 

order to maintain function.

Effects of Inflammation on Dopaminergic System Function

Aging is associated with increased markers of chronic, low-grade inflammation [48], 

referred to as “inflammaging” [49]. This low-grade inflammation may have multiple 

causes, including aging of the immune system, inadequate elimination of cellular debris, 

mitochondrial changes, and harmful products produced by oral or gut microbiota [50,51]. 

This increase in inflammation affects multiple systems, including negatively impacting 

dopamine system functioning. It is associated with a host of poor medical outcomes [51] 

and may trigger a deleterious cascade contributing to depression [2,52]. Higher levels of 

circulating inflammatory markers including c-reactive protein (CRP), tumor necrosis factor 

(TNF), and interleukin-6 (IL-6) are common immunological abnormalities observed in 

elders and associated with LLD [53,54]. In the aging brain, this pro-inflammatory shift 

is characterized by increased numbers of activated and primed microglia and decreased 

anti-inflammatory molecules [55].
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Inflammaging is associated with adverse structural CNS changes commonly observed 

in LLD [2,56], including increased cerebrovascular risk, often characterized by white 

matter hyperintensity (WMH) burden, and decreased hippocampal volumes [57]. 

Chronic pro-inflammatory activation may increase depression vulnerability [58] through 

additional pathways, including hypothalamus–pituitary–adrenal axis activation, decreased 

glucocorticoid sensitivity of immune cells, altered neurotransmitter metabolism, decreased 

neurogenesis and impaired neuroplasticity [59,60]. Inflammatory cytokines may adversely 

affect dopaminergic systems by limiting tetrahydrobiopterin (BH4) availability and 

decreasing dopamine synthesis, as is evident in aging [61]. They may also impair dopamine 

release and reuptake mechanisms [62].

Studies involving administration of inflammatory cytokines or cytokine inducers (e.g., 

vaccination, endotoxin) highlight the clinical effects of inflammation on dopamine-mediated 

behaviors [63]. Administration of inflammatory cytokine therapies such as interferon alpha 

(IFN)-alpha are notorious for causing clinical depression and high rates of anhedonia, 

fatigue, psychomotor and sleep disturbances, symptoms associated with reduced dopamine 

function [62,64,65]. These clinical effects of cytokine therapies are accompanied by altered 

glucose metabolism and dopamine turnover in the basal ganglia [64,65] that correlate with 

symptoms of reduced motivation. This clinical evidence of decreased dopamine turnover 

parallels nonhuman primate data that depressive symptoms arising in response to IFN are 

accompanied by declines in dopamine metabolism [63]. Moreover, both patients receiving 

IFN-alpha and healthy controls given experimental endotoxin exhibited decreased neural 

activation in the basal ganglia during reward tasks [65,66]. Such functional changes may 

reflect broader circuit disruption as administration of IFN-alpha therapy negatively disrupts 

basal ganglia-prefrontal circuitry [67,68].

COGNITIVE SYSTEMS: FOCUS ON COGNITIVE CONTROL AND 

PROCESSING SPEED

Cognitive System Findings in LLD

While attention and concentration deficits are a diagnostic criterion for MDD, research 

on these symptoms often utilize tasks assessing selective, sustained, or divided attention, 

finding that these processes are impaired in depression [69]. Depressed adults often report 

subjective cognitive difficulties, including attentional deficits, that do not always correspond 

to objective cognitive performance measures [70,71]. Instead, subjective difficulties may be 

related to maladaptive strategies or negative attentional biases common in LLD, such as 

rumination [72], that then influence regulation of emotional states [73].

In contrast, executive dysfunction and cognitive control deficits are better studied in LLD, 

where they are common [74] and predict poorer acute antidepressant response [75–77]. 

Cognitive control is a superordinate function that marshals subordinate cognitive processes 

such as attentional control, working memory and episodic memory to allow for the 

flexible adaptation of cognition and behavior in the context of current goals [78,79]. While 

executive function deficits in LLD are associated with accelerated brain aging and WMH 
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severity [80,81], we propose that dopaminergic system alterations also influence cognitive 

performance.

Decreased processing speed may be the “core cognitive deficit” in LLD [82,83]. Processing 

speed is a dominant characteristic of the efficiency of lower-order cognitive functions that 

are needed to support higher-order executive functions [84,85]. Such inefficient processes 

may hinder the ability to accomplish higher-order executive functions, thus producing 

or compounding cognitive control difficulties. Decreased processing speed is consistently 

reported in LLD [74,82,83], mediates the effects of depression on daily functioning [86], 

and is associated with increased dementia risk [87].

Role of Dopamine in Cognitive Processes

Dopamine clearly influences cognitive performance, directly mediating performance in 

some domains and modulating the extent of age-related cognitive decline in other domains 

[88]. In aging adults, dopamine receptor density, DAT availability, and DA synthesis 

capacity are all associated with performance on tasks of executive function and cognitive 

control, working memory, episodic memory, and processing speed [38,88,89]. Generally, 

intact dopaminergic function, such as preserved (average or greater) dopamine transporter 

or DA synthesis capacity, is associated with better cognitive performance. Although other 

neurotransmitters including acetylcholine also have well-established roles in cognition, for 

some domains this link to dopamine appears selective. For example, dopaminergic but not 

anticholinergic pharmacological challenges modulate processing speed [38]. Age-related 

deterioration of monoaminergic system function may contribute to declines in performance, 

and this may be particularly important for more demanding tasks [90]. When performing a 

challenging cognitive task, compared to baseline younger adults exhibited less D1 striatal 

receptor binding potential [91], likely reflecting displacement due to competition with 

endogenous DA. In contrast, older adults did not exhibit any change in binding potential 

during the task [91], suggesting that a less-responsive dopaminergic system may be a 

component of age-related cognitive decline [88].

As both dopamine system function and cognitive performance decline with age, a 

“correlative triad” proposes that dopaminergic declines contribute to age-related cognitive 

decline [92,93]. While this hypothesis holds true for working memory [94,95], for other 

cognitive domains the interactive effects of aging and dopamine function depend on other 

moderators or their effects on performance may be independent [89,90,96,97]. Despite this 

complexity, decreased dopaminergic tone may be an important contributor to cognitive 

slowing and executive dysfunction in LLD. These effects on cognitive performance may be 

modifiable, as levodopa (L-DOPA) improves processing speed in LLD [98] and processing 

speed, executive function and attention in PD [99].

Impact of Inflammation on Cognition

Substantial work supports that inflammation contributes to cognitive decline and dementia 

[100,101]. While much of this focus is on neuroinflammation, systemic inflammation 

also clearly plays a role. The risk of dementia is elevated in chronic medical conditions 

characterized by pro-inflammatory states, including obesity and diabetes [102]. Higher 
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levels of peripherally-measured inflammatory cytokines such as IL-6 are associated with 

cognitive impairment in elderly people [103,104] and higher risk of cognitive decline 

[103]. While inflammation may affect cognition independently of dopamine [100,101], 

higher proinflammatory marker levels in older adults are associated with impairment in 

cognitive domains mediated by dopamine, including executive function and processing 

speed [105,106]. In LLD, inflammatory markers are associated not only with prevalence 

[107] and future development of depression [53] but also with depressive cognitions [58].

POSITIVE VALENCE SYSTEMS: FOCUS ON MOTIVATION AND EFFORT

Role of Dopamine on Positive Valence Systems (PVS)

PVS underlie the response to positive or motivational stimuli. Clinically, deficits in these 

systems manifest as anhedonia, a core symptom of depression that is proposed as a critical 

depression endophenotype [108,109]. While anhedonia is most simply defined as a “loss of 

pleasure,” the terms is often used more broadly to also encompass motivational deficits, and 

can be operationalized as a reduced willingness to commit effort to obtain rewarding stimuli 

[110], impaired reward-based learning and decision making [111], diminished time spent in 

activities, and reduced willingness to expend effort for rewards [112,113]. Such motivational 

anhedonia may be described as apathy, a common symptom in LLD [32] defined as a 

disturbance in motivation leading to reduced goal-directed behavior [31].

These behaviors reflect impaired reward processing, or how individuals use reinforcement-

related perceptions to guide goal-directed behaviors [114]. Reward processing includes 

multiple subcomponents (Table 2) [112,114,115]. While not all reward processing 

components are equally well studied, they appear to have distinct but overlapping 

neuroanatomical bases. For example, decision making requires weighing the benefit or value 

of potential rewards against the effort cost required to achieve them [116–118]. The anterior 

VS encodes subjective value, increasing or decreasing activity based on the probability of 

reward or cost, respectively. In turn, action and the initiation of effortful action activates the 

dorsomedial VS [119]. Other processes extend beyond the striatum. For example, apathy 

involves not only VS and NAcc function, but also the dorsal anterior cingulate cortex and the 

orbitofrontal, dorsomedial, and dorsolateral prefrontal cortices [31,120].

Animal studies reveal the complexity of dopamine’s effect on reward and motivation, 

including prediction error learning. A key function of the brain is to predict future 

environmental states, facilitating interactions and responses to environmental stimuli 

[121,122]. A prediction error is a mismatch between a prior expectation and reality, 

signaling a need to update future expectations [122]. Phasic burst firing of DA neurons 

signal the presence of underpredicted rewards, as well as underpredicted cues of potential 

rewards, providing the positive prediction error signal that lies at the heart of temporal 

difference reinforcement learning [11,123]. In the opposite direction, pauses in dopamine 

cell firing occur when expected rewards do not occur. Depletion of dopamine or blockage of 

this prediction error signaling may act like a negative prediction error, indicating a failure to 

receive a reward, and may contribute to extinction of previously reinforced behaviors [124].
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During behavior, synaptic levels of dopamine dynamically increase as expected rewards 

become more temporally or spatially proximal [125,126]. This ramping of synaptic 

dopamine levels appears to reflect terminal release in a manner that is partially independent 

from dopamine neuron spiking and exerts an influence on motivated behavior beyond that 

of phasic prediction error signals [127]. Increases in synaptic dopamine levels, as caused 

by reward cues, facilitate the speed of initiation and vigor of reward seeking, approach and 

operant behaviors aimed at obtaining rewards [125,128–130]. Such motor facilitation may 

reflect the critical translation of motivational value of potential rewards into action. At a 

more explicit decision-making level, these findings parallel dopamine’s ability to increase 

the willingness to expend effort to obtain rewards [18,113], or in behavioral economic terms, 

the ability of dopamine to attenuate the effort discounting of subjective value [131].

Dopamine cell firing and dopamine release are not simply reflective of the level of effort 

required to act. Upcoming effort costs result in a measurable, albeit modest, decline 

in dopamine neuron firing [132], consistent with a degree of effort discounting of the 

subjective value of potential rewards. Somewhat paradoxically, recent data suggest that 

effort expended to gain a reward enhances dopamine neuron reward prediction error firing 

upon reward receipt, which is translated into more rapid reward learning [133]. This post-

effort dopaminergic response may be particularly important for reinforcing “hard earned” 

rewards over easier or passive rewards.

Relationships between dopaminergic measures and reward-processing variables differ with 

age and clinical status. For instance, relations between effort discounting and D2/D3 binding 

potential (BPND) in the VS and midbrain as assessed by [18F]-fallypride PET change across 

the adult lifespan [45]. In a meta-analysis of associations between value discounting and 

dopamine measures, there was greater evidence of relationships with reward discounting for 

different types of costs when analyzing data from individuals with psychiatric disorders, 

suggesting the particular importance of the influence of dopaminergic variables in clinical 

populations [45].

PVS Findings in LLD

Reward deficits may be particularly germane for patients with LLD. In younger adults, 

depressed individuals often exhibit impairment across many reward domains, including 

reduced reward sensitivity [30,134], impaired ability to use information on the magnitude 

and probability of the reward to guide choices [110], decreased willingness to expend 

effort [110,135–137], and deficient reward learning [138,139]. A recent meta-analysis 

associated adult MDD with small-to-medium effect size impairment in option valuation 

and reinforcement learning, reflecting both impaired cost-benefit decision making as well 

as difficulty adjusting future behavior (definitions in Table 2) [114]. Medium to large effect 

size impairment in reward bias has also been observed, with depressed individuals being 

less likely to select more frequently rewarded stimuli [138]. While research in LLD is 

comparatively scarce, depressed older adults with a history of suicidal behavior exhibit high 

delay discounting of rewards [140].

More is known about changes in reward processing with normal aging. While behavioral 

and neural responses to the anticipation and consummation of rewards are similar between 
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younger and older adults [141,142], older adults exhibit a higher sensitivity to loss relative to 

reward information [143]. Reward learning is also negatively affected, as aging is associated 

with a reduced ability to adapt to changes in reward contingencies [143]. Older populations 

exhibit additional changes in the decision making process, although there is heterogeneity in 

these age-related changes. For instance, the ventromedial prefrontal cortex (vmPFC) shows a 

reduced subjective value signal in older adults displaying suboptimal decision-making even 

though there is no overall decline in vmPFC subjective reward signaling across the lifespan 

in healthy adults [144,145]. A greater perceived cost of cognitive effort [146] is observed in 

older adults, which may be linked to declines in cognitive resources with aging [147]. There 

may be similar parallels for physical effort in relation to co-existing motoric difficulties 

that contribute to increased fatigability, a common complaint of many elders that predicts 

disability [148,149].

Effects of Dopaminergic System Modulation on PVS

Through a combination of neuroimaging and pharmacological manipulations, translational 

research supports dopamine’s role in reward-related behavior, including decision making, 

goal-related action initiation, vigor and willingness to overcome effort, and reward learning 

[113,117,150–155]. For example, reward prediction error signal in the VS is enhanced by 

administration of L-DOPA [156], and in older subjects L-DOPA enhances probabilistic 

reward learning and ventral striatal representations of expected reward [157]. Administration 

of L-DOPA promotes response vigor for rewards, while D2 receptor antagonism reduces the 

impact of reward on explicit decisions to expend effort [158,159]. Individuals with higher 

dopamine synthesis capacity measured with [18F]-DOPA make more decisions to expend 

cognitive effort for rewards than those with lower dopamine synthesis capacity, while 

methylphenidate promotes a greater willingness to expend effort and a greater sensitivity 

to rewards relative to costs in their decision making [160,161]. However, a limitation of this 

literature is that most studies were conducted in psychiatrically healthy populations, so the 

translation to LLD is uncertain.

Although there is a similar limitation in considering populations with neurological disease, 

studies in PD demonstrate that individuals with dopaminergic system dysfunction can have 

positive valence deficits rectified through administration of dopamine enhancing agents. 

Most notably, while individuals with PD often exhibit reward learning impairments, these 

deficits can be restored by dopamine replacement [162,163]. Similarly, in PD patients, 

L-DOPA increases willingness to work for rewards independent of facilitating movement 

[164]. Rodent models of PD and studies of PD patients reveal that dopamine replacement 

therapy rectifies deficits in the vigor of responses [165,166].

Similar pharmacological enhancement of dopaminergic activity may have clinical utility 

in depressed patients. A recent single-dose blinded study examined amisulpride [167], a 

selective D2/D3 receptor antagonist that preferentially blocks presynaptic autoreceptors at 

low doses, thus increasing dopamine release. Amisulpride administration to younger adult 

depressed individuals normalized reward-related brain activation and functional connectivity 

across multiple regions involved in reward processing, including the NAc, perihippocampal 

gyrus, and midcingulate cortex [167].
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Impact of Inflammation on PVS

Impaired reward processing in MDD also provides a possible mechanism by which 

inflammation contributes to depressive symptoms. Increased inflammatory cytokines, 

including TNF, in both blood and CSF are associated with anhedonia severity and 

reduced motivation in MDD [168,169]. Anhedonia was also the most responsive symptom 

to antagonism of TNF with infliximab in both treatment-resistant MDD and bipolar 

disorder patients characterized by increased inflammation [170,171]. As with the studies 

described above involving administration of exogenous inflammatory stimuli [65–68], 

recent reports indicate that biomarkers of endogenous inflammation are associated with 

both impaired neural activation and altered functional connectivity of basal ganglia and 

prefrontal regions. For example, unmedicated healthy MDD patients with high levels of 

both CRP and inflammatory cytokines exhibited low functional connectivity between PVS 

regions including VS and vmPFC [172]. This inflammation-associated effect on low VS-

vmPFC connectivity in turn correlated with anhedonia severity [172,173]. In MDD patients 

who underwent a Monetary Incentive Delay Task (MIDT), those with higher CRP levels 

exhibited decreased VS neural activation during reward anticipation [174].

SENSORIMOTOR SYSTEMS: MOTOR FUNCTION

Sensorimotor System Changes with Aging and Findings in LLD

Motor deficits are common with aging, including slowed movement, coordination deficits 

[175], and difficulties with balance and gait [176]. These problems are often related 

to medical comorbidities common in LLD, including cerebrovascular disease, chronic 

obstructive pulmonary disease, and arthritis [177,178]. Motor deficits are further associated 

with falls [179], disability [180], and mortality [181–183]. Depressed older adults are at 

increased risk for motor problems [180,181,184] and this relationship may be bidirectional. 

For example, the tendency towards seclusion and decreased activity, a common observation 

in LLD, may lead to muscle loss and gait slowing; similarly, motor deficits including slowed 

gait speed may contribute to depression vulnerability [185–187]. Subcortical white matter 

disease, including WMHs, may contribute both to depression and gait slowing in older 

adults [2,188]. Gait slowing may also be a physical manifestation of slowed processing 

speed, with both measures increasing mortality risk in older adults [189]. Depression may 

further magnify this risk [190].

Role of Dopamine in Sensorimotor Processing

Although many factors contribute to physical limitations, age-related changes in motor 

function are associated with dopamine system dysfunction. Decreased striatal dopamine 

transmission capacity is associated with increased reaction time [39], fine motor dysfunction 

[40], slowed gait and impaired balance [41,42]. In healthy adults, lower striatal DAT binding 

(which provides an index of presynaptic dopamine innervation in aging) is associated with 

poorer balance, postural control [41] and decreased gait speed, explaining 23% of the 

variance in gait [42]. Diminished DAT binding is also associated with exaggerated slips on a 

challenging walking course [191] and predicts recurrent falls in elderly subjects [192].
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These observations are not simply reflecting preclinical PD. As noted above, declines in 

dopaminergic functioning observed with normal aging are distinct from the denervation 

pattern typical of PD [43–46]. While subtle Parkinsonian-like phenomena may be observed 

with normal aging, age-related non-specific slowing is distinct from the signs and symptoms 

of PD. Despite differing neurobiological mechanisms, as in PD, slowed gait speed in LLD is 

responsive to enhancement of dopaminergic neurotransmission with L-DOPA [98].

Impact of Inflammation on Motor Function

Older adults with poor physical performance exhibit lower muscle strength and higher 

levels of proinflammatory cytokines than their higher-functioning peers [193]. Inflammaging 

is similarly associated with poorer functional and mobility status, including slowed gait 

speed [194,195]. Similar to the effects on other systems, administration of IFN-alpha 

results in motor slowing, which in turn is associated with depressive symptom severity 

and fatigue [196]. Although inflammation may contribute to motor deficits through 

multiple mechanisms [197], converging evidence suggests that inflammatory cytokines can 

impair striatal dopaminergic tone, with psychomotor slowing as a clinical correlate [63]. 

Progressive gait slowing in older adults is associated with trajectories of depression and 

inflammation measured by CRP and IL-6 [198], with the triad of slow gait, inflammation, 

and depression predicting elevated mortality [190]. Higher levels of IL-6, IL-10, and the 

IL-6/IL-10 ratio are further associated with sarcopenia and predict reduced lower extremity 

strength in mobility-limited older adults [199,200].

INTEGRATIVE MODEL OF AGING AND DOPAMINERGIC DYSFUNCTION IN 

LLD

A straightforward model is that dopamine system dysfunction contributes to alterations in 

cognitive, positive valence, and/or sensorimotor systems that combine and interact, leading 

to cognitive difficulties, behavioral deactivation and frank depressive symptoms (Figure 

2). The clinical presentation may depend on which circuits are primarily affected. While 

aging and inflammation contribute to dopaminergic system dysfunction, microvascular 

changes commonly observed in LLD [2] may also adversely affect dopaminergic function by 

damaging dopaminergic neuronal projections. Thus, dopaminergic system dysfunction may 

be more common in some LLD phenotypes characterized by cerebrovascular processes. 

Altered dopaminergic system function may itself then further influence the clinical 

presentation.

Impairment in one system may have deleterious effects on behaviors mediated by other 

systems. In other words, deficits in a specific circuit may influence cognitive or behavioral 

symptoms mediated by other dopaminergic circuits, contributing to worsened depressive 

symptoms and development of LLD. For example, cognitive control is adversely affected 

by motivational deficits [79]. Cognitive control processes require more effort than automatic 

ones to achieve goals, so differences in the willingness to expend effort influence cognitive 

control performance [201]. Greater motivation is also associated with better cognitive task 

performance across the lifespan [202] and in depressed groups [74,78,79]. While incentives 

improve task performance [203], their effect is contingent on intact reward function. The 
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relationship between cognitive and PVS may be bidirectional, as impaired cognitive control 

may adversely affect reward learning [204].

Cognitive dysfunction often co-exists with gait or postural impairment [205]. “Higher level” 

gait control is mediated by frontal subcortical circuits that underlie executive functions [206] 

and cognitive control processes may compensate for motor deficits [207]. Walking while 

distracted or cognitively engaged (a ‘dual-task’ gait) is associated with gait disturbances and 

increased falls risk [208], and in turn is improved by L-DOPA [98]. Motor impairments 

similarly interact with reward processing and other PVS. Increased incentives are associated 

with motor task performance [209,210] and the motor cortex facilitates the integration of a 

reward’s subjective value with incentive-motivated performance [209].

As a primary mechanism underlying these relationships, we hypothesize that slowed 

processing speed and impaired cognitive control increase the effort cost to achieve a goal. 

This increased effort cost in turn increases fatiguability and the level of motivation needed 

to work towards goals. Motivation is further challenged by any deficits in reward sensitivity. 

Poorer motor function may have a bidirectional relationship with fatigability, requiring even 

greater effort for any task and thus favoring inaction. Jointly, these deficits contribute 

to behavioral deactivation and reduced physical activity, resulting in deconditioning, 

sarcopenia, and increased physical fatigability.

SIGNIFICANCE OF EXAMINING DOPAMINERGIC SYSTEMS IN LLD

The clinical picture described above is common in LLD, and dopaminergic system 

dysfunction may be a frequent underlying contributor to its development. While we 

utilize an RDoC-based conceptualization, the current RDoC iteration has been criticized 

for neglect of developmental factors, including senescence and aging [5]. As highlighted 

by our discussion of aging effects on molecular dopaminergic system function, this is a 

critical omission as neural systems change during aging. Further, as most aging research 

is conducted in psychiatrically healthy populations, it highlights a gap in our knowledge 

of how psychiatric illness may alter the trajectory of molecular or neural processes during 

aging. This is also a limitation of our scientific model, as much of the work we cite in 

support of our theories derives from younger adults or from studies of normal aging. We 

need to more comprehensively examine the interrelationships between brain aging, changes 

in dopaminergic system function, behavior and psychopathology.

Delineating dopaminergic system contributions to LLD can inform treatment targets and 

guide personalize treatment. Several second-generation antipsychotics exhibiting efficacy 

in mood disorders are partial dopamine agonists, including aripiprazole, brexpiprazole, 

and caripirazine. While selective dopamine agonists such as pramipexole or ropinirole 

have inconsistently shown efficacy as adjuncts in treatment-resistant MDD [211,212], 

sample sizes in these studies are small and typically do not include older adults. This 

raises the question of whether such drugs may be more effective in populations with 

dopaminergic system dysfunction, whether due to aging or inflammation. Drugs that 

modulate dopaminergic systems without direct receptor agonism may also have utility. 

Methylphenidate, a stimulant that inhibits the reuptake of dopamine and norepinephrine, 
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is an effective augmentation agent for LLD [213]. Preliminary evidence also supports 

benefit of L-DOPA in subjects with LLD characterized by psychomotor slowing [98]. 

Beyond psychopharmacology, linking behavioral features to dysfunction in RDoC domains 

allows for a personalized treatment approach where therapeutic strategies can be deployed 

depending on the clinical presentation, such as ‘Engage’ psychotherapy for LLD [214]. 

Other approaches may address cognitive impairment through computerized training 

designed to enhance information processing by promoting neuroplasticity [215], or using 

behavioral activation for PVS dysfunction and exercise/physical therapy for sensorimotor 

deficits.

Future Approaches and Challenges

A thorough characterization of dopaminergic function in LLD requires not only traditional 

diagnostic assessments and measures of depression severity, but also dimensional 

assessments of behavior such as anhedonia and apathy. Neuropsychological evaluations 

should include batteries enriched for domains affected by dopamine, such as processing 

speed, working memory, and executive function. Further assessments should evaluate reward 

function, motivation and motor function, including gait and fine motor performance.

Interrogation of the dopaminergic system at the molecular level using PET imaging has 

substantial promise for understanding LLD. Radioligands can assess dopamine synthesis 

([18F]-FDOPA), dopamine receptor binding ([11C]-raclopride, [18F]-fallypride, [11C]-(+)-

PHNO), and DAT function ([11C]-altropane, ([11C]-PE2I). However, there is variability 

across tracers in availability, specificity, off-target binding, and in the anatomic regions 

visualized. Moreover, it is challenging to probe all aspects of dopaminergic system function 

in a single sufficiently powered study due to both radiation exposure limits and the high cost 

of PET radioligands. These limitations require novel trial designs and likely an acceptance 

that a single study will be unable to thoroughly probe all aspects of dopamine’s molecular 

functioning.

There is also opportunity for novel MRI approaches such as neuromelanin MRI (NM-

MRI). Neuromelanin is a product of dopamine synthesis that accumulates in midbrain 

nuclei over the lifespan [216,217]. NM-MRI signal intensity increases with age [218] but 

decreases through degeneration of dopamine neurons [219,220]. NM-MRI may serve as an 

in vivo proxy of dopaminergic function as it is sensitive to variation in NM post-mortem 

concentrations and relates to dopamine function measured by [11C]raclopride in the striatum 

during an amphetamine challenge [221].

Conclusions

Dopaminergic function declines with aging and may mediate common signs and symptoms 

in LLD. However, a significant amount of data supporting this hypothesis is derived from 

work in younger populations where the influence of age cannot be clearly assessed. A 

better understanding of how dopaminergic system dysfunction contributes to variability 

in the clinical, cognitive, and motor presentation of LLD provides an opportunity for 

the development or repurposing of drugs enhancing dopaminergic function and better 

identification of who may most benefit from them. It can also inform personalized non-
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pharmacological treatment approaches including cognitive remediation or interventions 

focused on mobility.
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Figure 1. Dopaminergic Circuit Anatomy
The figure illustrates dopaminergic pathways in the human brain, with involved regions 

and functions detailed in Table 1. Relevant glutamate (Glu) and gamma-aminobutyric acid 

(GABA) projections are also illustrated for comparison. Amyg = amygdala; Caud = caudate; 

DA = dopamine; Hipp = hippocampus; NAcc = nucleus accumbens; Put = putamen; SN = 

substantia nigra; VP = ventral pallidum; VTA = ventral tegmental area. Original figure from 

Treadway and Zald [113], used with permission.
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Figure 2. Model of dopaminergic system contributions and interactions to behavior in late-life 
depression
The scientific model proposes that aging and increases in pro-inflammatory cytokines 

observed with aging and medical illness negatively affect many aspects of dopamine 

system function. In turn, this decline in dopamine system signaling contributes to deficits 

in cognitive, positive valence, and sensorimotor systems. Symptoms in one system may 

initially be predominant and magnified by other risk factors related to that individual’s 

genetic, medical, or social background. However, these systems are interdependent and 

deficits in one system can contribute to difficulties in other systems. This process increases 

vulnerability to depressive episode in later life and, in context of other risk factors, may 

contribute to the development of frank depressive episodes.

Abbreviations: DA = dopamine; DAT = dopamine transporter
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Table 2.

Reward Processing Subcomponents and Terminology

Cognitive Operation Description

1. Valuation Process by which the benefits of a potential outcome are computed. This includes integration 
of different types of information including the individual’s current need state, and discounting 
of value based on probability of receiving the reward, costs of obtaining the reward goal, and 
temporal delays before the reward is available

2. Decision-Making Process resulting in the selection of an option

• Option Generation Generation of potential options based on current external information and past experience

• Option Comparison and 
Selection

Process of comparing the relative computed value of different options leading to the selection of 
an action

• Reward Bias The tendency to choose more frequently rewarded stimuli

3. Anticipation Preparatory phase characterized by arousal before the reward is obtained and which may 
facilitate actions aimed at obtaining the reward goal

4. Action and Effort Engagement in action to achieve the reward goal

• Reward Response Vigor The speed or intensity that an individual executes an action to achieve the reward goal

5. Consummation Hedonic response to achieving the reward (i.e., pleasure)

6. Reinforcement Learning Adjustment of valuation of future options based on prior outcomes

• Prediction Error Difference in the value of an expected reward outcome and the actual outcome

Primary subcomponents are numbered, with more specific subprocesses being listed as bullet points underneath the primary subcomponents. 
Conceptualization of reward processing drawn from: [112,114,115]
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