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Background. Insulin directly changes the sheep pleural electrophysiology. The aim of this study was to investigate whether
insulin induces similar effects in human pleura, to clarify insulin receptor’s involvement, and to demonstrate if glibenclamide
(hypoglycemic agent) reverses this effect. Methods. Human parietal pleural specimens were mounted in Ussing chambers. Solutions
containing insulin or glibenclamide and insulin with anti-insulin antibody, anti-insulin receptor antibody, and glibenclamide
were used. The transmesothelial resistance (RTM) was determined. Immunohistochemistry for the presence of Insulin Receptors
(IRa, IRb) was also performed. Results. Insulin increased RTM within 1st min (P = .016), when added mesothelially which was
inhibited by the anti-insulin and anti-insulin receptor antibodies. Glibenclamide also eliminated the insulin-induced changes.
Immunohistochemistry verified the presence of IRa and IRb. Conclusion. Insulin induces electrochemical changes in humans as in
sheep via interaction with its receptor. This effect is abolished by glibenclamide.

1. Introduction

Insulin is one of the chief mediators of anabolism and
glucose controllers. Diabetic patients who receive insulin as
treatment may develop a rare but potentially dangerous com-
plication known as “the insulin oedema syndrome” which is
characterized from oedema and fluid formation in various
sites of the body, ranging from simple ankle oedema to
heavy cardiopulmonary manifestations, such as pulmonary
oedema, cardiogenic shock and pleural effusions. [1–4].

A possible explanation for the insulin oedema syndrome
was proposed to involve the ability of insulin to induce per-
meability alterations in epithelia such as the distal kidneys,
at epithelial cell level, where it induces electrolyte and water
retention [5–7] leading to fluid excess in the organism.

However, despite the aforementioned explanation, the
formation of pleural effusions in diabetic patients who
develop the insulin oedema syndrome remains unexplained.
In an effort to explain this event, a direct effect of insulin
in pleura was previously demonstrated in sheep [8]; insulin

induced electrochemical changes increasing the pleural
trans-mesothelial resistance (RTM) by blocking ion trans-
porters such as the amiloride-sensitive Na+ channels and the
ouabain-sensitive Na+/K+ pumps who have been implicated
in pleural fluid recycling [9]. In that study, the insulin
receptors a (IRa) and b (IRb) were demonstrated to be
present in sheep pleura, and therefore the aforementioned
effect was suggested to be mediated by a possible insulin-
insulin receptor interaction [8].

The aim of this study was to investigate if insulin effect
on the electrochemical profile of the human parietal pleura
follows similar pattern as in sheep, to clarify if an interaction
with its receptor is involved, and to additionally investigate
if glibenclamide (another hypoglycemic agent also used for
diabetes treatment) can reverse this effect.

2. Materials and Methods

2.1. Human Parietal Pleural Specimens. Intact sheets of
human parietal pleura were obtained from forty-four (44)
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patients, who underwent thoracic surgery for lung cancer
(via thoracotomy or thoracoscopic procedures) for diagnos-
tic and/or therapeutic purposes. The lung mass was not in
proximity with the dissected specimens. A piece from each
specimen was sent for histopathological examination, and
all specimens used in the study were proven to be free of
any disease, as per the histopathology report. Patients with
pleural effusion prior to the operation, abnormal blood-
stream glucose level preoperatively, or history of diabetes
were excluded from the study. The remaining specimens were
then placed in preoxygenated (bubbled with 95% O2—5%
CO2) Krebs solution, cooled at 4◦C, and were transferred to
the laboratory within 30 minutes from tissue dissection.

The study was approved by the Local Ethics Commit-
tee (Institutional Review Board), and signed consent was
obtained from all the participated in the study patients.

2.2. Electrophysiology Studies. The KRB solution used
throughout the whole study was balanced at pH 7.45 and
contained 117.5 mM NaCl, 1.15 mM NaH2PO4, 24.99 mM
NaHCO3, 5.65 mM KCl, 1.18 mM MgSO4, 2.52 mM CaCl2
and 5.55 mM Glucose.

The surface of the pleura that faces in vivo the pleural
cavity, will be referred to as the mesothelial surface, and the
surface that faces the chest wall will be referred to as the
interstitial surface.

The pleural tissues were mounted as planar sheets of
tissue in Ussing-type chambers [8–10]. The tissue was bathed
in Krebs solution on both sides and bubbled continuously
with 95% O2—5% CO2 gas mixture, heated to 37◦C, in order
to ensure tissue viability.

Following the equilibration period and control mea-
surements [8, 10], insulin (bovine pancreas insulin, Sigma
Chemical Co., USA) solutions (10−7 M) were added on the
mesothelial and interstitial surface of the specimens (n = 7
experiments for each side) [8]. In other experiments the
anti-insulin antibody (Sigma Chemical Co., USA, 50 mg/dl,
dilution 1 : 80000) was added in insulin solutions (n = 7
experiments). Similarly, the anti-insulin receptor antibody
(IR, pTyr972, Sigma Chemical Co., USA) or the anti-insulin-
like growth factor 1 receptor antibody (Sigma Chemical Co.,
USA) was also added in other insulin solutions (n = 7
experiments). In other experiments glibenclamide (10−5 M)
(Sigma Chemical Co., USA) was added on the mesothelial
and interstitial surface of the specimens (n = 7 experiments
for each side of the tissue). Finally, insulin 10−7 M was added
in specimens (n = 7) pretreated with KRB solution with
glibenclamide 10−5 M for at least 30 minutes prior to the
experiments.

PDTM was measured 1, 5, 10 and 30 minutes after each
solution addition and Trans-mesothelial Resistance (RTM) was
calculated from PDTM [8–10].

2.3. Statistical Analysis. Statistical analysis was performed
using the statistical package SPSS ver. 10.00 for Windows
(Statistical Package for the Social Sciences, SPSS Inc.,
Chicago, Ill., USA). Data are expressed as MeanRTM (Ω·cm2)
± Standard Error of Mean (S.E.). Statistical significance

between pairs was determined by student’s paired t-test
whereas between multiple groups by ANOVA (Bonferoni’s
post hoc). P values less than .05 were considered significant.

2.4. Immunohistochemistry. Tissue sections (3 μ) from pari-
etal human pleura were dried onto slights overnight at
60◦. After deparaffinization in xylene and rehydration in
decreasing ethanol solutions, slides were heated in target
retrieval solution (pH 9, DAKO Denmark) for 25 minutes in
a microwave oven (LG WAVEDOM 850 Watt). The sections
were cooled, washed in PBS, and incubated in 0.3% hydrogen
peroxide for 10 minutes to block endogenous peroxidase.
After washing with PBS, 75 μL of blocking buffer (DAKO,
Carpinteria CA, USA) was added to each section for 1
hour. Then, the sections were incubated with the primary
antibody to Insulin receptor a (rabbit polyclonal Santa Cruz
Biotechnology, Santa Cruz CA) and Insulin receptor b, (rab-
bit polyclonal Santa Cruz Biotechnology, Santa Cruz CA) at
1 : 300 and 1 : 200 dilution, respectively, for 1 hour in room
temperature. After the incubation, envision fluid (polymer-
peroxidase method, EnVision+/HRP, DAKO Denmark) was
added, followed by incubation for 30 minutes. The slides
were counterstained with hematoxylin and mounted. Tissue
sections from pancreas and liver were used as positive
controls. Blood vessels wall in the mesothelium specimens
were considered also as positive controls. For the negative
control the incubation step with the primary antibody was
omitted.

3. Results

3.1. Effect of Insulin in Human Parietal Pleura. Addition of
insulin on the mesothelial surface increased RTM rapidly,
within the 1st minute (from 20.99 ± 0.5Ω·cm2 to 22.85 ±
0.6 Ω·cm2, dRTM 1.86Ω·cm2, versus control P = .016). This
effect lasted for 5 min (22.11 ± 0.6Ω·cm2, versus control,
P = .026), and RTM was decreased thereafter till baseline
(20.92± 0.6Ω·cm2, versus control, P > .05) after 30 minutes
(Figure 1(a)). Little effect was observed interstitially (20.99±
0.5Ω·cm2 to 21.47 ± 0.6 Ω·cm2, dRTM 0.48 Ω·cm2, versus
control P > .05) (Figure 1(b)).

3.2. Effect of Anti-Insulin Antibody on Insulin-Induced
Alterations. The anti-insulin antibody totally inhibited the
insulin-induced effect (from 22.85 ± 0.6Ω·cm2 to 21.05 ±
0.6 Ω·cm2 P = .01, versus control P > .05, Figure 2).

3.3. Effect of Anti-Insulin Receptor Antibody on Insulin-
Induced Alterations. The anti-insulin receptor antagonist
also totally inhibited insulin-induced effect (from 22.85 ±
0.6Ω·cm2 to 20.95 ± 0.6Ω·cm2 P = .01, versus control
P > .05, Figure 3).

3.4. Effect of Anti-Insulin-Like Growth Factor 1 (IGF) Receptor
Antibody on Insulin-Induced Alterations. The anti-IGF-1
receptor antagonist did not inhibit the insulin-induced effect
(from 22.85 ± 0.6Ω·cm2 to 22.54 ± 0.5Ω·cm2P > .05,
versus control P = .014, Figure 3).
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Figure 1: Effect of insulin 10−7 M addition on the Trans-mesothelial Resistance (RTM) when added on the mesothelial (a) and interstitial (b)
surface of human parietal pleura, by time. Values are expressed as Mean Trans-mesothelial Resistance (Ω·cm2) ± Standard Error of Mean;
n = 7 experiments. ∗P < .05 versus control.
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Figure 2: Effect of Anti-Insulin antibody on the insulin-induced
electrochemical alterations in human parietal pleura. Values are
expressed as Mean of Trans-mesothelial Resistance (Ω·cm2) ±
Standard Error of Mean of n = 7 for each set of experiments.
∗P < .05 versus control, #P < .05 versus insulin.

3.5. Effect of Glibenclamide in Human Parietal Pleura and on
Insulin-Induced Alterations. Addition of glibenclamide had
no effect on RTM either when added mesothelially (weak
increase of 0.54Ω·cm2, versus control P > .05, Figure 4)
or interstitially. RTM remained near baseline throughout the
experiments. Glibenclamide abolished the insulin-induced
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Figure 3: Effect of Anti-Insulin Receptor antibody and Anti-
IGF 1 Receptor antibody on the insulin-induced electrochemical
alterations in human parietal pleura. Values are expressed as Mean
of Trans-mesothelial Resistance (Ω·cm2)± Standard Error of Mean
of n = 7 for each set of experiments. ∗P < .05 versus control,
#P < .05 versus insulin.

(Figure 4) RTM increase from the 1st min of coaddition (from
20.99 ± 0.6Ω·cm2 to 21.30 ± 0.5Ω·cm2, dRTM 0.31Ω·cm2,
versus insulin P = .022, versus control P > .05).
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Figure 4: Effect of Glibenclamide 10−5 M on the insulin-induced
electrochemical alterations in human parietal pleura. Values are
expressed as Mean of Trans-mesothelial Resistance (Ω·cm2) ±
Standard Error of Mean of n = 7 for each set of experiments.
∗P < .05 versus control, #P < .05 versus insulin.

3.6. Detection of IRa and IRb in Human Parietal Pleura.
Mesothelial cells showed positive immunostaining for IRa
and IRb. The immunoreactivity was cytoplasmic (Figures
5(a) and 5(b)). The distribution of immunoreactivity was
diffuse. Staining intensity was even and convincing.

4. Discussion

The main finding of this study is that insulin induced electro-
chemical changes in human parietal pleura when added on
the mesothelial surface. This effect is elicited after interaction
of insulin with its receptors which were identified as per
the immunohistochemistry to be present in human parietal
pleura. This insulin-induced effect is reversed by another
commonly used hypoglycaemic agent, glibenclamide, which
had a weak effect on the electrochemical profile of the human
parietal pleura.

Insulin induces similar effects in other tissues such as the
toad urinary bladder where insulin increased short circuit
current within the first 5 minutes towards the mesothelial
side of tissue [11]. Insulin showed an increase of PDTM

of alveolar type II cells when added mesothelially [12, 13].
Interstitial effect of insulin due to diffusion was cited in toad
urinary bladder [11]. Weak interstitial effect was observed
in this study possibly due to diffusion [14, 15] or because
of remnants of fat tissue or blood clots [16]. In kidney
cells insulin is known to stimulate amiloride-sensitive Na+

channels when added apically [6, 7, 11].
In the present study, insulin was used in a concentration

of 10−7 M, given that this concentration was previously
shown to be the least effective concentration in sheep [17].
In insulin-treated humans, insulin levels rarely reach such
high concentrations (i.e., in poorly controlled patients),
suggesting that the pleura can be directly stimulated by

(a)

(b)

Figure 5: (a) IRa cytoplasmic immunoreactivity in mesothelial cells
of parietal mesothelial tissue (immunoperoxidase stain, original
magnification 2 × 20). (b) IRb positivity in mesothelial cells
of parietal mesothelial tissue (immunoperoxidase stain, original
magnification 2× 20).

insulin only with high concentrations, explaining in this way
the rarity of pleural effusions during insulin therapy [2].
Insulin is possibly diffused into the pleural cavity according
to bloodstream levels following diabetes treatment. This high
concentration could also explain the fact that in pleura
insulin decreases the permeability rather than augments
it, as is the case in kidneys. High insulin concentrations
can produce different effect patterns in different epithelia
or even in the epithelia of the same target organs that is,
the kidneys were even interstitial effect was recorded when
insulin concentrations used were high [18].

It has been commonly demonstrated that insulin aug-
ments glucose uptake via interaction with its receptor.
Additionally, insulin interferes with Na+ transportation in
epithelial tissues via interaction with its receptor [6, 7, 19,
20]. Similar permeability regulation by insulin via a receptor-
mediated process was shown in T84 colonic cells [21]. Insulin
receptors were demonstrated to be more abundant on the
basolateral side of human bronchial epithelial cells [22].
Results from the present study show that insulin and its
interaction with its receptors a (IRa) and b (IRb) induce the
observed electrochemical alterations in the human parietal
pleura.

From all the aforementioned, insulin induced a com-
parable electrochemical effect in sheep and human pleura.
Additionally, the insulin receptors a (IRa) and b (IRb) were
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also shown to exist in both species. Therefore, electrophys-
iological and histopathological observations present many
similarities in sheep and human pleura suggesting that sheep
can be an acceptable animal model for observations that may
be extrapolated to humans. This finding is important given
that the human tissue is hard to be obtained due to the fact
that consent is needed the healthy subjects are not subjected
to surgery whereas its stripping leads to bleeding [8].

IGF-1 also produces transcellular ion fluxes across
epithelial tissues and has been implicated to change the
permeability that is, of the kidneys [23, 24] after interaction
with its receptor. IGF-1 and insulin receptors have similar
structure, and insulin may interact with IGF-1 receptor. If
insulin induces its effect by binding to the IGF-1 receptor,
then the inhibition of the insulin receptor would not have
inhibited the insulin’s effect in pleura, given that the IGF-
1 receptor would have been free to bind with insulin. If
insulin induces its effect by binding to the insulin/IGF-1
receptor, then the inhibition of the insulin receptor would
have partially inhibited the insulin’s effect in pleura. The
results of the coaddition of insulin with the anti-IGF-1
receptor antibody in some specimens suggest that the IGF-
1 receptor is not involved with the insulin effect in pleura at
this at least concentration (10−7 M). However, more research
is warranted in order to clarify the involvement of the IGF-1
receptor in the insulin effect in pleura.

Glibenclamide is an antidiabetic agent which enhances
insulin production by β-pancreatic cells via inhibition of
adenosine triphosphate sensitive K+ channels (K(ATP))
[25, 26]. Such channels are present in kidneys [27, 28]
constituting glibenclamide as an agent interfering with the
electrolyte transportation [29–31]. However, its involvement
in the function of mitochondrial K(ATP) attributed to
this drug a possible harmful effect [32]. Such harmful
effect in terms of electrophysiology was not supported by
our results. More importantly, glibenclamide inhibited the
insulin-induced electrochemical effect in pleura. This inhi-
bition is explainable as it depletes the cellular ATP content,
and therefore the insulin-insulin receptor binding may be
hindered. The blockage of K+ transportation via K(ATP)
channels by glibenclamide needs further clarification in
pleura since its addition did not induce electrochemical
and permeability changes suggesting that such channels
do not exist in pleura. Apart from its hypoglycemic role,
glibenclamide was additionally chosen for its effects in
kidneys and myocardium [33, 34].

Results from the present study indicate that theoretically
insulin presence in the pleural cavity makes the pleural
membrane less permeable [8, 35], and this event may
provide an additional explanation for the formation of
pleural effusion in insulin-treated diabetic patients. Insulin
may therefore present oedematic properties by altering the
electrophysiological profile and consequently interfere with
pleural recycling [35]. This oedematic effect can be reversed
by another hypoglycaemic agent such as glibenclamide. This
observation, although at experimental level, may provide an
alternative treatment option for clinicians who encounter
this rare complication of pleural effusion formation during
insulin therapy.

5. Conclusions

In conclusion, insulin induced electrophysiology alterations
of the human parietal pleura which were similar with the
effect produced in sheep pleura and is mediated by interact-
ing with its receptor. This finding alongside with the fact that
these receptors were demonstrated to be present in human
parietal pleura as in sheep implicates the similarity of the
parietal pleura of the two species. The hypoglycaemic agent
glibenclamide totally inhibited this effect without inducing
intense electrophysiological alterations of the human parietal
pleura.
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