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Abstract

Background: Stroke is the most common cause of disability in the developed world and can severely degrade
walking function. Robot-driven gait therapy can provide assistance to patients during training and offers a number of
advantages over other forms of therapy. These potential benefits do not, however, seem to have been fully realised as
of yet in clinical practice.

Objectives: This review determines ways in which robot-driven gait technology could be improved in order to
achieve better outcomes in gait rehabilitation.

Methods: The literature on gait impairments caused by stroke is reviewed, followed by research detailing the
different pathways to recovery. The outcomes of clinical trials investigating robot-driven gait therapy are then
examined. Finally, an analysis of the literature focused on the technical features of the robot-based devices is
presented. This review thus combines both clinical and technical aspects in order to determine the routes by which
robot-driven gait therapy could be further developed.

Conclusions: Active subject participation in robot-driven gait therapy is vital to many of the potential recovery
pathways and is therefore an important feature of gait training. Higher levels of subject participation and challenge
could be promoted through designs with a high emphasis on robotic transparency and sufficient degrees of freedom
to allow other aspects of gait such as balance to be incorporated.

Introduction
Stroke is the third most common cause of death and
the biggest contributor to adult disability in developed
countries [1]. For instance, around half a million cases
of stroke occur per year in the United States [2]. Gait
impairment is a large contributor to long-term disability
and ambulatory function in daily living [3]. Many patients,
however, lose the ability to walk independently, and fur-
thermore, a large proportion do not regain their normal
walking speeds following a stroke [4,5].

Treatment for stroke is very costly and accounts for a
large percentage of heath care budgets, for example, of
the National Health Service in the UK [6]. The approach
to stroke physiotherapy is diverse, as are the theoreti-
cal bases assumed by the physiotherapists who provide
the therapy [3,7-10]. Traditional methodology includes
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neuro-developmental training (NDT) [11], the motor re-
learning programme [12], proprioceptive neuromuscu-
lar facilitation [13], and the Rood approach [14]. The
effects of the different kinds of training on gait have been
shown to be modest, irrespective of the exact type of
training [15].

NDT is particularly prevalent [6,7,9,16], with the best
well-known stream being the Bobath concept. This
therapy attempts a ‘holistic’ approach where emotional,
social and functional problems are targeted in addi-
tion to the main sensory-motor deficits [11,17]. The
general aim is to suppress abnormal movement syn-
ergies and move towards normal motor patterns
[17]. Despite the acceptance of neuro-developmental
training and other conventional rehabilitation tech-
niques, evidence demonstrating their efficacy is lacking
[8,10,18-23].

Better outcomes in gait rehabilitation have been elicited
from the more direct approach of body weight supported
treadmill training [20,24-26], where the patient walks on a
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treadmill with his or her body weight partially supported,
and one or more therapists support the patient and guide
their limbs where required. This type of therapy has the
advantages of being task specific and repetitive but is often
very physically intensive. As a result, the training duration
can be limited by the fitness of the therapists themselves.

As a solution to this limitation, robot-driven therapy
was proposed as an addition to physiotherapy programs
for the neurologically impaired [27]. Robot-driven gait
therapy, where the patient is aided by robotic actua-
tors rather than a therapist, is becoming an increasingly
prominent feature of rehabilitation worldwide. As well as
alleviating the physical load on therapists, a robot can
accurately and objectively measure a patient’s output, for
example, in terms of joint kinematics and kinetics [28,29].

A number of therapeutic benefits of robot-assisted
gait training for stroke patients have been reported. For
instance, improvements in walking independence and
mobility in the community [20,30], functional walking
ability [31,32], muscle activation patterns [31,33], gait
speed [33,34], muscle tone [33] and joint range of motions
[34] have been shown. Indeed, the robot-based training
has been, at least in some cases, demonstrated to be
more effective than the more conventional (though more
popular) forms of physiotherapy [35,36].

Nevertheless, robot-based therapy has not demon-
strated a clear improvement over the manual, therapist-
assisted training. Some research has yielded results in
favour of the latter [37,38], other results in favour of
robot-aided training [32,33] and other studies finding no
significant differences in functional gait improvements
between the two types of therapy [39-41]. One argument
in favour of the robotic approach is that it is roughly as
effective as the manual treadmill therapy guided by ther-
apists while requiring much less physical input during its
operation [32].

The lack of clear superiority of robot-assisted training
has led to some degree of disappointment and even scep-
ticism amongst clinicians. It would seem that despite the
purported benefits of the robotic devices, the promise
of the training concept and technology has not yet been
fulfilled. This review investigates ways in which bet-
ter designs and more appropriate use of the robotic
devices could be made. Firstly, the major factors con-
tributing to the deterioration of gait in stroke patients
are described, followed by details of some potential
recovery mechanisms by which these impairments could
be alleviated, thereby improving walking function. The
existing robotic technology for gait rehabilitation after
stroke is summarised, followed by an overview of clini-
cal trials investigating robot-driven gait therapy. Finally,
elements of the robotic hardware and training needed
to maximise the therapeutic impact of the technology
are discussed.

Adverse effects of stroke on gait
Levels of ambulatory activity in stroke patients are low
[42]. The adverse effects of stroke on gait function arise
from several types of impairment, which is defined as a
loss of or deviation from the normal state and function
of a body part or organ [43], or alternatively, as a loss
or abnormality of physiological or anatomical structure
[44]. Disability, on the other hand, refers to the resulting
decreased ability to perform a task or function. A stroke
thus imparts numerous physical, psychological and cog-
nitive impairments which combine to produce disability
[15,29].

Motor, cognitive and sensory deficits are common
impacts of stroke [2,6]. A large impact on force and torque
outputs has been found for stroke patients, not just for
the paretic leg but also for the so-called unaffected leg
[45-51]. Lower limb muscle strength has been shown to
have moderate to strong relationships with functional
walking scores [47,52-59] and also with gait speed [57,60].

Several factors contribute to the overall reduction in
strength. Weakness can arise from both activation fail-
ure and a reduction in the force-generating capacity of
the motor units themselves [49,61]. One important factor
in force production diminishment is the reduced number
of recruited motor units in the paretic leg [50]. Changes
in timing of the muscle groups can also play a role [62],
as do reduced conduction velocities of the motor units
(of slow-conducting fibres) [50,63], slower torque devel-
opment and relaxation rates [49-51,54] and poorer fatigue
resistance [49,54,61,64].

As well as these adverse effects on the agonists, antago-
nist muscles can create resistance and thus reduce the net
force or torque output. Indeed, stroke patients do show
an increased passive resistance to movement. This has
been thought to arise from spasticity, an exaggerated tonic
stretch reflex due to hyper-excitability of stretch reflexes,
resulting in sudden, spasmodic muscular movements [65].
Much effort has thus been made to date in attempting
to reduce levels of muscle tone in stroke patients since
this was previously thought to be a large contributor to
gait disorders [9,66,67]. However, the magnitude of its
role in stroke gait disability seems small [47,61,67-69],
though some weak correlation of gait indices such as
speed and activity scores has been noted [55,70,71], along
with data supporting a role of antagonist co-contraction
in contributing to motor dysfunction at higher movement
speeds [72-75]. In any case, some degree of co-contraction
is necessary to maintain joint stability under loading [76],
and increased co-contraction of the non-paretic limb may
even be a compensatory mechanism used to counteract
weakness on the paretic side [76,77].

Effects on force output are not restricted to the nervous
system. The sedentary lifestyle that stroke can impose elic-
its changes in the properties of the motor units such as
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muscle atrophy, and adverse effects on joints and other
tissue [49,78-81]. Increased fat deposition occurs in the
paretic leg [80]. Altered structure at the local level, that is
of mechanical properties of the musculo-tendinous units
and joints, can have an impact on the resistance of the
joints to movement [47,66,67,82-84].

The role of abnormal motor templates in stroke has
been recognised for many years. Synergies in motor con-
trol, possibly encoded at spinal cord [85] or brainstem [86]
levels, refer to the use of a basic set of movement com-
binations in a modular fashion in order to create more
complex movement patterns [87-89]. Synergies affect sec-
ondary torques, which refer to moments generated about
adjacent joints when a person attempts to produce a vol-
untary torque about a specific joint [90]. Stroke patients
often lose independent control of some muscle groups
and can only produce movement and torque coupled with
other joint moments [61,88,90]. Furthermore, the sec-
ondary torques of stroke patients can even be higher than
the primary torques from an attempted motor output
[90]. Research has indeed shown that some stroke patients
seem to be constrained within abnormal motor synergies
and have fewer motor patterns [88,91,92]. However, the
actual impact of abnormal synergies on gait remains, like
spasticity, controversial. The percentage of patients lim-
ited by abnormal synergies was shown to be low in one
study [93], and in another series of tests, able-bodied sub-
jects and stroke patients exhibited the same synergies in
most cases during a standing task [72,74]. It does seem
to be the case, however, that kinetic variability amongst
stroke patients is much higher than in able-bodied people
[77,91].

Sense of touch, temperature and pain can be greatly
diminished, particularly on one side of the body. Other
impacts on the sensory systems include paresthesia
(numbness or tingling sensation) [94-96] and central post-
stroke pain [95,97]. Impaired sensory abilities may, in
turn, also contribute to diminished motor performance,
mobility and independence [98,99].

Proprioception at the ankle joint is poor and this may
have a role in reducing function [56], for instance through
hindering foot positioning and loading during stance
[100], degrading the ability to correctly use limb syner-
gies, and also restricting the use of feedback for error
correction in motor learning [101]. Poor body position-
ing and reduced feedback due to proprioceptive loss are
likely to impair balance. Nevertheless, the actual impact
of proprioception on gait function has not been clearly
demonstrated, with some data suggesting that its role in
determining function may be weak [102].

Levels of cardiovascular fitness amongst stroke patients
are poor [42,70,78], whilst a further frequent sec-
ondary complication is a decreased level of bone density
[103,104]. The direct constraining effect of these factors

on walking function indicated, for instance, by timed tests,
seems to be low [41,70]. However, these secondary com-
plications may strongly contribute to a lack of mobility
in the community, leading to a more sedentary lifestyle
and limiting walking practise and therefore the potential
for ambulatory improvement. Relieving the impact of sec-
ondary complications is, in any case, an important aspect
of stroke rehabilitation: cardiovascular disease is a major
co-morbidity in stroke patients [105].

Pathways to recovery
Different mechanisms can help alleviate the various
impairments described above, thereby improving func-
tion. Recovery of gait (and indeed other functions) in
stroke patients typically occurs within six months of
the incident, with most gains being made within three
months or less [4,106,107]. Indeed, early commencement
of training following stroke tends to yield better reha-
bilitative outcomes [23,108-111]. Nevertheless, there is
evidence that functional gains can continue in the chronic
stroke phase [112]. In general, recovery of motor function
can occur either through neural reorganisation, which
involves finding alternative means to activate the same
muscles used for a task prior to injury, or using alternative
muscles in compensatory strategies [113].

Some recovery of function and reorganisation does
not require training and thus is referred to as sponta-
neous recovery; this is most prominent until four to six
weeks post-stroke [114]. It has been argued that despite
the efforts of rehabilitation, the majority of gait recovery
following stroke is owed to these spontaneous recovery
pathways [115]. Shortly after stroke, some improvements
may occur due to recovery of penumbral tissue (brain
regions surrounding the insult) [116]. Initially, this tissue
receives just enough oxygen to survive, with its function
only being resumed later. During diaschisis, also known
as apoplectic shock, regions distal from the primary insult
are affected due to their connection with the destroyed
neurons [117]; recovery may occur to some extent when
these interconnections have ceased [118].

Much attention is now being given to the innate plas-
ticity of the nervous system. Previously, the dominant
concept was a ‘hard-wired’ view of the nervous system
which could be barely altered following damage. The term
plasticity refers to the potential for change within the ner-
vous system and includes all reorganisational mechanisms
[119], including axonal sprouting, unmasking of previ-
ously inactive synapses and the formation of new synapses
[120-122]. Reorganisation of brain networks has already
been observed in humans [123,124], non-human pri-
mates [125-128] and rats [129,130]. Importantly, despite
the disrupted motor patterns following stroke, motor
system reorganisation has been demonstrated in stroke
patients [131-133]; indeed, motor activation patterns can
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be altered following both peripheral neurological injury
[129] and central lesions [124]. The cortical reorganisa-
tion which occurs following a stroke has some features
normally seen in the developing brain during ortogenesis
[134,135].

The neural reorganisation typically involves activation
of secondary brain regions such as the premotor cortex
and supplementary motor area. The greater the damage
to the primary cortical area, the more plasticity can be
expected in the secondary areas [136]. However, it seems
that these areas are less efficient at producing output
than their primary counterparts, and the adverse effects
of stroke on function can thus only be partially compen-
sated by such shifts [137]. Patients approaching complete
recovery tend to have brain activation patterns which are
more similar to healthy controls, with a negative corre-
lation between the degree of recovery and activation of
secondary brain areas having been noted [138]. Another
typical pattern is the activation of contralesional brain
areas [139] usually seen in more severe strokes [136].
The role of this mechanism remains controversial [133],
with some studies suggesting a degradation in motor skills
from excess contralesional brain activity due to inhibitory
drive [140].

The innate ability for reorganisation within the nervous
system also raises the question of whether there are cata-
lysts which could be harnessed in a rehabilitation setting
in order to maximise gains from plasticity. This has led to
interest in the topic of motor learning. Research has sug-
gested that repetitive, task-specific training (as opposed to
simply using a limb by chance) is most effective for corti-
cal and task learning reorganisation [126,141-143]. Most
improvements will be seen with respect to the specific task
that is trained, with only limited generalisation to other
movements. These facts suggest that acquisition of spe-
cific skills via motor learning is a crucial element of neural
reorganisation [113].

For motor learning of a new task, training which incor-
porates active participation where the subject voluntarily
produces a movement is thought to be essential for induc-
ing changes in motor performance, cortical activity and
excitability [144]. Correct afferent input is another impor-
tant factor in motor learning [145], with more severe
sensory losses being associated with higher levels of motor
dysfunction in stroke patients, possibly because the lack
of sensory input acts a barrier to motor learning and
reorganisation [146]. It has been suggested that sensory
feedback is needed for processing by internal models
which can predict and adjust motor outcomes [147],
implying that correct sensory input is essential for motor
adaptation through training [119]. A further ingredient
required for motor learning is the inclusion of varia-
tion during the training or practice. This can improve
retention of a newly-learned skill [148], and also promote

generalisation, thus improving performance in other tasks
to some degree. Moreover, higher intensities of practise
tend to result in better outcomes in motor learning [149].

Rehabilitative training has produced reductions in the
severity of a number of impairments of stroke patients.
For instance, rehabilitation has helped to increase the
strength of the paretic lower limb [150,151]. A pooling
of various studies has revealed a significant and homo-
geneous effect of transcutaneous electrical nerve stimu-
lation on muscle tone [23], and improvements in stroke
patients’ cardiovascular fitness have also been achieved
through training [25].

However, reductions in impairment do not necessarily
lead to improvements in gait function. Therapy targeting a
specific impairment such as muscle strength can produce
effects limited to that area only and thus can often fail
to translate to improvements in function [20,23,152]. In
general, greater improvements at the neuromuscular level
(for example, in terms of muscle strength) have been
reported than advancements made in function [153]. Even
if small gains in function are made, these may not be suffi-
cient to improve a patient’s mobility within the household
and community.

Nevertheless, some degree of beneficial impact on walk-
ing function has been achieved. Cardiovascular, aerobic
and endurance training can have positive effects on gait
speed and function [23,154-156]. Studies investigating
strengthening of the paretic limb have revealed small
effects on gait speed and on gait endurance [23,157]. By
way of contrast, functional recovery does not seem to be
strongly associated with changes in muscle tone [20].

Results concerning the properties of training required
to induce functional improvements in walking are still
scarce. For instance, the relationship between rehabil-
itative outcomes and training dosage remains unclear.
While some research has shown a small effect of training
intensity on rehabilitative outcomes [108,153,158], dou-
bling the training dosage did not result in a significant
improvement in outcomes (for instance, timed walking)
in one study [159], and a negative correlation between
training dosage and degree of recovery has even been
reported [160]. The training dosage seems to be impor-
tant only where the therapy is functionally-focused - it
then becomes a significant (but still quite small) predictor
of the outcome [161]. These results thus suggest that the
type and nature of the training may be more important
than simply the quantity alone.

One hitherto-neglected aspect related to functional
gains is that stroke patients tend to adapt to the limita-
tions of their limbs’ motor output by using alternative,
still-preserved motor functions through the use of com-
pensatory strategies. Perhaps the most familiar example
found in stroke is the use of increased hip abduction to
compensate for weakness in the sagittal plane to enable
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foot clearance during gait. Compensatory mechanisms
have been shown to be one of the primary routes to
functional recovery for primates [162-164]. Furthermore,
some results show that improvements typically occur
through tuning of these abnormal synergies rather than
by replacing them with a ‘normal’ physiological synergy
set [165]. Nevertheless, it is usually the main goal of
both clinical rehabilitation and indeed much of rehabilita-
tive technology to strive for the regular motor activation
patterns observed in healthy subjects.

Given the above evidence, the best results in terms of
gains in walking ability would be expected for task-specific
training that incorporates actual walking practise. Given
the above impairments and their impact on walking, ele-
ments such as balance, including weight bearing, trunk
position and lateral movement, joint control, and perhaps
non-level walking such as on stairs, gradient climbing
and different walking surfaces should be included due to
their importance in actual overground walking and their
potential to increase training variability and challenge.

However, the various robotic devices and the way in
which they are employed in clinics may not provide a
suitable means for addressing all these aspects within
rehabilitation, and hence may not yet be able to optimally
promote the various recovery routes detailed above. The
following section is a critical review of some of the existing
robotic gait technology.

Existing robotic gait training technology
A number of devices, some of which are available as com-
mercial products on the market, have been applied in
stroke rehabilitation. These can be broadly classified as
stationary and overground walking systems.

Regarding stationary walking systems, the Lokomat and
the AutoAmbulator are commercially-available devices
which support patients to perform walking on a tread-
mill. The Lokomat consists of an exoskeleton in com-
bination with a body weight support system, and con-
trols the joint angles at the knee and hip by means of
linear actuators [27]. The AutoAmbulator (HealthSouth,
Birmingham, U.S.) employs robotic arms attached later-
ally to the patient for control of the lower limbs [166].
These devices share similar limitations: movements are
constrained to one anatomical plane (sagittal) which pre-
vents meaningful balance training. Furthermore, there
is limited patient influence on the walking trajectory.
The patient is often guided through the movements to
a large extent, rather than producing them volitionally,
though control strategies offering more scope for patient
influence on the walking trajectory are being developed
[167,168].

There are several alterative, non-commercial treadmill-
based, stationary robots, such as the Lower Extremity
Powered Exoskeleton (LOPES) system [169]. This was

designed with a high emphasis on lightweight design
and the incorporation of passive mechanical elements.
Translational movements of the pelvis are included
along with extension-flexion and abduction-adduction,
although an active ankle orthosis is not yet incorporated.
The Ambulation-Assisting Robotic Tool for Human Reha-
bilitation (ARTHuR) is an end-effector system where leg
movements are controlled via moving coil forcers [170].
The device can be used with the Pelvic Assist Manip-
ulator (PAM) which allows movement of the pelvis in
five degrees of freedom [171]. The Active Leg Exoskele-
ton (ALEX), in common with the ARTHuR, was designed
for high backdrivabilitya, although it does not employ the
series elastic elements found in the LOPES. It allows both
extension-flexion and abduction-adduction movements
of the hip, knee flexion-extension and ankle inversion-
eversion [172]. Only the sagittal plane hip and knee
movements are actively controlled via linear drives, with
the other degrees of freedom being passively supported
by springs. Four degrees of freedom are included for
the trunk. One of the goals of ALEX is to reduce
robot interference on gait by counterbalancing gravita-
tional forces on the legs. Such a compensation strat-
egy can, however, greatly distort the dynamics of gait
away from those encountered in normal walking [173].
The Actuated Compliant Robotic Orthosis (ALTACRO)
[174,175] uses pleated pneumatic artificial muscle [176]
to generate linear motion for control. The prototype
device currently provides active assistance for the knee
joint only, though it is intended that the device will
be extended for active hip and ankle support as well.
The AnkleBot has been developed by MIT and pro-
vides three degrees of freedom at the ankle, with two of
these being actuated (dorsi-plantarflexion, and inversion-
eversion), and is designed to be lightweight and backdriv-
able [177,178].

In addition to the treadmill-centred technology, an
alternative approach is to use foot plates to guide the feet
and thereby reproduce gait trajectories. The Gait Trainer
(Reha-Stim, Berlin, Germany) uses a crank and gear sys-
tem to guide the feet, simulating stance and swing phases
[179]. The system can provide a varying degree of support
to the patient, as can the Haptic Walker [180], which is
designed for more arbitrary movements of the feet to sim-
ulate walking on different surfaces. The GaitMaster [181]
and G-EO Systems [182] are robotic end effector devices
which allow simulation of stair ascent and descent. The
LokoHelp (Medburg, Basel, Switzerland) is a lower leg
orthosis system driven by a treadmill rather than exter-
nal drives [183]. The pelvis is unconstrained, though the
feet follow a fixed trajectory. These technologies tend to
focus on movements in the sagittal plane; furthermore,
the absence of an exoskeleton structure does not allow
support of the knee joint which may be challenging for
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some stroke patients, though this omission does provide
an opportunity for assistance and input from the therapist.

As an alternative to the static gait training offered by
the above-mentioned platforms, some robotic devices
are mobile and thus offer overground walking. The
KineAssist (Kinea Design, Evanston, U.S.) has a mobile
base and provides partial body weight support and assis-
tance for movements of the pelvis and torso, whilst leaving
the patient’s legs unobstructed in order allow therapist
assistance [184]. The device can be used for both bal-
ance and gait training. The WalkTrainer (Swortec SA,
Monthey, Switzerland) uses a motor to follow the move-
ments of the patient and has a parallel robotic structure to
control the motion of the pelvis in six degrees of freedom
[185]. The training of balance during gait is difficult due to
the restrictive hip movement in abduction, however. The
Hybrid Assistive Leg (HAL) is a wearable system consist-
ing of an exoskeleton driven by electric motors [186]. The
device may be less suitable for the more severely impaired
patient groups since limited support for the trunk and
pelvis is provided by the wearable structure and there is
no actuation in the frontal plane.

Therefore, several trends, including designing for trans-
parency and incorporating more flexibility and degrees of
freedom, seem to be apparent in the hardware develop-
ment. The next section summarises key clinical results
regarding the efficacy of robotic training in gait rehabilita-
tion for the stroke population.

Clinical outcomes of robotic gait technology
The following section describes training outcomes in dif-
ferent groups of stroke patients: effects in acute, subacute
and chronic groups are outlined. Most investigations have
thus far been pilot studies, though some comparative
studies have been carried out for the Gait Trainer and the
Lokomat.

Positive effects of robotic training interventions have
been demonstrated for patients in the acute phase of
stroke. A pilot study comparing the effects in acute
patients of a combination of robotic and conventional
therapy with the same volume of training of only the latter
approach found significant improvements in functional
ambulation for both training groups, but no significant
differences between the two intervention groups [39]. In
tests investigating the Gait Trainer, patient groups trained
with the more task-specific robot-driven gait or over-
ground walking training modes (but who were also given
conventional therapy) showed greater improvements in
functional walking than the conventional therapy group
[187]. Nevertheless, it is noteworthy that the patients in
the Gait Trainer group rated their perceived exertions
lower than the overground walking group.

Subacute patients in one study achieved better inde-
pendent walking scores and also neurological assessment

results from Lokomat training in combination with regu-
lar physiotherapy as opposed to an equivalent volume of
conventional therapy alone [35]. Nevertheless, no signifi-
cant differences in timed walking tests between the inter-
vention groups were noted. Similarly, a study with suba-
cute patients across German rehabilitation centres found
more improvements in independent walking and sec-
ondary variables such as speed and endurance in a patient
group that received a blended training approach consist-
ing of the Gait Trainer and conventional physiotherapy
[30]. Conversely, another study with subacute patients,
again comparing Lokomat training with a more conven-
tional therapy approach, found that the latter training
method produced greater performance gains in timed
walking tests; however, no differences in functional ambu-
lation between the groups were found [37]. The fact that
the first two of these studies (reporting a positive out-
come for the robotic training) applied a combination
of robot-based and conventional therapy as opposed to
robot therapy alone may be one cause of the different
conclusions of these investigations. In a further study,
greater gains in timed walking tests and motor scores were
elicited from Lokomat training than conventional ther-
apy [33]. A trial into the effects of the AutoAmbulator in
patients admitted with stroke less than 12 months prior
to testing found improvements in both the robotic and
conventional therapy groups in timed walking tests, but
no significant differences between groups [94]. An inves-
tigation into using the Gait Trainer for subacute patients
found improvements from the robotic training as well as
the manual treadmill therapy in terms of functional walk-
ing; no significant differences at six months follow-up
were apparent between the groups [32].

Regarding the effects of the training in chronic patients,
no significant differences in self-selected walking speed
between Lokomat and manual treadmill therapy were
found in one investigation [41], though some pre- versus
post-test differences were observed in the Lokomat group.
By way of contrast, another study employing the same
number of sessions and training duration (12 sessions,
each of 30 minute duration) found greater improvements
in stance time and walking speed through therapist-aided
as opposed to robot-assisted training [188]. The authors
suggest that the lower intensity of the Lokomat walking
as compared with manual treadmill training, as previously
highlighted [189], is one of the causes of the lower efficacy
of the robotic intervention for chronic patients. A small
study of chronic patients training in the LOPES found sig-
nificant gains in walking speed and distance, and also in
joint range of motion [34].

In summary, it seems that the potential of the cur-
rent robotic technology is greatest in the earlier stages of
stroke. While acute stroke patients can benefit from the
higher degree of support from the robotic training, there
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is not such a clear trend in favour of one or the other train-
ing approach for chronic patients. Furthermore, the best
results have often been noted where the robot was applied
in conjunction with conventional therapy, which seems
to support the view that the robot is an augmentation to
rather than a replacement for the therapist [190].

How could robot-assisted gait therapy be
improved?
From the discussion on neuroplasticity and motor learn-
ing, it appears that the level of active participation has a
strong impact on almost all of the elements of gait recov-
ery following stroke. However, the voluntary contribution
of patients during much of robot-assisted walking has
been quite limited so far. Active participation is strongly
influenced by the mechanical properties of the robot, the
control system, the patient’s motivation, the therapists’
instructions and various other factors.

Arguably, the biggest determinant of how much active
participation is ultimately possible is the transparency of
the device. Transparency refers to the degree to which the
interaction forces and torques between human and robot
are generated - that is, the ability of the robot to ‘get out of
the way’ [191]. Thus, a perfectly transparent robot would
induce no forces on the human subject, and conversely,
a robot with low transparency would always distort the
walking dynamics and thus impose false loading patterns.
A transparent robot allows the level of robotic guidance
to be varied, and patients can be exposed to the actual
dynamics of the task to a greater extent, which is likely
to aid motor learning [192,193]. At the other end of the
spectrum, the robot must still be able to perform the basic
function that it was originally designed for, that is, aiding
the patient in areas where he or she is most impaired and
cannot perform independently.

Control of the robot is a crucial element and heav-
ily influences, for example, the overall safety, the level of
patient participation, and robotic transparency. The con-
trol strategies employed for gait training robots can be
divided into a number of categories including assistive
and challenge-based controllers [194]. The former case
includes the oft-applied impedance control regime [195],
which can ensure correct kinematics, but may impair
motor learning due to reduced patient effort. Hence, there
has been interest in assist-as-needed paradigms where
the robot only interferes in phases which cannot be per-
formed independently by the patient [196,197]. In the
ideal case, the robot would exert no interference unless the
patient is unable to perform a task or gait phase. On the
other hand, challenge-based controllers are those which
make a function or movement more difficult than the
real task [194], and include increased-resistance strate-
gies and error augmentation [198,199]. The latter is based
on the assumed importance of error correction in motor

learning, with the hypothesis that error amplification
leads to an increased rate of motor skill acquisition [200].
Nevertheless, the actual influence on motor learning out-
comes remains unclear [200,201], and furthermore, the
long-term changes of using this kind of strategy are still
unknown [194].

Although influential, control design and implementa-
tion can have only a limited effect on the overall level of
transparency. The interaction between the robot and the
human imposes additional restrictions on the control of
the robot [202-204], thereby limiting the extent to which
robot inertia, in particular, may be compensated. As a
result, the limit of achievable transparency is determined
by the hardware of the robot rather than through control
[203]. Mechanical designs leading to a bulky, high inertia
machine will yield a low transparency device, regardless
of the control strategy used. Other potentially problem-
atic aspects of the mechanical design include gearing
and actuators which can introduce friction and backlash,
impose control bandwidth restrictions and complicate
design for safety [205,206].

With this in mind, attempting to keep the vari-
ous components - including the actuators, joints and
exoskeleton - as lightweight as possible is perhaps the
most crucial aspect of ensuring sufficient transparency for
effective training. Transparency is now being recognised
as an important design element: high levels of trans-
parency have featured in realisations of robot systems for
rodents [207] and humans [169], with friction and iner-
tia being key considerations. Detaching the motors from
the robot frame has been one approach to decreasing the
weight and inertia of the moving elements of the robot
[208].

The incorporation of passive mechanical elements into
the design can also help alleviate various mechanical
problems. For example, series elastic actuators (SEA) can
act as low-pass filters to reduce shock [205], and since
the force output is proportional to the spring length,
force control can be approached via position regulation
[205,208]. They can also be useful for energy storage
and lower the reflected inertia and output impedance
[205,206,209]. Furthermore, their higher compliance can
reduce the risk of injury in the event of a collision
[206]. These various characteristics make the SEA a use-
ful inclusion in robotic exoskeleton applications [205] and
it has already found some application in robot-assisted
technology [208].

Another source of the limited effectiveness of some of
the available robots is thought to arise from limitations
in the robotic degrees of freedom. For instance, the con-
straints on the pelvis imposed by some devices induce
changes in the gait kinematics [37,210,211]. The con-
straint to one anatomical plane (normally sagittal [27]) can
severely limit frontal and transverse plane rotations [211].
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Restrictions in terms of the robotic degrees of freedom
may also force the patient to perform compensatory
movements in the sagittal plane, causing muscle activation
patterns to be forcibly altered [189,212].

During normal gait, humans must actively control bal-
ance in the frontal plane through manipulation of the
position of the centre of mass using foot placement
[213-215]. Training of balance during walking is not real-
istic in many of the current devices due to the aforemen-
tioned limited degrees of freedom. For example, weight
shifting from one leg to the other and the cyclic lateral
movements of the centre of mass - the main component of
balance during gait [216-218] - are not permitted, and thus
the subject need not actively stabilise himself [211]. Even
when sufficient degrees of freedom are provided at the
pelvis, the inability to perform sufficient hip abduction in
some of the machines [185] can also be a barrier to balance
training. Additionally, the body weight support systems
normally used during the training can further reduce
the challenge of maintaining balance due to the stabil-
ising forces they provide [219]. Studies have examined
the impact of incorporating standing balance in training
on rehabilitation outcomes for stroke patients [220,221].
This, however, is a fundamentally different task from
maintaining balance during gait, and therefore the poten-
tial improvements in walking function available through
including active balance control during robot-assisted gait
are still unclear.

While insufficient degrees of freedom can impede cer-
tain aspects such as balance practise, it is important
to note that simply increasing the number of degrees
of freedom will not necessarily lead to enhanced train-
ing outcomes. The weight of the additional actuators
and joints required may greatly increase the inertia with
respect to the various robotic degrees of freedom and
may thus conflict with other design objectives such as
transparency.

While is clear that there are a number of factors which
could potentially have a large impact on training out-
comes, there exists only limited evidence to verify the
impact of these aspects on actual recovery. For instance,
while assist-as-needed controllers have enabled patients
to be more active and have decreased the interaction
forces between the human and robot [167], research
showing that better functional outcomes will follow from
their use in training programs is still needed. Data from
spinal cord injured rats do imply a useful role of assist-
as-needed paradigms in recovery [222], but much more
supporting evidence is necessary. On the same theme,
data verifying the ability of motor learning after neuro-
logical injury to improve the long-term gait function of
stroke patients would provide invaluable guidance for the
future design of the devices, and propel the motor learning
concept from theory into actual clinical application.

Conclusions
A stroke can cause a number of impairments within
various systems, giving a complex underlying structure
to the resulting disability. The mechanisms responsible
for recovery and reversal of these impairments are still
only partially understood. Whilst stroke rehabilitation can
have positive effects, its impact on gait recovery remains
modest, regardless of the particular methodology applied
during rehabilitation.

One of the most important features of any training is
that the patients should be as active as possible. This
can affect not only the possible gains in motor learning
but could also potentially help reduce the severity of the
secondary complications of stroke patients such as car-
diovascular disease and osteoporosis. A robot designed
for a high level of transparency would enhance active
patient participation and achieve low robotic interference
for the more able patients, whilst retaining the option of
more support when it is really needed. A compact, low
weight design incorporating passive elements and suffi-
cient degrees of freedom to allow different aspects of gait
to be trained will help achieve a high level of voluntary
effort on the part of the patient, enhance training variation
and thus promote more effective motor learning.

Within this article, a number of concepts have been
outlined which have the potential to improve gait reha-
bilitation outcomes, with the foremost of these arguably
being motor learning and neuroplasticity. However, there
is a paucity of clinical evidence showing that these con-
cepts can really lead to improved walking function in the
long term. Robots have recently been, and continue to
be developed which incorporate more degrees of free-
dom, allow more aspects of gait such as balance to be
trained, and which have greater transparency. These will
provide an important opportunity in the near future to
intensively investigate the clinical impacts of these various
concepts. The results of such studies will then be pivotal in
guiding future robot design and application, allowing sub-
sequent technological development to take place under
the guidance of better defined clinical requirements.

Endnotes
aBackdrivability refers to the ease with which the external
world can alter the state of the robot [223].
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