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Introduction: In many parts of the developing world procurement of antenatal gestational age estimates is not
possible, challenging provision of appropriate perinatal care. This study aimed to develop a model for postnatal
gestational age estimation utilizing measures of the newborn hemoglobin levels and other metabolic analyte
data derived from newborn blood spot samples.
Methods:We conducted a retrospective cohort analysis of 159,215 infants born January 2012–December 2014 in
Ontario, Canada. Multivariable linear and logistic regression analyses were used to evaluate the precision of de-
veloped models.
Results: Models derived from a combination of hemoglobin ratios and birthweight were more precise at
predicting gestational age (RMSE1·23weeks) thanmodels limited to birthweight (RMSE1·34).Models including
birthweight, hemoglobin, TSH and 17-OHP levelswere able to accurately estimate gestational age to±2weeks in
95·3% of the cohort and discriminate ≤34 versus N34 (c-statistic, 0·98). This model also performedwell in small
for gestational age infants (c-statistic, 0·998).
Discussion: The development of a point-of-care mechanism to allow widespread implementation of postnatal
gestational age prediction tools that make use of hemoglobin or non-mass spectromietry-derived metabolites
could serve areas where antenatal gestational age dating is not routinely available.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Preterm birth affects over 15 million newborns each year and is the
leading cause of neonatal mortality and morbidity worldwide, compli-
cations fromwhich are the leading cause of neonatalmortality, and con-
tributes to 40% of all deaths under the age of five (Lawn et al., 2012;
Nour, 2012). The burden of preterm birth is particularly high in re-
source-poor settings where major risk factors including infection, inad-
equate nutrition, and poor socioeconomic circumstances are common
(Beck et al., 2010). Knowledge of gestational age at the time of birth is
critical for population level surveillance, to guide postnatal care by facil-
itating identification of infants with immediate high-resource needs
pus, 1053 Carling Avenue, Box
9, Canada.

. This is an open access article under
and guiding developmental assessments (Dosman et al., 2012;
DiPietro and Allen, 1991; Bonhoeffer et al., 2006). Differentiation of in-
fants born by preterm birth versus those who are small for gestational
age is important to further distinguish infantmedical requirements. Un-
fortunately, in many low-resource environments limited access to pre-
natal ultrasound dating services and poor recall of self-reported
menstrual histories impair accurate and timely gestational age assess-
ment (Rijken et al., 2009; The Partnership for Maternal, Newborn and
Child Health, 2006).

We and others have recently developed predictionmodels based on
routinely collected newborn metabolic screening profiles that provide
accurate estimates of gestational age (Jelliffe-Pawlowski et al., 2015;
Ryckman et al., 2015; Wilson et al., 2016). Many newborn screening
analytes used to identify rare metabolic conditions may only be reliably
ascertained using tandem mass spectrometry – technology requiring
significant financial resources and technical expertise. Hemoglobin
(Hb) screening for inherited blood disorders such as sickle cell disease
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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and β-thalassemia includes measurement of fetal (HbF) and adult
(HbA) Hb levels. HbF is the primary protein for oxygen transport in
the developing fetus. Hemoglobin production naturally shifts with ad-
vancing gestation from HbF to HbA such that HbF reserves are typically
depleted by six months of age (Bank, 2006; Stamatoyannopoulos,
2005), and while residual amounts of HbF continue to be synthesized
in adult erythropoiesis, the majority of adults have b1% HbF (Thein et
al., 2009). Contrary to the majority of metabolic analytes used in new-
born screening programs which are measured by mass spectrometry,
Hb may be measured using less technically demanding approaches in-
cluding high performance liquid chromatography (HPLC) or gel electro-
phoresis (Association of public health laboratories, 2015; Clarke and
Higgins, 2000).

Given the known relationship between HbF, HbA and gestational
age, we sought to examine the effectiveness of Hb ratios in predicting
gestational age at birth. The utility of Hb levels in a gestational age pre-
dictionmodelwas compared topre-existing predictionmodels incorpo-
rating newborn screening metabolites. We also evaluated models
incorporating thyroid stimulating hormone and 17-hydroxyprogester-
one, other non-mass spectrometry derived analytes.

2. Materials and Methods

A retrospective cohort study design was used to evaluate the preci-
sion of postnatal gestational age prediction models derived from fetal
and adult Hb levels, other newborn screening analyte data and readily
available perinatal characteristics obtained from infants born in Ontario,
Canada. The study was approved by the Ottawa Hospital Science Net-
work Research Ethics Board (20140724-01H) and the Children's Hospi-
tal of Eastern Ontario Research Ethics Board (15/143X).

2.1. Data Sources

2.1.1. The Better Outcomes Registry and Network (BORN)
AnOntariomaternal child registry that includes a broad collection of

prenatal and perinatal data obtained from clinics, hospitals, labs, and
midwifery practice groups. As a secondary use, datawithin the BORN In-
formation System (BIS) is available to researchers.

2.1.2. Newborn Screening Ontario (NSO)
Usingheel-prick samples drawn from infants, usuallywithin the first

72 h after birth, NSO screens virtually all infants born in the province for
over 40 analytes to identify 29 rare conditions including metabolic dis-
orders, endocrine disorders, hemoglobinopathies, immune deficiencies
and other genetic disorders. Available screening analytes include
markers of fatty acid oxidation, proteinmetabolism, endocrine function,
immune function, and quantitative fetal and adult Hb levels. A summary
of the newborn screening markers included in this study is provided in
Table 1.
Table 1
Newborn screening markers included for predictive modelling.

Acyl-carnitines C0; C2; C3; C4; C5; C5:1; C6; C8; C8:1; C10; C10:1; C12;
C12:1; C14; C14:1; C14:2; C16; C18; C18:1; C18:2; C10:1;
C12:1; C14:1; C14:2; C4OH; C5:1; C5DC; C5OH; C6DC;
C16:OH; C16:1OH; C18OH; C18:1OH; C3DC; C4DC

Amino acids Arginine; phenylalanine; alanine; leucine; ornithine;
citruline; tyrosine; glycine; argininosuccinate;
methionine; valine; succinylacetone

Hemoglobins Adult hemoglobin: HbA(A) and variants (S, C, D, E)
fetal hemoglobin: HbF (F), acetylated HbF (F1), combined
HbF (F + F1)

Endocrine markers 17-Hydroxyprogesterone (17-OHP), thyroid stimulating
hormone (TSH)

Enzyme markers Biotinidase; galactose-1-phosphate uridyltransferase
(GALT); immunotripsinogen
All live births captured in BIS between January 2012 and December
2014were eligible for inclusion in the analysis. From this cohort, infants
whose gestational age was determined by 1st trimester gestational dat-
ing ultrasound (from prenatal screening records), and who had com-
plete newborn screening data were included. Infants who were
positive for any of the conditions screened for by NSO were excluded,
as were infants whose newborn screening samples were found to be
of unsatisfactory quality by the screening laboratory. Finally, only in-
fants whose screening samples were collected within 48 h of birth
were included in the final analysis cohort, as the majority of infants
born in low-resource settings are likely to be discharged from hospital
within this time period.

2.2. Analysis

Fourmodelswere developed using the processes described below to
assess predictive utility of HbA and HbF values alone, and in concert
with other newborn screening analytes: (1) birthweight alone, (2) com-
bination of birthweight and HbF and HbA levels (3) combination of
birthweight, hemoglobin levels, TSH, and 17-OHP (all non mass-spec-
trometry derived analytes) and (4) full model including birthweight,
and all newborn screening analytes including hemoglobin levels. Sex
and multiple birth (yes, no) were included in all models. All analyses
were conducted using SAS 9.4 and R v3.1.2.

2.3. Database Partition for Modelling

We used the same data partitioning strategy described previously
(Wilson et al., 2016). In brief, the newborn cohort was divided into
three dataset subsamples; one for model development, one to indepen-
dently validate the choice of terms included in the final model, and one
to independently test performance of the final model. Randomization
was achieved using a stratified random sample approach, with stratifi-
cation by sex and gestational age inweeks to ensure the same incidence
of increasingly preterm birth was preserved in all subset data. Subsam-
ples were generated using PROC SURVEYSELECT in SAS 9.4. Specifically,
the newborn sample sets were partitioned according to a 2:1:1 ratio, dis-
tributing prematurity status (term, ≥37weeks; near-term, 33–36weeks;
very preterm, 28–32weeks, and extremely preterm, b28weeks) and sex
evenly to ensure balance across the 3 datasets. The final analytical dataset
was partitioned as follows: model development (n= 79,620), validation
(n = 39,785) and test (n = 39,810) samples.

2.4. Predictive Modelling

Predictive modelling was performed using a multivariable linear re-
gression model of continuous gestational age in weeks versus newborn
screening analytes, sex, multiple birth status (yes, no) and birthweight.
Continuous analyte and birthweight values were modelled using re-
stricted cubic splines with four knots placed at quintile cut-points;
20th, 40th, 60th and 80th percentiles. Fetal (F, F1) and adult (A) Hb
levels were modelled as (F + F1)/(A + F + F1), referred to Hb ratio
throughout the remainder of this article. For restrictedmodels including
only birth weight and/or Hb ratio, nine knots were placed at decile cut
points.

A weighted regression approach was employed in order to compen-
sate for the smaller sample size and thus contribution to parameter es-
timation of preterm infants. Infants with lower gestational ages were
weighted more heavily in model development to ensure that the fit
was driven by both term and preterm infants.

Model building was conducted using the model development sam-
ple. A forward step-wise variable selection procedure was conducted
using the Swartz Bayesian Criterion to guide the selection of covariates
retained in the final model. Pairwise interactions were evaluated as
part of stepwise variable selection. For interactions to be included in
the model, contributing main effects had to be in the model. When no
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more terms could enter or leave themodel, the stepwise procedure was
terminated, and mean square error (MSE) was calculated by fitting the
model fromeach iteration of the stepwise procedure to the independent
validation data subset. The model generating the lowest MSE among all
stepwise models was selected as the final model. Final model perfor-
mance was then evaluated using the third test data subset, which had
no role in model fitting or validation. This process provided maximum
protection from over-fitting. The relative predictive power and preci-
sion of progressively more complex models were formally compared
using both likelihood ratio tests (LRT), as well as performance metrics
such as theMSE and AUC. Performance of models in sensitivity analyses
were compared descriptively.
2.5. Model Performance for Classification as ≤34 weeks or N34 weeks
Gestational Age

In the current analysis, logistic regression models were also devel-
oped to distinguish between dichotomous categories of preterm birth
(b37 versus ≥37 weeks; and ≤34 versus N34 weeks). Thirty-seven
weeks represents the distinction between pre-term and term birth.
Thirty-four weeks gestational age is an important clinical threshold as
it represents the lower limit of the late preterm period (Kugelman and
Colin, 2013; Bakewell-Sachs, 2007). Predictors of gestational age identi-
fied in the multiple linear regressions were used as independent vari-
ables in logistic regressions. Logistic regressions were fit to the model
development sample, and evaluated in the independent test dataset.
Fig. 1. Cohort creation. Infants registered in the Born Information System (BIS) from January 201
Ontario (NSO) were used for analysis. Infants with incomplete essential demographic data or
trimester ultrasound data and those whose samples were collected N48 h after birth.
2.6. Sensitivity Analyses

Model performance in terms of root mean squared error (RMSE),
absolute prediction within ±1 week, c-statistic (area under receiver
operator curve, AUC), and positive predictive value (PPV) was evalu-
ated overall, and in small for gestational age infants (infants in the
lowest decile of birthweight given gestational age, SGA10) as well
as in those infants from multiple births to investigate whether
model prediction varied in quality across these subgroups. Lastly,
model performance was also compared in heterozygotic carriers of
sickle (HbS) and other hemoglobinopathy alleles (HbC, D, E, F) ver-
sus non-carriers (homozygotic HbA). Infants with two disease alleles
were excluded during cohort creation as screen positives (HbS/S,
HbS/C, HbS/β-thal).
3. Results

3.1. Sample Characteristics

Complete newborn screening records including all study
analytes, sex and birth weight were available for 159,215 infants
born between January 2012 and December 2014 (Fig. 1). A summary
of the cohort characteristics is provided in Table 2. As expected, Hb
ratio decreased with advancing gestational age at birth. Relative
levels of HbF and HbA in infants born at varying gestational ages is
represented in Fig. 2.
2 –December 2014whowere negative for the conditions screened byNewborn Screening
newborn screening profiles were excluded from the cohort, as were those without first



Table 2
Sample characteristics.

Variable All
n = 159,215

≥37 weeks
n = 150,257

N34 to b37 weeks
n = 7,315

≤34 weeks
n = 1,643

Sex
Male, n (%) 80,838 (50·7) 76,123 (50·7) 3,852 (52·7) 863 (52·5)
Female, n (%) 78,377 (49·2) 74,134 (49·3) 3,463 (47·3) 780 (47·5)

Gestational age, weeks
mean (min-max)

39·3
(22·3–43·9)

39·5
(37·0–43·9)

36·0
(34·1–36·9)

31·3
(22·3–34·0)

Birth weight
mean (min–max)

3374
(500–6210)

3426
(743–6210)

2682
(830–5605)

1736
(500–4500)

Small for gestational age, n (%) 15,845 (9·95) 14,005 (9·3) 796 (10·9) 139 (8·5)
Multiple births, n (%) 4412 (2·8) 2399 (1·60) 1491 (20·4) 522 (31·8)
Hb(F + F1)/Hb(A + F + F1)
mean (min–max)

0·82
(0·05–1·00)

0·82
(0·05–1·00)

0·89
(0·11–0·97)

0·92
(0·40–0·98)
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3.2. Overall Model Performance

Linear regression performance characteristics demonstrated that the
model restricted to newborn birthweight, sex, and multiple birth status
had anRMSE of 1·34weeks in the overall cohort, and correctly classified
the gestational age to ±1 week in 55·2% of infants and to ±2 weeks in
88·4% of infants. Addition of Hb ratio improved model performance
with an RMSE of 1·23weeks (LRT p b 0.0001), and accurately predicted
gestational age to ±1 or 2 weeks in 60·4% and 90·9% of the cohort, re-
spectively.Model performancewas further improved by addition of TSH
and 17-OHP levels (RMSE 1·16 weeks, LRT p b 0.0001). In this model,
gestational age was correctly classified to ±1 week of 62·8% of infants,
and to ±2 weeks of 92·5% of infants. Optimal model performance was
achieved by the full analyte model incorporating birthweight, sex, mul-
tiple birth status and all newborn screening analytes including Hb ratio.
The full prediction model had an overall RMSE of 1·04 weeks, and was
capable of providing accurate estimations of gestational age to ±1 or
±2 weeks of true gestational age in 68·7%, and 95·3% of the cohort,
respectively. Consistent with our previous findings (Wilson et al.,
2016), performance of all linear regression models was diminished
in SGA10 infants. Comparison of linear regression model performance
characteristics by gestational age is provided in Table 3. The
Fig. 2. Distribution of fetal and adult hemoglobin
proportions of infants correctly classified by gestational age are sum-
marized in Table 4.
3.3. Model Performance in Dichotomous Pre-term Birth Categories

Dichotomization of pretermbirth using thresholds of 34 or 37weeks
gestational age demonstrated assessed performance of all models to
distinguish between preterm birth categories. By logistic regression,
AUC and PPV at 80% sensitivity demonstrated robust model perfor-
mance overall. For all models, performance was similar or more robust
in SGA10 infants compared to the overall cohort (Table 5). Gestational
age predictionmodels weremore accurate at discriminating ≤34 versus
N34 weeks gestational age compared to b37 versus ≥37 weeks gesta-
tional age. As with linear regression results, logistic regression predic-
tion models derived from a combination of birthweight and Hb ratio
had higher predictive capacity than models derived from birthweight
alone. Inclusion of TSH and 17OHP levels produced better performance
characteristics relative to the full analyte model for discriminating in-
fants ≤34 versus N34 weeks gestational age (AUC 0·981 vs 0·975;
PPV at 80% sensitivity, 0·675 vs 0·53, LRT p b 0.0001). Limited Hb
models (Hb ratio and Hb ratio + TSH + 17-OHP) better discriminated
levels by gestational age. Hb, hemoglobin.



Table 3
Comparison of model performance overall and in SGA10 infants by gestational age category.

All infants, RMSE SGA10, RMSE

Modela Overall ≤34 weeks 34–37 weeks ≥37 weeks Overall ≤34 weeks 34–37 weeks ≥37 weeks

Birthweight only 1·34 2·55 1·75 1·30 2·61 2·14 2·40 2·61
Birthweight + Hb ratio 1·23 2·58 1·45 1·19 2·23 2·22 2·01 2·23
Birthweight + Hb ratio + TSH + 17-OHP 1·16 2·44 1·35 1·13 1·94 1·35 1·57 1·94
Full model 1·04 2·24 1·16 1·01 1·52 1·33 1·26 1·52

RMSE, rootmean square error (average absolute deviation of observed vs. predicted GA inweeks); TSH, thyroid stimulating hormone; 17-OHP, 17 hydroxyprogesterone; SGA10, small for
gestational age.

a All models include infant sex, multiple birth (yes, no).
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≤34 versus N34 weeks gestational age among SGA10 infants (AUC, all
N0·998 vs 0·997; PPV with 80% sensitivity 0·860 and 0·831 vs 0·710,
respectively).

3.4. Sensitivity Analysis in Carriers of Disease-causing Hb Variants

Although infants who screened positive for hemoglobinopathies
were excluded from our analysis, heterozygotic carriers of disease caus-
ing alleles without the disease phenotypewere not excluded. In the test
data where model performance was evaluated, there were 39,251 non-
carriers, 515 sickle carriers, 44 other carriers (Table 6). The birthweight
only model demonstrated little variation in model performance by Hb
variant carrier status. Inclusion of Hb ratio to the model (alone, and
with TSH and 17-OHP) improved performance in non-carriers (RMSE,
1·21 and 1.15 weeks, respectively), although it diminished model per-
formance in sickle and other variant carriers. Similarly, for the full
model including all measured analytes diminished model performance
(RMSE 1·47 and 1·42 respectively for sickle and other carriers respec-
tively vs 1·03 for non-carriers).

4. Discussion

Developing reliable methods for postnatal identification of gesta-
tional age dating are urgently required. In jurisdictions where access
to ultrasound dating is of limited option, postnatal estimations would
improve population surveillance in local areas to ultimately address is-
sues of preterm birth prevention, and help target service delivery to
high-risk mothers and preterm infants (Dosman et al., 2012; DiPietro
and Allen, 1991; Bonhoeffer et al., 2006). Implementation of postnatal
estimation tools would also directly benefit affected infants, guiding al-
location of services necessary for improving outcome, including kanga-
roo mother care and appropriate respiratory management (World
Health Organization, 2003). In this study, we have demonstrated that
prediction models using relative fetal and adult Hb levels at birth, in
combination with birthweight, sex and multiple birth data, can provide
accurate postnatal gestational age estimation. The addition of other
non-mass spectrometry derived newborn screening analytes, TSH and
17OHP, to multivariable regression models further improves their
Table 4
Proportion of infants with gestational age correctly classified to ±1 week and 2 weeks.

Modela All infants, %

Overall ≤34 weeks 34–

Birthweight only ±1 week 55·2 40·7 39·
±2 week 88·4 72·0 71·

Birthweight + Hb ratio ±1 week 60·4 42·3 51·
±2 week 90·9 71·5 83·

Birthweight + Hb ratio + TSH + 17-OHP ±1 week 62·8 47·6 55·
±2 week 92·5 80·1 86·

Full model ±1 week 68·7 56·7 64·
±2 week 95·3 86·1 91·

RMSE, rootmean square error (average absolute deviation of observed versus predictedGA inw
for gestational age.

a All models include infant sex, multiple birth (yes, no).
predictive power. Logistic regression analyses demonstrate that our he-
moglobin-based prediction algorithms discriminate between ≤34 and
N34 weeks gestational age overall and in SGA10 infants with excellent
precision.

The human β-globin locus on chromosome 11 houses ε-, γ-, δ- and
β-globin genes that regulate human HbF and HbA expression. While
the ε-globin gene is active in early fetal life, γ-globin genes are predom-
inantly expressed for the production of HbF, (α2γ2) during the fetal pe-
riod (Bank, 2006). The predominance of HbF during fetal life has been
attributed to its increased oxygen affinity compared to other Hb vari-
ants. As pregnancy progresses, δ- and β-globin genes are activated,
with the β-globin gene being the most highly expressed in adult eryth-
rocytes. Indeed, Hb newborn screening levels for our cohort confirmed
that Hb ratio, defined by Hb(F + F1)/Hb(A + F + F1), varies by gesta-
tional age at birth, with term infants exhibiting the lowest Hb ratios
and increasingly preterm infants having a consistently higher Hb ratio.

There is considerable potential value in usingmetabolicmarkers as a
measure of gestational age after birth. In particular, the use of Hb ratio in
such a prediction model would provide substantial advantages over
models derived from other traditionally screened analytes. Heel prick
blood spot collection for expanded newborn screening is typically
taken between 24 and 72 h after birth, the timing of which is critical
for accurate interpretation of screening results. In low-resource settings,
mothers and infants are often discharged within 48 h of birth, thus lim-
iting the opportunity for connectingwith infants after discharge. Hemo-
globin analysis however is not limited to heel prick sampling and cord
blood samples may be used reliably for analysis, providing results im-
mediately after birth (Lobel et al., 1989). In addition, Hb measurements
are traditionally taken by electrophoresis or HPLC in many laboratories
(Association of public health laboratories, 2015, Clarke and Higgins,
2000), and thus are more amenable to measurement in settings where
the equipment and expertise required for mass spectrometry depen-
dent analyses may be limited. Commercially available field-portable
HPLC systems are now available, and in time could be harnessed for
newborn screening applications. Lastly, the prevalence of sickle cell
traits and rates of hemoglobinopathies are high in nations of themiddle
east, northern Africa and south east Asia(Modell and Darlison, 2008;
Piel et al., 2010; Williams andWeatherall, 2012). Penicillin prophylaxis
SGA10, %

37 weeks ≥37 weeks Overall ≤34 weeks 34–37 weeks ≥37 weeks

9 56·1 1·0 21·6 1·61 0·78
7 89·4 36·6 54·1 44·6 36·0
5 61·0 12·6 32·4 25·8 11·6
8 91·4 53·1 51·4 61·8 52·6
8 63·3 23·7 51·4 37·1 22·6
6 92·9 66·4 89·2 80·7 65·4
4 69·1 43·0 54·1 56·5 42·2
4 95·6 83·7 89·2 88·7 83·4

eeks); TSH, thyroid stimulating hormone; 17-OHP, 17 hydroxyprogesterone; SGA10, small



Table 5
Performance of gestational age models to discriminate dichotomous categories of
prematurity.

Modela Preterm
threshold

Overall SGA10

AUC PPV
80%

AUC PPV
80%

Birthweight only ≤34 weeks 0·978 0·496 0·998 0·75
b37 weeks 0·901 0·240 0·983 0·627

Birthweight + Hb ratio ≤34 weeks 0·982 0·624 0·999 0·860
b37 weeks 0·931 0·334 0·973 0·546

Birthweight + Hb
ratio + TSH + 17-OHP

≤34 weeks 0·981 0·675 0·998 0·831
b37 weeks 0·939 0·372 0·971 0·538

Full model ≤34 weeks 0·988 0·807 0·997 0·710
b37 weeks 0·957 0·476 0·970 0·510

PPV 80%, positive predictive valuewhen the classification cutpoint is set such that sensitiv-
ity is 80%; AUC, area under the receiver operator curve (c-statistic); SGA10, small for ges-
tational age; TSH, thyroid stimulating hormone; 17OHP, 17 hydroxyprogesterone.

a All models include infant sex, multiple birth (yes, no).
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for the first year of life is a simple, inexpensive treatment for infants af-
fected by sickle cell disease who are at increased risk of life-threatening
pneumococcal infections (Association of public health laboratories,
2015). Thus introduction of Hb testing in areas without established
practices would provide dual benefits of gestational age prediction
and identification of vulnerable children with hemoglobinopathy
conditions.

The utility of newborn TSH and 17-OHP levels in addition to Hb ra-
tios in model performance was also explored. Similar to hemoglobin,
TSH and 17-OHP offer practical advantages as theymay be routinely ob-
tained by fluorometric or colorimetric assay rather than by mass spec-
trometry analysis. These analytes are also likely to be captured in
existing newborn screening programs (Therrell et al., 2015) due to the
frequency of related disorders and effectiveness of treatment. In our
study, addition of TSH and 17-OHP improved model accuracy over and
above that of the simple Hb model and demonstrated excellent predic-
tive ability in SGA10 infants. The latter is particularly important in low
resource settings where it may be difficult to distinguish infants who
are small as a result of pretermbirth or placental insufficiency. Although
the effect of SGA10 on Hb ratio in the current study were not explored,
preliminary examination of metabolic profiles derived from infants
born to a tertiary care hospitalwith a diagnostic code of 'placental insuf-
ficiency' revealed no significant difference in Hb ratio. The disadvan-
tages of relying on TSH and 17-OHP for gestational age prediction
must also be considered. TSH and 17-OHP are subject to rapid postnatal
change, and are thus typically sampled after analyte levels stabilize
(Newborn Screening Ontario - Dépistage Néonatal Ontario, 2013).
Thus it is unlikely that prediction models requiring such analyte mea-
surements would be useful in infants who are discharged prior to
24 h, nor would the model be appropriate to cord blood-derived sam-
ples for the same reason.
Table 6
Model performance by carriers of variant hemoglobins.

Modela Overall,
RMSE
(n = 39,810)

Carrier status, RMSE

Non-carriers
(n = 39,251)

Sickle
carriers
(n = 515)

Other
carriers
(n = 44)

Birthweight only 1·34 1·34 1·34 1·27
Birthweight + Hb ratio 1·23 1·21 1·95 2·05
Birthweight + Hb
ratio + TSH + 17-OHP

1·16 1.15 1.86 2.09

Full model 1·04 1.03 1.47 1.42

TSH, thyroid stimulating hormone; 17OHP, 17-hydroxyprogesterone; RMSE, root mean
squared error. Non-carrier, homozygotic HbA; Sickle Carrier, heterozygotic HbS; Other
Carrier, heterozygotic HbC, D, E, F.

a All models include infant sex, multiple birth (yes, no).
Whilewe found thatmodels utilizing a full panel of newborn screen-
ing analytes were the most precise at predicting continuous GA than
limited Hb models, the performance characteristics of our Hb models
to discriminate ≥34 versus b34 weeks gestational age are promising.
Thirty-four weeks gestational age is an important clinical threshold as
it represents the lower limit of the late preterm period (Kugelman and
Colin, 2013; Bakewell-Sachs, 2007). It is above this threshold that the
health risks of preterm infants are reduced, although still remaining el-
evated compared to their term counterparts (Nold et al., 2011). Thus,
the trade-off betweenminor reduction inmodel accuracy with reduced
cost and expertise required to obtain model variables may make hemo-
globin-based metabolic prediction models for gestational age suitable
substitutes to postnatal metabolic gestational dating in jurisdictions
where full mass spectrometry screening is not available.

The strengths of these analyses include use of a large multi-ethnic
cohort and our population-based approach. The large sample size en-
abled us to partition our data into independent derivation, test and val-
idation sample sets, which permitted unbiased variable selection and
avoided over fitting of the data. In addition, the use of gold standard
first trimester ultrasound for gestational age strengthens the reliability
of model performance. Potential limitations include the specificity of
our model to the population from which it was derived. The majority
of the infants included in model development were born at term, and
average size for gestational age. Weighting of preterm and SGA infants
in our model served to adjust for this, and we believe that a trade-off
to favor accurate identification of infants at higher clinical risk is benefi-
cial. Importantly, although derived from a multi-ethnic population, the
performance of Hb models (Hb and birthweight alone, or the full
model) in international populations is as of yet uncertain. Preliminary
validation of our original gestational age model, however suggests ro-
bust performance across ethnic subgroup in the province of Ontario,
Canada.

5. Conclusions

Methods to predict gestational age based on newborn screening
markers are poised to provide accurate postnatal assessments of gesta-
tional age in settingswhere gold standardfirst trimester ultrasounds are
limited. Here, we have built upon our existing postnatal gestational age
prediction algorithm to demonstrate both the stand-alone and additive
predictive potential of newborn Hb levels to the model. The clinical
value of the prediction model limited to birthweight and Hb while ex-
cluding other newborn screening analyteswould depend on the accept-
ability of the prediction error for gestational age. To further validate our
Hb-based algorithm, an evaluation of themodel in cord bloodwould be
of benefit. Validation of our model in low-resource settings is also war-
ranted to determine its utility in international settings, as global or re-
gion-specific hemoglobin-based algorithms may be of particular use in
low resource settings wheremass spectrometry analysis for traditional-
ly screening markers are not available. The incremental benefits of this
approach over standard gestational age assessment should also be eval-
uated in a low resource setting.
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