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Abstract

Cortico-basal ganglia-thalamocortical circuits are severely disrupted by the dopamine depletion of Parkinson’s disease (PD),
leading to pathologically exaggerated beta oscillations. Abnormal rhythms, found in several circuit nodes are correlated
with movement impairments but their neural basis remains unclear. Here, we used dynamic causal modelling (DCM) and the
6-hydroxydopamine-lesioned rat model of PD to examine the effective connectivity underlying these spectral abnormalities.
We acquired auto-spectral and cross-spectral measures of beta oscillations (10–35 Hz) from local field potential recordings
made simultaneously in the frontal cortex, striatum, external globus pallidus (GPe) and subthalamic nucleus (STN), and used
these data to optimise neurobiologically plausible models. Chronic dopamine depletion reorganised the cortico-basal
ganglia-thalamocortical circuit, with increased effective connectivity in the pathway from cortex to STN and decreased
connectivity from STN to GPe. Moreover, a contribution analysis of the Parkinsonian circuit distinguished between
pathogenic and compensatory processes and revealed how effective connectivity along the indirect pathway acquired a
strategic importance that underpins beta oscillations. In modelling excessive beta synchrony in PD, these findings provide a
novel perspective on how altered connectivity in basal ganglia-thalamocortical circuits reflects a balance between
pathogenesis and compensation, and predicts potential new therapeutic targets to overcome dysfunctional oscillations.
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Introduction

In Parkinson’s disease (PD), degeneration of midbrain dopa-

mine neurons severely disrupts neuronal activity in looping circuits

formed by cortico-basal ganglia (BG)-thalamocortical connections

[1,2,3]. Studies have shown that excessive oscillations at beta

frequencies (13–30 Hz) are a key pathophysiological feature of

these Parkinsonian circuits, when recorded at the level of unit

activity and/or local field potentials (LFPs) in several key circuit

nodes. These nodes include the frontal cortex, subthalamic nucleus

(STN), external globus pallidus (GPe) and internal globus pallidus

(GPi) [4,5,6,7,8,9]. Suppression of pathological beta-activity is

achieved by dopamine replacement therapies [10] and surgical

treatments e.g. high-frequency, deep brain stimulation (DBS) of

the STN; where prolonged attenuation after stimulation is

observed [11,12]. Bradykinesia and rigidity are the primary motor

impairments associated with beta activity and, following dopamine

replacement therapies, improvements in these motor deficits

correlate with reductions in beta power [13,14,15,16]. Moreover,

a recent report has shown that stimulating the STN at beta

frequencies exacerbates motor impairments in Parkinsonian

rodents [17], in line with similar findings in PD patients [18,19].

Precisely how dopamine depletion leads to abnormal beta

power is unknown. Recent work in rodents has revealed that

excessive beta-activity emerges in cortex and STN after chronic

dopamine loss but not after acute dopamine receptor blockade

[5,8]. Here, we examine whether changes in effective connectivity

between the nodes of the cortico-basal ganglia-thalamocortical

network can account for enhanced beta oscillations following

chronic dopamine loss. To test this hypothesis we used dynamic

causal modelling (DCM). This approach allows one to characterise

the distributed neuronal architectures underlying spectral activity

in LFPs. DCM is a framework for fitting differential equations to

brain imaging data and making inferences about parameters and

models using a Bayesian approach. A range of differential

equation models have been developed for various imaging

modalities and output data features. The current library of DCMs

includes DCM for fMRI, DCM for event related potentials and

DCM for steady state responses (DCM-SSR). The current paper is

based on DCM-SSR, designed to fit spectral data features [20,21].

Using spectral data, recorded simultaneously from multiple

basal ganglia nuclei and the somatic sensory-motor cortex, we

asked whether systematic changes in re-entrant neural circuits

produce the excessive beta oscillations observed in LFPs recorded

from the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD

[2,5,22]. We inverted the models (i.e., optimised the model

parameters or ‘‘fit’’ the data) using LFP data collected simulta-

neously from electrodes implanted in frontal cortex, striatum, GPe
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and STN. Specifically, we used neural mass models that

characterise the main projection cell types at each circuit node

as glutamatergic or GABAergic. Neural mass models describe

neuronal dynamics in terms of the average neurophysiological

states (e.g., depolarisation) over populations of neurons. Inference

on effective connectivity differences observed between the

Parkinsonian and control cases was based on a posteriori estimates

of connectivity and synaptic parameters (i.e., the most likely given

the data). Using these estimates, we characterised the sensitivity of

beta oscillations to changes in particular connection strengths to

identify candidate connections that may represent therapeutic

targets in idiopathic PD.

Measures of functional connectivity have been applied previ-

ously to examine frequency-specific signal correlations between

nodes in the cortico-basal ganglia-thalamocortical network. These

measures have highlighted excessive coupling between the cortex

and STN [22] and between STN and GPe [5,22] in animal

models of PD. While functional connectivity and effective

connectivity measures share some technical aspects e.g. likelihood

models [23] or Bayesian estimators [24], the underlying concepts

are fundamentally different [25]. The distinction between

functional connectivity (a descriptive characterisation of the

statistical dependence between two time series) and effective

connectivity (a model-based characterisation of causal influences)

emerged from the analysis of electrophysiological time series:

Aertsen et al. [26], used the term effective connectivity to define

the neuronal interactions that could explain observed spike trains

using a ‘‘minimum simple neuronal model’’. In what follows, we

employ such a minimum model approach, using the key elements

of known cortico-basal-ganglia-thalamocortical interactions. Our

model predicts the output of this loop circuit in vivo, where we

assume observed responses are caused by interactions among

neuronal populations or sources, with known neurotransmitters

and directed connections. The starting point for analyses of

effective connectivity in this paper is the end point of classical

functional connectivity analyses; namely, observed cross-spectral

densities (and their associated cross-correlation and coherence

functions). In other words, we place special emphasis on

explaining how functional connectivity emerges in terms of

directed connections that rest on a particular model of neuronal

interactions. In what follows, we illustrate this approach when

applied to the directed circuitry of a cortico-basal ganglia-

thalamocortical system.

Results

Dynamic Causal Modelling of the Cortico-Basal Ganglia-
Thalamocortical Loop

Dynamic causal models for LFP data typically comprise

connected cortical sources, where each source is described by a

neural mass [27]. This neural mass ascribes point estimators to

hidden neuronal states (ensemble depolarisation and firing rates),

capturing the average activity of a population of neurons [28], i.e.

a mean-field approximation. These dynamics depend on model

parameters that encode, for example, inter-regional connectivity,

the amplitude of postsynaptic responses and/or synaptic rate

constants. Here, three (layered) populations were used to model

the cortical source, while a single population of neurons, (either

glutamatergic [excitatory] or GABAergic [inhibitory]) was used for

distinct BG nuclei (see Figure 1A). The differential equations

describing neuronal dynamics in the basal ganglia and cortex are

identical in their form but have different parameters (see Figures 2

and 3). These equations model the postsynaptic convolution of

presynaptic inputs by an implicit postsynaptic kernel. The

ensemble firing of one population changes the average membrane

potential of another, depending on whether it uses glutamate or

GABA as a neurotransmitter. Glutamatergic inputs are assumed to

produce postsynaptic depolarisation, while GABAergic inputs are

assumed to be hyperpolarising. These effects are mediated by a

postsynaptic (alpha) kernel that is either positive or negative,

respectively. This (excitatory or inhibitory) influence of one

population on another is parameterised by extrinsic connectivity

(between distinct nodes; e.g. from cortex to STN) or intrinsic

connectivity (between different subpopulations within a node; e.g.,

cortex). See Materials and Methods. In short, effective connectivity

is modelled as a gain factor that couples discharge rates in one

population to membrane potentials in another.

The connections in our standard DCM were based on the well

characterised re-entrant circuits linking the cortex, basal ganglia

and thalamus in rodents and primates (Figure 1A). The main

features of this network include the so-called ‘direct’, ‘indirect’ and

‘hyperdirect’ pathways [29,30]. The striatum, the primary input

station of the BG, receives glutamatergic afferents from cortex and

is composed primarily of GABAergic projection neurons. The

striatum transmits cortically-derived information to the BG output

nuclei; the entopeduncular nucleus (EPN) (homologous to the

internal globus pallidus in primates), and substantia nigra pars

reticulata, via the polysynaptic indirect pathway and the

monosynaptic direct pathway (Figure 1A). In the former, striatal

neurons innervate GABAergic GPe neurons which, in turn,

innervate glutamatergic STN neurons (that then project to the BG

output nuclei). Although not considered in the classic feed-forward

organisation of the direct-indirect pathway schemes, we include

here the feed-back projection from STN to GPe, because these

two nuclei are more realistically embodied in a reciprocally-

connected network [31], particularly in the context of excessive

beta oscillations [6]. These three structures along the indirect

pathway were modelled by ensembles of inhibitory neurons (in the

striatum and GPe) and a population of excitatory neurons (in the

STN). Though neurons in striatum and GPe are functionally

distinct [7], we allow the data to dictate any differences in their

synaptic properties. In the direct pathway, the striatum directly

Author Summary

Parkinson’s disease is a progressive age-related neurode-
generative disorder that severely disrupts movement. The
major pathology in Parkinson’s disease is the degeneration
of a group of neurons that contain a chemical known as
dopamine. Treatment of Parkinsonism includes pharma-
cological interventions that aim to replace dopamine and
more recently, implanted devices that aim to restore
movement through electrical stimulation of the brain’s
movement circuits. Understanding the electrical properties
that emerge as a result of depleted dopamine may reveal
new avenues for developing these technologies. By
combining a novel model-based approach with multi-site
electrophysiological recordings from an animal model of
Parkinson’s disease we provide empirical evidence for a
link between abnormal electrical activity in the Parkinso-
nian brain and its physiological basis. We have examined
the connections along the brain’s motor circuits, and
found an abnormality in inter-area connections in a
particular neural pathway, a pathway critically dependent
on dopamine. The scheme makes strong and testable
predictions about which neural pathways are significantly
altered in the pathological state and so represent
empirically motivated therapeutic targets.

Connectivity Changes in PD
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inhibits GABAergic EPN neurons, which also receives excitatory

input from STN. While no data were acquired from the EPN, we

included an inhibitory population connected to an excitatory

thalamic mass to complete the closed loop dynamics [29]. These

two nodes were modelled as ‘hidden sources’ because inferences

can still be made about the parameters of hidden sources, based on

the influence they exert on nodes from which LFP recordings are

made. It is important to note that mathematically, all the

parameters of a DCM are hidden or latent (i.e. cannot be

accessed directly from the data, [32]) and the full dataset serves to

optimise all of the parameters of the model. In other words, while

LFP recordings (representing noisy dynamical state measurements)

from the EPN and thalamus would further constrain and improve

parameter optimisation, we can still infer the parameters of

unrecorded regions. Finally, a monosynaptic glutamatergic

projection from frontal cortex to the STN constituted the

hyperdirect pathway.

Recent work has emphasized the significance of the hyperdir-

ect pathway for the functional organisation of cortico-basal

ganglia-thalamocortical circuits [30] and, importantly, this

pathway has been shown to be crucial for the expression of

abnormal slow oscillations in the STN-GPe network in

Parkinsonism [33]. In short, our standard model architecture

incorporates the major glutamatergic and GABAergic connec-

tions between the six key components of the cortico-basal ganglia-

thalamocortical circuit. In accommodating the core elements of

the loop circuit, the model also adheres to the established

organisational principles embodied in the direct, indirect and

hyperdirect pathways. Note that our standard model does not

include all known connections. However, the addition of more

connections does not necessarily improve the ability of the loop

circuit (and model) to sustain beta oscillations. To test this, we

tried adding two less well-studied, but potentially important,

pallidofugal connections, either from GPe to EPN or that from

GPe to striatum [34]. The addition of either connection did not

improve the performance of (evidence for) the standard model,

which provided the optimum balance of accuracy and complexity

for our given data set (see Figure S2 in Text S1).

Figure 1. Structure of dynamic causal model and spectral data. (A) The structure of the DCM encompasses the principal nodes and
connections in the rodent cortico-basal ganglia-thalamocortical loop. The nodes include a cortical source, 1, modelled by a three subpopulations
corresponding to excitatory input (glutamatergic spiny stellate) cells, projection (glutamatergic pyramidal) cells and inhibitory (GABAergic)
interneurons. Excitatory projections from cortex innervate the Striatum 2, and STN, 4 (the hyperdirect pathway). The Striatum comprises an inhibitory
subpopulation that projects to two other inhibitory sources, GPe 3 (as part of the indirect pathway), and EPN 5 (via the direct pathway) with the latter
being a BG output nucleus. The GPe and STN express reciprocal connections, and signals from the hyperdirect and indirect pathways are transformed
to BG output nuclei via excitatory STN projections to the EPN. The thalamus, 6, which excites cortex, is itself inhibited by connections from EPN. Data,
D, used for the model inversion were acquired from LFP recordings in cortex, Striatum, GPe and STN. (B) Group average spectrogram of LFP data
recorded from cortex, striatum, pallidum and subthalamic nucleus. Left Control animals display low power broadband signals across all thirty seconds.
Right Parkinsonian animals display high amplitude beta power in all the electrode recordings that extends throughout the epoch.
doi:10.1371/journal.pcbi.1002124.g001

Connectivity Changes in PD
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Beta Oscillations and Effective Connectivity
A time-frequency analysis of resting state LFPs at 10–35 Hz

revealed consistent and long-lasting high-amplitude beta oscilla-

tions in all cortical and BG recordings from the 6-OHDA-lesioned

animals (n = 9 rats; Figure 1B). However, no dominant band-

limited LFP activity was observed in control animals with intact

dopamine (n = 8, Figure 1B). Since the spectral characteristics

remained constant over time, we assumed stationarity in our

recordings and characterised that steady-state behaviour using

their cross spectra. Using the cross spectral densities, we inverted

the DCM for each animal individually and for each group’s

average spectral response. Model inversion entails estimating the

mean and variance of the unknown model parameters h that

summarise their posterior or conditional density p(hjy,m)
conditioned upon the cross-spectral density data-features y(v)
and the model m described above. These unknown parameters

include the biophysical parameters of the neural-mass model as

well as parameters controlling the spectral composition of

neuronal and channel noise. These noise parameters control a

mixture of white and pink noise assumed to exist at BG and

cortical channels separately (see Materials and Methods and [20]).

The priors on these unknown parameters p(hjm) used standard

values (see Table 1 in Text S1).

In Figure 4A we plot the predicted and observed magnitudes of

the cross-spectra averaged over animals in control and lesioned

groups. The model fits show that the DCMs reproduce the key

spectral properties of LFPs recorded in both animal groups: The

LFPs from the control animals contain relatively low power across

a broad band of frequencies captured by the control DCMs, while

the LFPs in Parkinsonian animals contain a high-amplitude beta

band peak (average peak frequency of 17 Hz), which in turn was

captured by the Parkinsonian DCMs. Differences in effective

connectivity underlying these spectra were then examined using

Bayesian parameter averaging [35]. Figure 4B shows the

connection strengths averaged over individual estimates in each

group. These mean or maximum a posteriori (MAP) estimates are

plotted with 95% Bayesian confidence intervals. We considered

connections changed when the probability of a difference was

greater than 99.99%. Along the hyperdirect pathway, cortical

output to the STN increased in the Parkinsonian animals

compared to the control group while, conversely, efferent

connections from the STN to GPe decreased. These changes in

effective connectivity, occurring after dopamine cell lesions,

characterise the circuit generating beta oscillations and the net

balance between pathogenesis and any consequent compensatory

changes. The DCMs of the grand averaged spectral responses

(where one DCM was fit to the average control cross-spectra and

one DCM was fit to the average lesioned cross-spectra) confirm the

inference based on individual DCMs (Figure 5A), where the same

differences in MAP estimates i.e. the connection strengths

subtending the average control and Parkinsonian data, were

found for the hyperdirect connection and STN to GPe connection.

We examined the posterior correlations among parameters from

these DCMs to preclude identifiability issues: Where high

dependencies exist between two connections, a change in either

could account for the same data. We show however that this is not

the case among our parameters of interest (extrinsic connectivity

measures) where, on average, only small correlations (,0.1) were

seen (see Figure S7 in Text S1). We also examined the robustness

of lesion-related changes in the circuit by removing the STN to

GPe connection and looking for a difference between control and

Parkinsonian networks: We again found an increase in hyperdirect

Figure 2. Generative model. This figure summarises the generative model as a Bayesian Network (upper left insert), which has been unpacked to
show the form of the conditional dependencies in terms of the equations of the generative model (lower right). This model provides a probabilistic
description of data in terms of the parameters that cause them. These include parameters controlling the spectral density of neuronal and channel
noise and parameters controlling the variance of observation error on the cross-spectra predicted. The parameters of interest pertain to a neuronal
model that is cast as a continuous-time state-space model. It is this neuronal model that constrains the mapping from neuronal noise or innovations
to observed cross-spectra. The details of the neuronal (mass) model are provided in the next figure. Please see the main text for a detailed
explanation of the equations that define the conditional dependencies.
doi:10.1371/journal.pcbi.1002124.g002

Connectivity Changes in PD
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connectivity for the Parkinsonian model (see Figure S8 in Text S1),

even in the absence of changes in STN to GPe connectivity.

Using the posterior estimates from the DCM of the grand

averaged spectra, we simulated the system’s response for a wide

band of frequencies. This allowed us to identify the predominant

changes in spectral activity, associated with our optimised models

of control and Parkinsonian animals: For linear systems, the

frequency response can be illustrated as poles and zeros on the unit

circle. This involves a reformulation of the system (i.e. the

differential equations used by the DCM) using a z-transform [21].

This transform produces a transfer function, which summarises the

model system’s input-output spectral properties.

In Figure 5B, we show the average input-output character-

istics of the model by simulating cortical input and illustrating

STN output. In the circuit based on the control group, we

observe a pole close to the unit circle at around 50 Hz (a pole is

a point of infinite system response) thereby producing a spectral

peak at this gamma frequency in the transfer function. This

gamma feature has been consistently reported in LFPs recorded

from the basal ganglia in alert, dopamine-intact animals

[36,37,38]. Crucially, our generative model captured this, even

though it was only optimised using LFP data over 10–35 Hz. In

light of this finding we constructed new spectral estimates from

the original data for frequencies from 40–80 Hz and confirmed

a prominent spectral peak in the gamma band at BG probes for

control animals (see Figure S3 in Text S1). This finding

highlights the predictive validity of our model. In contrast, in

the Parkinsonian circuit, we found two poles near the unit circle,

at around 20 Hz, which produced a high-amplitude spectral

peak at beta frequencies.

Figure 3. Neural mass model of cortico-basal ganglia-thalamocortical circuit. These are the differential equations modelling the hidden
neuronal states in the subpopulations comprising the nodes of the circuit model. These equations take the form of Equation 7. For simplicity, we
have dropped the dependency on time and have therefore omitted the delays (see Equation 7). In the cortex, the parameters cctx

3 ,cctx
5 describe the

intrinsic connections from the pyramidal cells within the same cortical source and reciprocal inhibitory afferents respectively and vctx
7 (t) represents

the average membrane potential of inhibitory cells. In the granular layer, spiny stellate cells receive excitatory connections from the thalamus, with
strength l1,6 and excitatory inputs from pyramidal cells within the same region cctx

1
. In turn, pyramidal cells in the cortex receive inhibitory inputs

from the interneurons within that cortical region and excitatory inputs from the stellate cells within that region mediated by intrinsic connectivity
parameters cctx

2 and cctx
4 respectively. The pyramidal cells from the cortex send efferent extrinsic connections to the basal-ganglia, arriving at the

striatum with a strength parameterised by l2,1 and to STN, with strength l4,1 . At the striatum, one inhibitory subpopulation models GABAergic
projection neurons with input from cortex. These striatal GABAergic projection neurons then inhibit both GPe and EPN, such that the dynamics in the
GPe are modelled as an inhibitory network with input u(t) and connections from the STN with effective connectivityl3,4 . This population is inhibited
by the striatum with an effective connectivity of l3,2 . The STN is reciprocally connected to GPe, receiving inhibitory connections mediated by l4,3 and
is excited by the cortex via the hyperdirect pathway with effective connectivity l4,1. The EPN receives inputs from both STN (glutamatergic) l5,4 and
the striatum (GABAergic) l5,2and sends feedforward inhibition to the thalamus l6,5. Excitatory connections from thalamus to cortex complete the
closed loop architecture.
doi:10.1371/journal.pcbi.1002124.g003
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Exacerbating Beta Oscillations
The Parkinsonian circuit we have described represents the effects

of chronic dopamine depletion and, potentially, a balance between

primarily pathogenic changes and compensatory or adaptive

changes. Consequently, we asked which connection strengths in the

reorganised Parkinsonian circuit could contribute to (or attenuate)

beta activity. This entailed using the optimised DCM from the

lesioned animals to predict spectral responses to changes in the model

circuit architecture: To do this, we quantified the degree to which a

change in each connection affected beta activity throughout the

circuit (power summed over 16–18 Hz and channels). This provided

a measure of ‘beta contribution’ per animal, per connection; in terms

of the partial derivative of summed beta activity, with respect to each

connection. Note that beta contributions (derivatives) could be either

positive, whereby small changes exacerbate beta, or negative whereby

small changes ameliorate beta (e.g. see Figures S4 and S6 in Text S1).

Using each animal’s average contribution (see Equation 10) as a

summary statistic, we performed a one-way ANOVA with

connection as a factor, and revealed a significant effect of connection

(F(8,72) = 7.42, p,0.0001; Figure 6A). Post hoc two way t-tests (to

cover positive and negative derivatives), indicated that the beta

contributions were significant for two connections when corrected for

multiple comparisons. We found that variations in striatal connec-

tions to GPe (p,0.05 Bonferroni corrected) and GPe connections to

STN (p,0.05 Bonferroni corrected) produced significant increases in

beta power (Figure 6A). These tests rest on the consistency of these

effects over animals, whereas considering their magnitude alone,

would suggest a strong beta contribution from cortex to striatum.

Thus incremental increases in connections along the so-called

indirect pathway [2] consistently exacerbated beta oscillations across

Parkinsonian animals. This was also seen in terms of the magnitude of

the effect on beta oscillations across animals (Figure 6A). The three

connections with the highest average beta contribution were cortex to

striatum, striatum to GPe and GPe to STN. To illustrate these effects

we computed the system transfer function using a gain of 50% in

these connection strengths. Figure 6B displays the transfer function

averaged over nodes and animals at baseline levels and with the

cortex to striatum connection increased by 50%. Figure 6C displays

Figure 4. Model fits and posterior connectivity estimates. (A) Observed and modelled cross-spectral densities. Densities for frequencies from
10 Hz to 35 Hz were extracted from time domain data using a vector autoregressive model. Left Average LFP data (full lines) and average DCM fits
(dashed lines) for control animals (n = 8). The main diagonal displays the auto-spectral densities at each electrode and the off-diagonal elements
display the two-way cross spectra. Right Average data and model fits in Parkinsonian animals (n = 9). Note that only the Parkinsonian animal data and
model fits have prominent beta-band peaks. (B) Posterior connectivity estimates from each individual animal’s DCM were combined to form group
averages. Average MAP estimates are shown with 95% Bayesian credible intervals. Left Average connectivity estimates from the control animals. The
strongest connectivity in this circuit is the excitatory connection from STN to GPe. Similarly strong connections exist for cortical connections to the
striatum and for striatal connections to the GPe. Right Posterior estimates from the 6-OHDA-lesioned animals are also strong along the indirect
pathway from striatum to GPe and at cortical efferents to striatum and STN. Differences in connectivity strengths between the control and
Parkinsonian groups with a probability .99.99%, are indicated**. Two key differences are observed. 1. the hyperdirect pathway is stronger in 6-
OHDA-lesioned animals, and 2. STN input to GPe is weaker in lesioned animals.
doi:10.1371/journal.pcbi.1002124.g004

Connectivity Changes in PD
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the same graphs but now for baseline levels and with striatum to GPe

increased by 50%. Similarly in Figure 6D we show baseline and

altered transfer functions using a 50% increase in connection strength

from GPe to STN. Overall findings were similar when we repeated

our analyses using independent data from the same animals (see

Figure S4 in Text S1).

These simulations suggest that if connections along the indirect

pathway could be weakened in the Parkinsonian state, then excessive

beta-activity might be attenuated, thereby providing important

candidate therapeutic targets. An apparent paradox is that while

we find an increase in effective connectivity in the hyperdirect

pathway from cortex to STN, our contribution analysis shows that

manipulating the strength of this connection did not change beta

activity significantly. Conversely, the remaining two connections

(striatum to GPe and GPe to STN) that profoundly influenced beta

activity in our simulations did not differ in their mean strength

between the control and Parkinsonian groups. This apparent paradox

can be resolved by considering the extended network that

incorporates all nine connections. The strength of a connection need

not necessarily change between the healthy and diseased states in

order for that connection to have a different effect on oscillatory

strength within the new network; in other words, perturbations to a

connection with a given strength will have a different functional

effect, depending on the network in which it is embedded. Moreover

since the conditional densities of the parameters of interest in the

DCM are identifiable (see Figure S7 in Text S1) we can surmise an

effect along the indirect pathway connections.

We have clear evidence that the extended network differs

between the control and Parkinsonian states with increases in the

effective connection strength of the hyperdirect cortex to STN

pathway and reduction in that from STN to GPe. Above, we

identified that several connections in the indirect pathway have the

capacity to dynamically modulate beta. Thus we compared beta

contribution between the control and Parkinsonian animals for the

‘beta critical’ indirect pathway connections. This showed that

these connections engendered much higher beta activity when

embedded in the Parkinsonian network (two sample t-test; p,0.05;

see Figure S5 in Text S1), even though their strengths per se did not

differ significantly between the healthy and disease states.

Furthermore, we tested the specificity of the indirect pathway’s

role and repeated the contribution analysis for the gamma band (at

60 Hz). This analysis showed that the frequency promotion in the

Parkinsonian state was specific to the beta band and could not be

generalised to higher frequencies (see Figure S6 in Text S1).

Discussion

Classical models of connectivity within the cortico-basal

ganglia-thalamocortical loop circuit explain PD symptoms in

terms of altered firing rates along the direct/indirect pathways [2].

Figure 5. Average data DCMs and pole zero representation of the system. (A) MAP estimates of extrinsic connectivity parameters
(comparable to Figure 2B) but for the DCMs optimised for the grand averaged control and lesioned data. Differences in connectivity strengths (with a
posterior probability .95%) are denoted with an asterix. As shown above in the individual animal DCMs, the hyperdirect pathway is stronger in
Parkinsonian animals and STN to GPe connectivity is weaker. (B) Simulated system responses using the posterior estimates from the two grand
averaged spectra DCMs (Figure 3A). Top Left Pole zero representation of control DCM. Poles (green x) reflect points of infinite power and zeros
(magenta o) are points of zero power. The unit circle drawn along a real axis and imaginary axis (Imag) delimits a stable (poles within) or unstable
(poles without) system impulse response, where the response is symmetrical with respect to the real axis. The response from 0 Hz to the Nyquist rate
(125 Hz) is represented along the unit circle from (1, 0) to (21, 0) in the positive imaginary plane and the response from 0 Hz to 2125 Hz is
represented from (1, 0) to (21, 0) in the negative imaginary plane. Frequencies along the unit circle that are close to poles are prominent in the
system’s output. The system response around beta frequencies is demarcated on the circle using black solid lines (13–30 Hz), to the left of this
quadrant contains gamma oscillations (30–125 Hz). We note that the bilinear transform used to obtain the z-domain characterisation introduces a
frequency warping where nonlinearities result in 13–30 Hz being mapped to 12.89–28.68 Hz on the unit circle. In the case of the control animals, a
pole close to 50 Hz (highlighted with an arrow) leads to a transfer function (Below Left) with a small spectral peak in the gamma band. In the case of
the 6-OHDA-lesioned group (Right) two poles close to 20 Hz (highlighted with an arrow) lead to a high amplitude beta peak in their transfer function.
The input–output characteristic of the systems are illustrated using cortical input and STN output pair.
doi:10.1371/journal.pcbi.1002124.g005
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More recent research has highlighted the oscillatory nature of

excessive neuronal synchronisation in the Parkinsonian state [7].

Here, we present a new model of effective connectivity in the

cortico-basal ganglia-thalamocortical loop, which emphasizes

neuronal synchrony and oscillatory dynamics over rate coding.

Our scheme is based on dynamic causal modelling of multisite

LFPs, which, in order to be detected, necessitate spatiotemporal

summation and hence, synchronisation of population activity.

Importantly, the LFP data were derived from a rat model of PD

that recapitulates clinical pathophysiology, most notably the

dominance of beta oscillations in the untreated Parkinsonian

state. Using neural mass models that comprise ensemble firing

output and membrane potential inputs [27], our model can

generate low-frequency broadband activity or Parkinsonian

excessive beta activity by increasing and decreasing particular

extrinsic connections. In effect, operating from a stationary

equilibrium, the Parkinsonian cortico basal-ganglia-thalamocorti-

cal circuit has a modulation transfer function that peaks at beta

frequencies. Similar frequency tuning is seen in the cortico-basal

ganglia circuit of untreated PD patients in response to phasic

inputs to STN [39].

We found specific differences between control and Parkinsonian

groups at two pathways along re-entrant circuits. The effective

connection strength of the cortical ‘hyperdirect’ input to the STN

was dramatically increased in the Parkinsonian animals, compared

to control animals, a finding in accord with current views of

subthalamic hyperactivity in PD [5,6,33,40], and also with

optogenetic circuit perturbations that point to the cortex as a

Figure 6. Contribution analysis. (A) Using the DCMs from the Parkinsonian animals, we quantified changes in beta power with respect to changes
in connectivity parameters (averaged over channels). The measure of beta power was the height of the beta peak centred at 17 Hz (summed over
16–18 Hz). Increasing connections from striatum to GPe and from GPe to STN exacerbated beta oscillations (positive derivatives), where the striatum
to GPe connectivity was the most effective (*p,0.05 Bonferroni corrected for 9 multiple comparisons; Error bars denote s.e.m.). (B) The average
spectral response (over animals and circuit nodes) is plotted using baseline parameter values (dashed line) and an increase in cortex to striatum of
50% (solid line). (C) The same baseline transfer function, with altered transfer function following a 50% increase in connection strength from striatum
to GPe. (D) Baseline and altered transfer functions following a 50% increase in GPe to STN (See also see Figures S4, S5 and S6 in Text S1).
doi:10.1371/journal.pcbi.1002124.g006
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key driver of this hyperactivity [17]. In contrast, the STN input to

the GPe decreased in the Parkinsonian animals. The latter

represents a potentially important and novel finding. Nevertheless,

as discussed below, it builds on a literature implicating the

reciprocally-connected STN-GPe network in the generation and

dissemination of abnormally synchronized oscillations in Parkin-

sonism [5,41,42].

Our standard model architecture might not be the only one that

can sustain exaggerated beta oscillations. However, our model

does incorporate the major glutamatergic and GABAergic

connections between the six key components of the loop circuit,

thus capturing the core elements of the direct, indirect and

hyperdirect pathways and placing it within established frame-

works. The architecture was chosen as the simplest that could

support an answer to our questions about inter-regional

connectivity. The large parameter space and the effective data

size (via the AR spectral decomposition) would normally

predispose to ‘over fitting’ in a maximum likelihood setting.

However, Bayesian inference finesses this problem because it

optimises the marginal likelihood (model evidence), which includes

a complexity term. This complexity rests on the use of priors or

constraints on the underlying neurobiology (e.g., synaptic time

constants). This effectively limits the degrees of freedom in the

model to those parameters with relatively uninformative priors;

i.e., the connectivity parameters of interest. Moreover, the

standard model performed no better when two additional

pallidofugal connections were incorporated (see Figure S2 in Text

S1). Importantly, the model was successful in making valid

predictions regarding frequencies not considered during model

inversion. These predictions, namely greater gamma-frequency

activity in control animals compared to the Parkinsonian state,

were corroborated in a separate analysis (see Figure S3 in Text

S1). Together this prediction and subsequent analysis lends weight

to the assumption of a biologically plausible and useful model.

The documented changes in steady-state effective connectivity

may indicate primary pathological changes and/or secondary

compensatory mechanisms (see Figure S1 in Text S1). Importantly,

as circuit changes are delayed following chronic dopamine depletion

[6,8], it is possible that some changes in effective connectivity

represent long-lasting changes that might not be amenable to acute

reversal with dopamine, while others might be more dynamic. In

this regard, it is interesting that although the hyperdirect pathway

was strengthened in the Parkinsonian state, changing its connection

strength thereafter in the contribution analyses had relatively little

effect on the dynamics of the reorganised system as a whole (see

Figure S1 in Text S1). This suggests that the strengthening of the

hyperdirect pathway may be a necessary, permissive, chronic plastic

change for the larger circuit to become susceptible to pathological

beta oscillations, but thereafter has relatively little dynamic

influence, at least over the short-term.

The decrease in STN input to the GPe in Parkinsonian animals

is also interesting. Here, contribution analyses demonstrated that

increasing the strength of the reciprocal connection exacerbates

the beta oscillations that characterise the Parkinsonian state.

Recent experimental data also suggest that interactions between

GPe and STN could both support and actively promote the

emergence of excessively synchronized oscillations at the network

level [5], while a recent computational model also emphasises the

importance of strong excitatory connections from STN to GPe in

the promotion of beta-frequency activity [42]. The reduction in

STN to GPe connectivity that we observed here may instantiate

compensatory neural plasticity (see Figure S1 in Text S1), acting to

limit reciprocal feed-back from GPe to STN, thus ameliorating

Parkinsonism.

The above findings underscore the importance of our

contribution analysis in interpreting the nature of steady-state

changes. It is important to note that while the effects found in our

contribution analysis are dependent on the model inversion as a

whole, i.e. including intrinsic parameters, it is the change in the

extrinsic connections themselves that promote beta oscillations.

This approach was key to identifying the indirect pathway

connections as influencing abnormal activity in the chronicly

reorganised circuit, even though their connection strengths

remained relatively unchanged between control and Parkinsonian

states. The importance of these connections could not have been

suspected from simple contrasts of control and Parkinsonian

steady-state networks, and it was their potency in promoting beta

oscillations that was very much greater when embedded in the

Parkinsonian network. This means that connections of the indirect

pathway have a new strategic role in the re-organised circuit, and

provide potential therapeutic targets, in line with the recent

finding that selective excitation of striatal neurons in the indirect

pathway elicits a Parkinsonian behavioral state [43]. Indeed, it is

likely that D2-mediated suppression of striatal input to GPe might

explain the attenuation of beta oscillations in patients with PD

following therapy with apomorphine [44] or L-Dopa [10].

Our results should encourage exploration of the therapeutic

potential of suppressing the GPe to STN connection in PD. The

directionality of this prediction is important given the different

neurotransmitters in reciprocal STN-GPe connections. We have

assumed that the network changes occurring under anaesthesia are

also relevant in the awake, behaving animal. There is good

evidence to support an extrapolation of our findings to the un-

anesthetized state. First, the excessive beta oscillations we have

modelled occur in both anesthetized and awake 6-OHDA-lesioned

rats [5,6,8,22], moreover the gamma activity shift for the control

animals reveals how broadband spectral activity is preserved under

anaesthesia. Second, at least some of the network alterations

defined here are likely the result of chronic plasticity as they only

appear several days after dopamine neurons are lesioned [5,8].

Thus, some of the critical features identified in the model fitting

from the anesthetized state are likely to represent underlying

changes in the microcircuit, and therefore may still be relevant in

the awake state.

In summary, our analyses lead to a new view of connectivity in

the cortico-basal ganglia-thalamocortical circuit, which acknowl-

edges the importance of synchrony in the pathophysiology of

Parkinson’s disease [7]. Our scheme makes strong and testable

inferences about what are essentially permissive vs. compensatory

changes as well as which connections have altered strategic

contributions to the pathological state. These connections

represent candidate therapeutic targets (see Figure S1 in Text

S1). Key amongst the latter are connections to and from the GPe

[40,45].

Materials and Methods

Electrophysiological Recordings
Experimental procedures were carried out on adult male

Sprague-Dawley rats (Charles River, Margate, UK), and were

conducted in accordance with the Animals (Scientific Procedures)

Act, 1986 (UK). Recordings were made in eight dopamine-intact

control rats (288–412 g) and nine 6-OHDA-lesioned rats (285–

428 g at the time of recording), as described previously [5,6,46].

Briefly, anaesthesia was induced with 4% v/v isoflurane (IsofloTM,

Schering-Plough Ltd., Welwyn Garden City, UK) in O2, and

maintained with urethane (1.3 g/kg, i.p.; ethyl carbamate, Sigma,

Poole, UK), and supplemental doses of ketamine (30 mg/kg, i.p.;
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KetasetTM, Willows Francis, Crawley, UK) and xylazine (3 mg/

kg, i.p.; RompunTM, Bayer, Germany). The electrocorticogram

(ECoG), a type of cortical local field potential, was recorded via a

1 mm diameter steel screw juxtaposed to the dura mater above the

right frontal (somatic sensory-motor) cortex (4.5 mm anterior and

2.0 mm lateral of bregma [47] and was referenced against another

screw implanted in the skull above the ipsilateral cerebellar

hemisphere. Raw ECoG was band-pass filtered (0.3–1500 Hz,

23 dB limits) and amplified (20006; DPA-2FS filter/amplifier:

Scientifica Ltd., Harpenden, UK) before acquisition. Extracellular

recordings of LFPs in the striatum, GPe and STN were

simultaneously made in each animal using ‘silicon probes’

(NeuroNexus Technologies, Ann Arbor, MI). Each probe had

one or two vertical arrays of recording contacts (impedance of 0.9–

1.3 MV measured at 1000 Hz; area of ,400 mm2). The same

probe was used throughout these experiments but it was cleaned

after each experiment in a proteolytic enzyme solution to ensure

that contact impedances and recording performance were not

altered by probe use and re-use [33]. Monopolar probe signals

were recorded using high-impedance unity-gain operational

amplifiers (Advanced LinCMOS: Texas Instruments, Dallas,

TX) and were referenced against a screw implanted above the

contralateral cerebellar hemisphere. After initial amplification,

extracellular signals were further amplified (10006) and low-pass

filtered at 6000 Hz using programmable differential amplifiers

(Lynx-8: Neuralynx, Tucson, AZ). The ECoG and probe signals

were each sampled at 17.9 kHz using a Power1401 Analog-Digital

converter and a PC running Spike2 acquisition and analysis

software (Cambridge Electronic Design Ltd., Cambridge, UK).

Neuronal activity was recorded during episodes of spontaneous

‘cortical activation’, which contain patterns of activity that are

similar to those observed during the awake, behaving state [48].

Cortical activation was defined according to ECoG activity [5,6].

Neuronal activity patterns present under this anaesthetic regime

may only be qualitatively similar to those present in the

unanesthetized brain. However, the urethane-anesthetized animal

still serves as a useful model for assessing ensemble dynamics

within the basal ganglia [46]. Indeed, in 6-OHDA-lesioned

animals, exaggerated beta oscillations emerge in cortico-basal

ganglia circuits during activated brain states [5,6] thus accurately

mimicking the oscillatory activity recorded in awake, unmedicated

PD patients [10].

6-Hydroxydopamine Lesions of Dopamine Neurons
Unilateral 6-OHDA lesions were carried out on 200–250 g rats,

as described previously [5,6]. Twenty five minutes before the

injection of 6-OHDA, all animals received a bolus of desipramine

(25 mg/kg, i.p.; Sigma) to minimize the uptake of 6-OHDA by

noradrenergic neurons [49]. Anaesthesia was induced and

maintained with 4% v/v isoflurane (see above). The neurotoxin

6-OHDA (hydrochloride salt; Sigma) was dissolved immediately

before use in ice-cold 0.9% w/v NaCl solution containing 0.02%

w/v ascorbate to a final concentration of 4 mg/ml. Then 3 ml of

6-OHDA solution was injected into the region adjacent to the

medial substantia nigra (4.5 mm posterior and 1.2 mm lateral of

bregma, and 7.9 mm ventral to the dura [47]. The extent of the

dopamine lesion was assessed 14–16 days after 6-OHDA injection

by challenge with apomorphine (0.05 mg/kg, s.c.; Sigma [50]).

The lesion was considered successful in those animals that made

.80 net contraversive rotations in 20 min. Note that the

emergence of exaggerated beta oscillations after 6-OHDA lesions

is not dependent on apomorphine [6,22]). Electrophysiological

recordings were carried out ipsilateral to 6-OHDA lesions in

anesthetized rats 21–42 days after surgery, when pathophysiolog-

ical changes in the basal ganglia are likely to have levelled out near

their maxima [6].

Data Pre-Processing: Evaluating Cross-Spectral Densities
We restricted our analysis to the ECoG and LFP activities

present during a spontaneous activated brain state, which mimics

that accompanying alert behaviours in which beta oscillations are

most prominent in PD patients and 6-OHDA-lesioned rats

[5,6,22,51]. Thirty second epochs of cortical activation were

analysed from one contact in each BG nucleus and the

contemporaneous ECoG from each animal. Cross-spectral density

yij(v) [< between channels i and j (with i:1,...4 and j:i,..4) were

evaluated from the channels’ time-series, zi(t) [< using the

following two steps (Equations 1 and 2). Note that although

yij(v) are the data features predicted by the model, we first

estimate these features from the recorded time-series.

Data from the four channels (Cortex, Striatum, GPe and STN)

were summarised using an autoregressive (AR) process [52] of

order p~16. This order determines the number of peaks (
1

2
p) in

the associated spectra [53] and was chosen to approximate the

asymptotic order of the neural mass model investigated in Moran

et al. [20].

zn~A(1)zn{1zA(2)zn{2::::zA(p)zn{pzez

ez *N(0,SAR)
ð1Þ

Here, zn [<4x1 is a column vector containing data samples from

the four channels at time n, Am [<4x4 : m~1,:::p is a matrix of

AR coefficients (weights), and en [<4x1 is a random noise term,

assumed to be sampled from a zero mean Gaussian with

covariance
PAR [ <4x4. Given Am and SAR, the cross-spectra

yij(v) between channels i and j can then be constructed from the

(complex) transfer functions Tij(v) [C using standard linear

systems theory:

Tij(v)~
1

A
(1)
ij eivzA

(2)
ij ei2vz:::A(p)

ij eipv

yij(v)~ Tij(v)SAR
ij Tij(v)�

��� ���
ð2Þ

Here, we used 26 frequencies v~10, . . . ,35 Hz at 1 Hz

resolution. The cross-spectra were estimated from Equations 1

and 2 using a variational Bayesian algorithm, [52] (as implement-

ed in the spectral toolbox of http://www.fil.ion.ucl.ac.uk/spm/).

These cross-spectra were then used for dynamic causal modelling:

Dynamic Causal Modelling
DCM is a model comparison framework for the inversion and

comparison of generative (forward) models based on differential

equations. DCM allows data from multiple recording sites to be

analysed as a distributed system. Originally developed for fMRI

[54], the framework uses a generative model of the neural

processes (usually neural mass and mean field models) [55,56] that

cause observed data. Bayesian model inversion furnishes estimates

of coupling or effective connectivity between regions and how this

coupling is changed by experimental context [57]. For LFP and

ECoG data, the generative model contains details about the

structure and synaptic properties within neuronal sources, as well

as the synaptic input that each source receives [21]. In what

follows, we describe the precise form of the dynamic causal model

we used in this application. The underlying neural mass model has
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been described and validated in a series of previous papers

[20,21,28] and is briefly reprised below for completeness.

In DCM for steady-state responses, one is trying to predict or

explain observed spectral activity. Effectively, this entails modelling the

mapping between the spectral density of neuronal fluctuations or

innovations and the resulting responses. This mapping is parameterised

in terms of the (synaptic) parameters of a neural mass model. The

neural mass model is used to determine how random neuronal

fluctuations are filtered to produce observed cross-spectra. Model

inversion involves optimising model parameters to explain empirical

cross-spectra. In what follows, we will describe the generative model in

terms of the kernels or transfer functions that couple the spectra of

neuronal innovations to observed cross-spectra and then describe the

neural mass model that determines how the transfer functions (kernels)

are parameterised. Figure 2 provides a summary of the generative

model in terms of a Bayesian Network, while Figure 3 describes the

neural mass model that provides the kernels in Figure 2.

The Likelihood Model
We require the model to predict cross-spectra corresponding to

the data features described above. This prediction is based on the

parameters h of some model of how these spectra were generated.

We assume the observed cross-spectra are a mixture of predictions

and Gaussian error

yij(v)~gv
ij(v,h)zgw

ij (v,h)zeij(v)

eij(v)*N (0,S(j))
ð3Þ

The spectral prediction gv
ij(v)zgw

ij (v) (obtained from the Fourier

transform of the time domain dynamics, Equations 4 & 5)

comprises two parts: The first corresponds to cross-spectra due to

neuronal activity, while the second, gw
ij (v) corresponds to cross

spectra induced by channel noise w(t) [< (described below). The

error e(v) has a covariance matrix S(j)~ exp (j)V (v) where j

are unknown covariance parameters and V (v) [<26x26 encodes

correlations over nearby frequencies. The exponential transform

ensures the error covariance is positive definite. [We note that

cross spectral densities will asymptote to a Wishart distribution at a

large sample limit [58]. However, when averaging each cross

spectrum over multiple trials, one can appeal to the central limit

theorem and assume a normal distribution for the differences

between observed and predicted cross spectra (see [59] for a

comprehensive treatment)]. Assumptions about the observation

error allow one to compute the probability of obtaining some data,

given the parameters, this is called the likelihood model (see

below). Channel or instrumentation noise was modelled separately

for the cortex (ECoG electrode) and BG to account for differences

in electrode size between the silicon probes and the ECoG screw.

Furthermore, we modelled common BG noise components due to

volume conduction in the BG. The ensuing predictions are given

by standard linear systems theory:

gv
ij(v,h)~

X
k

jCk
i (v,h):Ck

j (v,h)jgu
k(v,h)

Ck
i (v,h)~

ð
kk

i (t,h)e{jvtdt

gu
k(v,h)~au

kzbu
k

�
v

gw
ij (v,h)~aw

ij zbw
k

�
v

ð4Þ

Here gv
ij(v,h) is the sum of cross-spectral densities induced by the

inputs or neuronal innovations uk(t) driving neuronal dynamics.

These cross-spectra are simply the (complex) transfer functions

Ck
ij(v,h) [C26 mapping from the k-th neuronal innovations (k:

1,..5) to each channel times the spectral density of each input:

gu
k(v,h). We parameterised the spectra of the neuronal innova-

tions and the channel noise as a mixture of white and pink

components [60,61].

The transfer functions are the Fourier transforms of the

corresponding first-order kernels, kk
i (t,h) that mediate the effect

of the k-th innovation (zero mean fluctuations, uk(t), which we

assume perturb the system linearly around its fixed point) on the

observed data. These kernels can be regarded as impulse response

functions of the i-th channel to the k-th input: i.e., the change in

output with respect to a change in input at time t in the past. First

order kernels are ubiquitous representations of dynamical systems,

where the response (of linear systems) can be determined by

convolving the input with the system’s impulse response or kernel.

In the frequency domain, where convolution becomes multiplica-

tion, multiplying the Fourier transform of the kernel with the

Fourier transform of the input provides the system’s spectral

response: c.f. Equation 4 (for an introduction to these transforms,

see [62]). The kernel for each channel obtains analytically from the

Jacobian Lf =Lx of the flow or motion _xx(t)~f (x(t),u(t),h) of

hidden neuronal states specified by a neural mass model (see

below). This flow describes how the hidden neuronal states are

perturbed by the inputs or innovations. For channel i, and input k

the kernel is

kk
i (t,h)~

Lzi(t)

Luk(t{t)

~
Lzi(t)

Lx(t)
: Lx(t)

Lx(t{t)
: Lx(t)

L _xx(t{t)
: L _xx(t{t)

Luk(t{t)

~
Lhi(t)

Lx(t)
exp t:

Lf

Lx

� �
: Lf

Lx

{1 Lf (t)

Luk(t)

ð5Þ

This means the kernels are analytic functions of the equations of

motion of the hidden states, the mapping between hidden states

and inputs. In addition, we have to model the mapping between

hidden states and observed channel data in the time domain:

z(t)~h(x(t),h)zw(t). This time domain prediction forms the

basis of the spectral prediction through Equations 4 and 5. The

observation function h(x(t),h) used here was a simple mixture of

depolarisations at pyramidal, stellate and inhibitory interneurons

contributing to the cortical ECoG channel and the depolarization

of the individual cell populations in each BG recording. The

ECoG data are assumed to arise predominantly (60%) from the

pyramidal cells due to their dendritic organisation [63], with a

20% contribution from the net membrane potentials of the

inhibitory interneurons and stellate cells [20]). These assumptions

are encoded in the priors on the parameters of the observation

function described later.

The Neural Mass Model
Equation 5 allows us to predict the systems kernels and spectral

behaviour given the equations of motion (differential equations)

that constitute our model of hidden neuronal states. The effect of

neuronal noise or fluctuations is modelled here in terms of their

expression as cross spectra in channel space. The neural model is

composed of subpopulations, where each subpopulation can have

different synaptic rate constants and amplitudes. Subpopulations

are grouped into sources and coupled with intrinsic connections,
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while sources are connected by extrinsic connections between

specific subpopulations in different sources. Our model comprised

a cortical source, four basal-ganglia nuclei and a thalamic source

(Figure 1A). The cortical source contained three neuronal

subpopulations (two excitatory and one inhibitory, [20]), while

the basal ganglia and thalamic nuclei contain one subpopulation,

whose afferents are each either excitatory or inhibitory, according

to their known neurochemistry [29] (Figure 3). The major

glutamatergic and GABAergic connections between the six key

components of the cortico-basal ganglia-thalamocortical circuit

comprise our standard model architecture.

The dynamics of hidden neuronal states and the ensuing

observation are assumed to have the form

_xx(t)~f (x(t),u(t),h)

z(t)~h(x(t),h)zw(t)
ð6Þ

Where h are unknown biophysical parameters of the model of

neuronal dynamics. These dynamics are modelled in terms of the

evolution of voltages and currents in each subpopulation,

x(t)~fv(t),i(t)g[64]. This evolution rests on two operators: The

first transforms presynaptic inputs (firing rates) into a postsynaptic

membrane potential v(t) [< response. This is modelled by

convolution with a synaptic impulse response (alpha) function,

where the synapse is either inhibitory or excitatory [28,64,65,66].

The second operator is a nonlinear function of postsynaptic

depolarisation that returns the firing rate. This firing rate is passed

to other subpopulations though intrinsic (within source) and

extrinsic (between source) connections to provide presynaptic

input. The synaptic convolutions can be formulated as ordinary

differential equations describing postsynaptic currents i(t)k
j and

voltages v(t)k
j for the j-th subpopulation in the k-th source:

_vvk
j (t)~ik

j (t)

_iik
j (t)~kk

j Hk
j (ck

l S(vk
l (t{d))zu(t)){2kk

j ik
j (t){(kk

j )2vk
j (t)

S(v)~
1

1z exp ({rv)

ð7aÞ

This can be expressed more compactly in terms of the second

order differential equation in voltage:

€vvk
j (t)~kk

j Hk
j (ck

l S(vk
l (t{d))zu(t)){2kk

j _vvk
j (t){(kk

j )2vk
j (t) ð7bÞ

The parameters Hk
j [ h control the amplitude of the response

function of the j-th subpopulation in the k-th source, while and

kk
j ~1=tk

j [ h are lumped representations of passive membrane

rate (inverse time) constants. Here, ck
l S(vk

l (t{d)) represents

presynaptic input, which is a sigmoid function (with slope

parameterised by r) of delayed depolarisation in the l-th

subpopulation (l: 1,..3 in cortex and l: 1 in the Basal Ganglia),

weighted by an intrinsic coupling parameter ck
l [<. For simplicity,

we have omitted extrinsic inputs from the i-th source:

likS(vk
l (t{D)), which have a similar form (please see Figure 3)

but have included neuronal noise or fluctuations, u(t). Extrinsic

delays between sources are parameterised by D [< and intrinsic

delays between cortical layers by d [<.

The architecture depicted in Figures 1 and 3 outlines the cell

types within each neural-mass or ensemble and connections

between ensembles. Of interest here are the extrinsic connection

parameters l [<, which scale the influence of firing rate from

different sources. As noted above, the parameters c [< encode the

strength of intrinsic connections between cortical layers. This gives

the real positive parameter set h~fa,b,H,k,r,c,l,D,d,lg [R54
z,

where ‘k
ij are the coefficients (electrode gains) of the observation

function hi(x(t),h)~
P

j,k ‘
k
ijv

k
j (t). These determine the contribution

of the depolarisation vk
j (t) to the i-th electrode, as described above.

The Priors
Because the model parameters are non-negative they are treated

as scale-parameters with Gaussian priors on the log of their values.

These are specified in terms of a prior mean gi and variance fi

for the i-th parameter. A non-zero prior variance allows the

parameter to be pushed from its prior mean. A relatively tight or

informative prior obtains when fi~
1

16
(see Table 1 in Text S1)

and with typical data, this allows a re-scaling of the posterior mean

around the prior mean by up to a factor of about two. Relatively

flat priors, like those used for our key parameters of interest; the

effective connectivity measures, allow for an order of magnitude

scaling (with a prior variance of fi~
1

2
). The maximum excitatory

amplitude and time constant had prior means of 8 mV and 4 ms

respectively, while the inhibitory parameters have prior means of

32 mV and 16 ms [67]. These synaptic parameters have a prior

variance of fi~
1

8
, allowing for a scaling up to a factor of about

four ([56], see Table 1 in Text S1). As noted above, the con-

nectivity parameters have a higher prior variance than the other

biophysical parameters. This ensures their posterior estimates are

determined primarily by the data. The priors over the parameters,

p(hjm) are detailed in Table 1 in Text S1 and Moran et al. [20].

Finally, we used non-informative priors p(jjm) over the covari-

ance scale-parameters.

Model Inversion
The priors, together with the likelihood model (Equation 3),

constitute a generative model of observed cross spectral densities

based on a neuronal state-space model formulated in continuous

time. This generative model is summarised in Figure 2 and can be

expressed in terms of the joint density over the spectral data and

model parameters

p y,h,jjmð Þ~p(yjh,j)p(hjm)p(jjm)

p yjh,jð Þ~P
ij
N (gv

ij(v,h)zgw
ij (v,h),S(j))

p ln hjmð Þ~P
i
N ( ln gi,fi)

p jjmð Þ~N (0,32)

ð8aÞ

The parameters of interest are the effective connectivity from one

subpopulation to another. Note that the hidden neuronal states are

not estimated explicitly in DCM for steady state responses,

because we can map directly from cross spectrum of neuronal

innovations to observed cross spectra, using linear systems theory.

To invert the model, we seek the moments of the posterior

probability distribution

p(h,jjy,m)~
p(yjh,j,m)p(hjm)p(jjm)

p(yjm)
ð8bÞ

However, this expression contains a normalisation constant (the

model evidence) which would require the intractable integral
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calculation p(yjm)~
Ð

p(y,h,jjm)dhdj (recall that j parameterises

the variance of observation error). We therefore employ a

variational scheme to approximate the solution to Equation 9,

using a lower bound on model evidence as an objective function

[68]. Maximising this objective function returns the maximum a

posteriori (MAP) parameter estimates (the conditional or posterior

mean) and the conditional covariance. This scheme is known as

Variational Laplace [57] and grandfathers most model inversion

and Bayesian filtering schemes, under Gaussian assumptions:

Variational Laplace
Variational Laplace appeals to a mean field approximation and

factorises an approximate joint posterior into two densities over the

covariance and model parameters: q(j,h)~q(j)q(h). The moments

(conditional mean and covariance) of the approximate posterior

marginals, q(j) and q(h), can then be updated iteratively under a

fixed-form Laplace (i.e., Gaussian) approximation to the conditional

densities; q(j)~N (mj,Sj)and q(h)~N (mh,Sh). Under this as-

sumption, the conditional covariances become analytic functions of

the conditional means (see Protocol S1 in Text S1). This means the

free energy becomes a function of the data and conditional means,

which are optimised using a Gauss-Newton method:

F~ ln p(yjm){DKL(q(hjmh)q(jjmj)jjp(h,jjy,m))

m̂mh~ arg max
mh

F(y,mh,mj)

m̂mj~ arg max
mj

F(y,mh,mj)

ð9Þ

where DKL is the Kullback-Leibler divergence between the real and

approximate posteriors. The conditional means are optimised

iteratively until the change in free energy falls below 1022. Note that

Variational Laplace generalises previous variational schemes based

upon expectation maximisation, which ignore condition uncertainty

about the parameters optimised in the maximisation step: e.g., [69].

For dynamic models of the sort used in this paper, this approach has

been evaluated in relation to Monte Carlo Markov chain (MCMC)

techniques and has been found to be robust, providing accurate

posterior estimates while being far superior to sampling schemes in

terms of computational efficiency [70].

Given the empirical data, either from each animal separately

(spectra from 10 to 35 Hz, comprising the auto-spectra of cortex,

striatum, GPe, STN and their cross-spectra; Figure 4A), or the

averaged cross-spectra over animals within either the control or

lesioned group (the grand averaged data), we used this Variational

Laplacian scheme to estimate both the log-evidence of the model

(approximated by the free energy) and the posterior density over its

parameters. The posterior or conditional densities of the model

parameters provide variance estimates, which are used in Bayesian

parameter averaging to weight individual parameter means. To

quantify the 95% confidence intervals on these estimates the

conditional covariance of the average is computed as the inverse of

the sum of the inverse posterior covariance (i.e., precision) matrices.

Note that while intrinsic parameters are optimised during the

inversion, for simplicity, we focus on how Parkinsonian beta-activity

is mediated by changes in the extrinsic effective connectivity, l [<,

between nodes in the extended basal ganglia-cortical circuit.

DCM Contribution Analysis
We used the MAP estimates above to analyse the response of

the networks to small changes in circuit connectivity. Our goal

was to see if particular connections (along the cortico-basal

ganglia-thalamocortical pathways) contribute to beta frequencies

more than others. This analysis assumes that the generative model

of the spectra has been optimised and omits channel noise; i.e.

using yij(v)~gv
ij(v,mh) (Equations 3, 4 and 5 above) we computed

the average effect of each connection on the beta peak centred at

17 Hz (summing from 16 to 18 Hz) using the derivative

Lb

Llkl

~
L

Llkl

1

10

X4

i,j~1

X18

v~16

gv
ij(v,mh)

 !
ð10Þ

Model Selection
As outlined above, the free energy is a lower bound on the

model evidence [71] and is used for model selection, when testing

a series of possible neural architectures using Bayes Factors (see

Figure S2 in Text S1). The free energy can be rewritten in terms of

the unknown parameters:

F~Sln p(y h,j,mj )Tq{Sln q(h,j){ ln p(h,j mj )Tq ð11Þ

This illustrates how maximisation of the free-energy also

maximises the log-likelihood of the data expected under the

(approximate) posterior. In classical model testing, goodness-of-fit

comparisons are based on log-likelihood ratios. In this Bayesian

setting, the more general ratio test uses the model evidence, which

includes a penalty for any divergence between the prior and

posterior densities; this divergence is complexity (the second term

above). In short, the maximisation of free energy (which bounds

log-evidence) ensures a maximum accuracy or data-fit, under

complexity constraints. This free energy approximation to log-

evidence has been shown to outperform other approximations

such as the Bayesian information criterion [72] (BIC) and Akaike’s

information criterion [73] (AIC) in the context of DCM.

Unit Circle Z-Transformation of a System’s Impulse
Response

A DCM can be seen as an input-state-output model of neuronal

responses, where the white and pink noise inputs at each of sources

(and four channels), renders the system a MIMO (multi-input multi-

output) model. We can hence perform additional system identifi-

cation, where all spectral properties of the BG-cortical circuits, as

approximated by our model can be summarised. The system’s

transfer function can be constructed from the state-space

(differential equation) formulation given above (Figure 3), using

the Laplace transform, which has a polynomial form:

_xx~AxzBu

z~Cx

9=
;?T(s)~

Y (s)

U(s)
~

C(sI{A){1B~
(s{z1)(s{z2)

(s{p1)(s{p2)
:::

A~
Lf

Lx
,B~

Lf

Lu
,C~

Lh

Lx

ð12Þ

Where, the matrices A, B and C depend on hidden parameters as

in Equation 6. The transform uses the MAP estimates of the group

DCMs. The Laplace transform uses the complex variable,

s~gzqj, which, when evaluated at g~0, gives the frequency

response. The ‘poles’ of the system correspond to the roots of the

denominator (where an infinite output is observed). The system

‘zeros’ correspond to the roots of the transfer function’s numerator
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and are where zero output will be observed. In our analysis, we

employ a z-domain description, which samples the s-domain

response to produce a discrete representation up to the Nyquist

rate. The frequency response is immediately apparent in this

representation because the power at each frequency, along the

unit circle is given by the product of the distances from the point

on the unit circle to each of the zeros, divided by the product of

the distances from the point on the unit circle to each of the poles

(illustrated in Figure 5B). A detailed description of these transforms

can be found in [21]. This representation is provided for the a

posteriori transfer functions of both the Control and Parkinsonian

animals in Figure 5B. The z-transform introduces a nonlinear

frequency warping under the bilinear approximation [74], such

that continuous frequencies, v are mapped in the sampled domain

to 2fs tan (
1

2
vfs) where fs is the sampling frequency: For example,

20 Hz is mapped to 20.04 Hz and 60 Hz to 61.18 Hz. We use

these graphs as qualitative references for further analysis (c.f.

frequency spectra and gamma predictions, Figure 5B and see

Figure S3 in Text S1).

Supporting Information

Text S1 Additional model comparison, sensitivity analyses and

robustness estimates. This explores a possible model space using

Bayesian model comparison and presents additional sensitivity and

robustness analyses that support our main conclusions.

(DOC)
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