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1  | INTRODUC TION

Over the last decade, with the rapid development in the depth and 
quality of transcriptome sequencing, long non-coding RNAs (ln-
cRNAs) longer than 200 nucleotides in length, which were once 
thought to be biological noise, were discovered in abundance. 
Research investigating lncRNAs has progressed notably in every 
field of medical research.1 Accumulating evidence has demonstrated 

that lncRNAs are involved in diverse cellular processes, including 
transcription initiation, chromatin modification and transcriptional 
regulation,2 by several regulatory archetypes, such as signals, de-
coys, guides and scaffolds,3 and are associated with various biolog-
ical systems, such as immune, metabolic and reproductive systems, 
in multiple human diseases, especially cancers.4,5 Furthermore, a 
large number of lncRNAs have been identified as oncogenes, such 
as HOTAIR and H19, which were significantly positive with poor 
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Abstract
Current studies have shown that long non-coding RNAs (lncRNAs) may serve as 
prognostic biomarkers in multiple cancers. Therefore, we postulated that expression 
patterns of multiple lncRNAs combined into a single signature could improve clinico-
pathological risk stratification and prediction of overall survival rate for breast cancer 
patients. Two algorithms, Least Absolute Shrinkage and Selector Operation (LASSO) 
and Support Vector Machine-Recursive Feature Elimination (SVM-RFE), were used 
to select candidate lncRNAs. Univariate and multivariate Cox regression analyses 
were employed to construct a seven-lncRNA signature for breast cancer. Stratified 
analysis revealed that the signature was significantly associated with multiple clinico-
pathological risk factors. For clinical use, we developed a nomogram model to predict 
overall survival and odds of death for breast cancer patients. Single-sample gene set 
enrichment analysis (ssGSEA), CIBERSORT algorithm and ESTIMATE method were 
employed to assess the relative immune cell infiltrations of each sample. Differentially 
infiltration of immune cells and diverse tumour mutation burden (TMB) scores might 
give rise to the efficacy of lncRNA signature for predicting the overall survival of 
patients. Correlation analysis implied that LINC01215 was associated with multiple 
immune-related signalling pathways. A seven-lncRNA prognostic signature is a reli-
able tool to predict the prognosis of breast cancer patients.

K E Y W O R D S

bioinformatics, breast cancer, immune infiltration, lncRNA, prognosis

www.wileyonlinelibrary.com/journal/jcmm
mailto:﻿￼
https://orcid.org/0000-0002-0198-2603
http://creativecommons.org/licenses/by/4.0/
mailto:lily-1228@hotmail.com


     |  12445LIU et aL.

prognosis in breast cancer,6 and the prognostic signatures of ln-
cRNAs have been reported in various cancers, such as seven-lncRNA 
signatures in non-small-cell lung cancer7 and six-lncRNA signatures 
in glioblastoma multiform.8

Breast cancer (BRCA) remains a public health problem world-
wide, especially for women, and the prognosis of different mo-
lecular subtypes of breast cancer patients is apparently distinct, 
with median overall survival for metastatic triple-negative breast 
cancer being approximately 1 year compared with approximately 
5 years for the other 2 subtypes.9 The TNM staging system devel-
oped by the American Joint Committee on Cancer (AJCC) com-
bined with multiple molecular alteration characteristics in breast 
cancer patients provided a useful benchmark for establishing 
treatment strategies and prognostic predictions; however, these 
methods could not fully reflect the biological heterogeneity of 
breast cancer due to their diagnostic limitations and the basis of 
clinical information.10 Compared with single clinic biomarkers, in-
tegrating multiple biomarkers into a single model can improve the 
predictive accuracy11; thus, constructing novel biomarker signa-
ture associated with prognosis of efficacy of treatment seemed 
to be essential and effective. The construction of such gene sig-
natures might have clinical potential to predict patient outcome 
and assist in treatment choice. Although there were several ln-
cRNAs signatures published associated with breast cancer, some 
of them were aimed to predict the risk of recurrence12 or metas-
tasis-free survival13 of breast cancer patients, existing works re-
lated to prediction of prognosis of breast cancer patients were 
not well performed. For instance, a two-lncRNA signature with 
the identification of mutated-derived lncRNAs,14 an eight-lncRNA 
signature based on ceRNA network15 and a 4-lncRNA signature16 
were constructed to predict survival of breast cancer patients. 
Nevertheless, these signatures have some certain defects regard-
ing diagnostic limitations and accuracy of signature construction, 
such as lower value of AUC for ROC analysis, lacking of valida-
tion data sets or uncovering the underlying mechanism of the 
signatures.

In our current study, to construct a more accurate prognos-
tic signature, we employed Univariate Cox analysis and two al-
gorithms, LASSO and SVM-RFE, to select significant candidate 
lncRNAs for further multivariate Cox regression signature con-
struction. Then, a 7-lncRNA signature was constituted and vali-
dated in two internal validation groups and an external validation 
data set GSE96058 downloaded from Gene Expression Omnibus 
(GEO). And stratified analysis was used to test the universal adap-
tion of the signature in multiple breast cancer groups. Importantly, 
we further explored the underlying mechanism of signature from 
the perspective of specific characteristics of samples in different 
groups. Consequently, we found that our signature could divide 
the training and validation cohorts into high and low immune infil-
tration states at the immune level, and there were also significant 
differences in tumour mutation burden (TMB) in training cohort. 
Hence, we speculated that the validity of this 7-lncRNA signature 
was based on the identification of patient characteristics at the 

immune and mutant burden levels, and such a signature would 
have very accurate prognostic value for clinical breast cancer 
patients.

2  | MATERIAL AND METHODS

2.1 | Data downloaded and differentially expressed 
analysis

Breast cancer RNA sequencing data and sample clinical informa-
tion were downloaded from the TCGA database (https://tcga-
data.nci.nih.gov/tcga/), and according to the sample screening 
criteria (only samples owned sequencing data and clinical follow-
up information were retained), 973 breast cancers containing 
150 triple-negative breast cancer (TNBC) samples and 823 non–
triple-negative breast cancer (non-TNBC) samples were selected 
as training group and randomly divided into two internal valida-
tion groups including 486 samples and 487 samples, respectively. 
The data process and the criteria of patients' selection were both 
described previously.17 The raw data of the training set were re-
purposed to the expression profiles of lncRNAs by probe rean-
notation based on the annotation project in the Ensembl database 
(http://www.ensem bl.org/index.html). Expression profile matrix 
and patients' clinical information of external validation cohort 
data set GSE96058 was directly downloaded from GEO database 
(https://www.ncbi.nlm.nih.gov/geo/). The clinical characteris-
tics of the patients were summarized in Table S1. In a word, the 
whole TCGA BRCA cohort was the training set, and subsequently, 
the differentially expressed lncRNAs were analysed by the R/
Bioconductor package of edgeR (http://www.bioco nduct ot.org) 
with the cut-off value of |log2FC (fold change)| > 1 and FDR (false 
discovery rate) <0.01 between two subtypes of TNBC and non-
TNBC in breast cancer samples. And the differentially expressed 
mRNAs between the two different risk groups were also analysed 
by the R/Bioconductor package of edgeR with the cut-off value of 
|log2FC| > 1 and FDR < 0.01. The differentially expressed mRNAs 
were visualized in a volcano plot in R.

2.2 | Construction of 7-lncRNA signatures of 
breast cancer

Univariate Cox analysis in R was used to determine the association 
between the expression level of differentially expressed lncRNAs 
and patient's overall survival (OS), and P < .05 was considered 
to be statistically significant. After filtration of differentially ex-
pressed lncRNAs, candidate prognostic lncRNAs were selected 
via integrated analysis of two algorithms consisting of the LASSO 
algorithm18 with penalty parameter tuning conducted by 10-fold 
cross-validation, and the SVM-RFE algorithm searching for lambda 
with the smallest classification error to determine the variable.19,20 
A multivariate Cox regression model was finally used to construct 

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
http://www.ensembl.org/index.html
https://www.ncbi.nlm.nih.gov/geo/
http://www.bioconductot.org
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a prognostic signature based on the candidate lncRNAs gener-
ated from the above filtration. A receiver operating characteristic 
(ROC) curve was used to estimate the accuracy and efficiency of 
the signature in a time-dependent manner. All the survival analy-
ses and graphics were conducted under the environment of R with 
the specific R package.

2.3 | Implementation of single-sample immune 
infiltration level analysis

The relative immune cell infiltration levels of single sample were 
quantified by single-sample gene set enrichment analysis (ssGSEA) 
in R package gsva. The ssGSEA employed gene signatures expressed 
by immune cell populations to individual cancer samples.21,22 To 
quantify the proportions of immune cells in the breast cancer sam-
ples, we used the CIBERSORT algorithm,23 which is a deconvolu-
tion algorithm that uses a set of reference gene expression values (a 
signature with 547 genes) considered a minimal representation for 
each cell type to infer cell type proportions in data from bulk tumour 
samples with mixed cell types using support vector regression. Using 
Estimation of Stromal and Immune cells in malignant tumours using 
Expression data (ESTIMATE) method24 to infer the fraction of stro-
mal and immune cells in tumour samples, which is a specific value in 
order to calculate the correlation coefficient between two numerical 
variables.

2.4 | Gene Ontology and pathway 
enrichment analysis

With the help of linear regression between the expression of mRNAs 
and lncRNAs, DAVID (david.ncifcrf.gov) was used to perform gene 
ontology analysis and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis to identify the function of mRNAs in pre-
dicting the underlying biological processes of lncRNA involved in the 
prognostic signature. Gene Set Variation Analysis (GSVA) pathway–
related analysis was conducted to explore the underlying pathway 
variation between two different risk groups as we have described 
before.17 The GO plot package of R software was utilized to display 
the results of the GO analyses, and the online website Image GP 
(http://www.ehbio.com/Image GP/) was used to display the results 
of the KEGG analyses.

2.5 | Availability of data and materials

Publicly available data sets were analysed in this study. The data 
can be found in the TCGA database: https://portal.gdc.cancer.
gov/ and GEO database: https://www.ncbi.nlm.nih.gov/geo/. 
TCGA BRCA data set and GEO data set GSE96058 were involved 
in this analysis. All of those studies previously were approved by 
their respective institutional review boards.

3  | RESULTS

3.1 | Selection of candidate prognostic lncRNAs in 
the discovery group

A total of 1211 differentially expressed lncRNAs were identified 
between 150 TNBC and 823 non-TNBC samples in the discov-
ery group with the cut-off criteria of |log2FC| > 1 and FDR < 0.01. 
Combined with survival data of these samples, 155 lncRNAs were 
obtained by univariate Cox proportional hazards regression analy-
sis with P-value < .05 (Figure S1). For further validation and selec-
tion of the most candidate prognostic lncRNAs with significantly 
characteristic value of classifying TNBC and non-TNBC subtypes, 
we performed the LASSO algorithm to identify a set of 66 lncRNAs 
(Figure 1A,B) and the SVM-RFE algorithm to select a set of 111 lncR-
NAs (Figure 1C,D). After combining the lncRNAs screened out via 
the LASSO and SVM-RFE algorithms, 124 lncRNAs were identified, 
with 53 lncRNAs being selected simultaneously by these two algo-
rithms (Figure 1E), which were identified as candidate characteristics 
of classification and prognosis.

3.2 | Constructing a seven-lncRNA predictive 
signature of breast cancer

Seven lncRNAs were identified through multivariate Cox regres-
sion analysis to construct a predictive signature in the discovery 
group (Figure 2A). The concordance index of this signature was 
0.72 and the 95% CI = 0.66-0.77, P-value = 2.2608e−12. Using 
the coefficients obtained from the multivariate Cox regression, 
a risk score formula was constructed using the following equa-
tion: risk score = (−0.09967 * Expr MAPT-IT1) + (−0.21712 * Expr 
SLC26A4-AS1) + (−0.20558 * Expr VPS9D1-AS1) + (−0.07476 * Expr 
PCAT18) + (0.121761 * Expr LINC01234) + (−0.17423 * Expr 
SPATA41) + (−0.17809 * Expr LINC01215). There was only 
one lncRNA regarded as risk factors with HR > 1, and six lncR-
NAs deemed to be protective factors with HR < 1 in the formula 
(Table 1). The prognostic score of each patient was calculated, and 
all 973 patients were assigned to high-risk or low-risk groups based 
on the median cut-off point of the risk scores. The patients who had 
low-risk scores were believed to have a greater chance of obtaining 
the same survival time than the higher risk score group (Figure 2B), 
and the AUC value of ROC analysis for the prognostic signature 
was 0.748, 0.752 and 0.771 for 3-year survival, 5-year survival and 
10-year survival, respectively (Figure 2C). Notably, cancer-related 
death increased and the number of surviving patients decreased 
with increasing risk score, and every lncRNA expression value in 
the formula associated with the risk score is shown in the heatmap 
(Figure 2D-F).

http://www.ehbio.com/ImageGP/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/


     |  12447LIU et aL.

F I G U R E  1   Two algorithms were used for feature selection. A, Ten-time cross-validation for tuning parameter selection in the LASSO 
model. B, LASSO coefficient profiles of 155 lncRNAs. C, The accuracy and D, the error of the estimate generation for the SVM-RFE 
algorithm. E, The intersection feature selection between LASSO and SVM-RFE algorithms and the individual components
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3.3 | Seven-lncRNA signature was significantly 
associated with OS stratified by multiple risk factors

To explore the impacts of clinical characteristics on the prognostic 
values of the seven-lncRNA signature, we performed a set of pre-
defined stratified analyses. According to the prognostic differences, 
the entire cohort was divided into TNBC group and non-TNBC group, 
among which the latter was further separated into hormone recep-
tor +/ERBB2- group and ERBB2 + group. Based on the AJCC system, 
patients in stages I and II were classified into the group with a good 

prognosis, and patients in stages III and IV were classified into the 
poor prognosis group. Three molecular markers, ER, PR and ERBB2, 
used for breast cancer typing were also used for grouping. When 
stratified by clinicopathological risk factors in the above groups, the 
seven-lncRNA signature was still a clinically and statistically signifi-
cant prognostic model (Figure 3 and Figure S2). Combined with the 
somatic mutation data, we found that TP53 and PI3KCA were the 
most frequently observed mutant genes and were associated with 
a higher mutation frequency in TNBC and non-TNBC subtypes, 
respectively (Figure 4A). Previous studies also suggested that the 

F I G U R E  2   Construction of 7-lncRNA signature. A, Hazard ratio and P-value of constituents involved in multivariate Cox regression and 
some parameters of the lncRNA signature. B, Kaplan-Meier survival curves were plotted to estimate the overall survival probabilities for the 
low-risk versus high-risk group in the discovery group. C, ROC curve was plotted for 3-, 5- and 10-y overall survival in the discovery group. 
D, The 7-lncRNA signature risk score distribution. E, The vital status of patients in the high-risk and low-risk groups. F, The heatmap of the 
expression profiles of members in the 7-lncRNA signature
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mutation frequency of the above two genes might be significantly 
associated with poor prognosis in patients. Bearing this possibility in 
mind, we also implied stratified analysis based on TP53 or PI3KCA 

mutation status. Our data postulated that the higher risk score was 
associated with a higher mortality risk in the wild-type or mutant 
type of these two genes in the discovery group (Figure 4B-E). To 

TA B L E  1   Seven lncRNAs involved in the prognostic signature significantly associated with the overall survival of breast cancer patients in 
the discovery group

LncRNA name Coefficient Hazard ratio Standard error Z score P-value

MAPT-IT1 −0.099668345 0.905137561 0.040347139 −2.470270472 .013501093

SLC26A4-AS1 −0.217117229 0.804835613 0.055753203 −3.894255724 .0000985

VPS9D1-AS1 −0.205582968 0.814172542 0.054334962 −3.783622168 .000154562

PCAT18 −0.074759138 0.927966972 0.034612703 −2.159875727 .030782291

LINC01234 0.121761038 1.129484166 0.047167774 2.581445525 .009838752

SPATA41 −0.174227615 0.840105655 0.076770442 −2.26946218 .023240235

LINC01215 −0.178089397 0.836867607 0.04680171 −3.805189941 .000141695

F I G U R E  3   Kaplan-Meier survival 
analysis for the discovery group according 
to the 7-lncRNA signature stratified by 
clinicopathological risk factors. A-B, TNBC 
and non-TNBC groups. C-D, Hormone 
receptor positive and HER2 positive. E-F, 
TNM stage. We calculated the P-value 
using the log-rank test
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validate the above findings, we randomly allocated the entire cohort 
into two internal validation groups containing 486 and 487 patients, 
respectively. As expected, patients in the high-risk group had a sig-
nificantly increased mortality risk compared with the low-risk group 
either in internal validation group 1 and internal validation group 2 
(Figure S3A-F). Moreover, the equivalent analyses were also per-
formed in the external validation group GSE96058 containing 3409 

breast cancer samples and the risk scores of each sample were also 
calculated based on our lncRNA signature. Patients in the high-risk 
group possessed significantly lower OS rate than those of patients 
in the low-risk group (Figure S4A-D), which was consistent with the 
findings from the training set, indicating that the seven-lncRNA sig-
nature was able to accurately predict the survival of patients with 
breast cancer.

F I G U R E  4   A, Ternary plot of mutation 
frequency in breast cancer, comparing 
HER2+ (left, magenta), TNBC (right, red) 
and HR+ (top, blue). The colour of each 
node indicates the relative frequency of 
mutations in HR+, HER2 + and TNBC, 
whereas the node size represents their 
overall frequency in all breast cancer 
patients. B-C, Kaplan-Meier estimates of 
the overall survival of patients carrying 
wild-type or mutant TP53. D-E, Kaplan-
Meier estimates of the overall survival 
of patients carrying wild-type or mutant 
PIK3CA
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3.4 | Building a predictive nomogram

To develop a clinically applicable method that could predict the sur-
vival probability of a patient, we resorted a nomogram to construct a 
predictive model, considering clinicopathological covariates. On the 
basis of the univariate and multivariate analysis of OS rate (Table 2), 
we generated a nomogram to predict the 5-year and 10-year OS 
rates in the discovery group using the Cox regression algorithm 
(Figure 5A) and to predict the death odds of patients with general-
ized linear regression (Figure S5). The predictors included 7-lncRNA 
signature, age of patients, AJCC-T, AJCC-N, AJCC-M, AJCC-stage, 
ER status and cancer subtype, satisfying the criteria of P < .05 in 
risk assessment. The calibration plots for the 5-year and 10-year OS 
rates were predicted well compared with an ideal model in the entire 
cohort (Figure 5B).

3.5 | Functional characteristics of the 
prognostic signature

To explore the underlying mechanism of the prognostic signature, 
again, we conducted differentially expression gene analysis be-
tween high- and low-risk groups based on the lncRNA signature. 
After edgeR filtering (|log2FC| > 1 and FDR < 0.01), we screened 
out 595 DEGs, among which 208 genes were up-regulated and 
387 were down-regulated in the low-risk group compared with 
high-risk group (Figure S6A,B). KEGG pathway enrichment analy-
sis revealed that low-risk up-regulated genes were significantly 
enriched in multiple pathways, including cytokine-cytokine recep-
tor interaction, chemokine signalling pathway and neuroactive 
ligand-receptor interaction (P < .05; Figure S6C). Moreover, down-
regulated genes were significantly enriched in metabolism of xeno-
biotics by cytochrome P450, drug metabolism-cytochrome P450 

Features

Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI)
P-
value

Age 1.539 (1.176-2.014) .002 1.466 (1.11-1.936) .007

Tumour size 1.526 (1.136-2.051) .005 0.839 (0.573-1.229) .367

Lymphatic invasion 1.727 (1.302-2.291) <.001 1.219 (0.857-1.732) .27

Pathologic metastasis 0.263 (0.176-0.392) <.001 0.408 (0.263-0.634) <.001

Tumour stage 2.189 (1.681-2.849) <.001 1.819 (1.226-2.699) .003

ER status 0.679 (0.5-0.922) .013 0.598 (0.436-0.821) .001

PR status 0.771 (0.584-1.018) .067 -- --

HER2 status 1.113 (0.777-1.595) .559 -- --

7-lncRNA signature 2.395 (1.791-3.203) <.001 2.122 (1.58-2.849) <.001

TA B L E  2   Univariate and multivariate 
analyses of clinicopathological 
characteristics and 7-lncRNA prognostic 
signature with overall survival in TCGA 
BRCA cohort

F I G U R E  5   A, Nomogram to predict the 5-y and 10-y overall survival of breast cancer patients. B, Calibration curve for the overall 
survival nomogram model in the discovery group. A dashed diagonal line represents the ideal nomogram, and the blue line and red line 
represent the 5-y and 10-y observed nomograms
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and chemical carcinogenesis (P < .05; Figure S6C). Additionally, 
GSVA showed that patients with low-risk scores exhibited the 
increased expression of proteins associated with the interferon 
gamma response, inflammatory response and interferon alpha 
response (Figure 6A). These findings indicated that there were 
differences in immune-related genes and signalling pathways be-
tween high-risk and low-risk groups, which may partly explain 
the reason for the significant difference in prognosis between 
subgroups.

3.6 | The risk score was associated with immune cell 
infiltration

The immune cell infiltration status was assessed by applying the 
ssGSEA approach to the transcriptomes of TCGA breast cancer 
cohort. Twenty-four immune-related terms were incorporated to 
assess the abundance of immune cells in tumour immune micro-
environment. The whole cohort was clustered into two clusters 
in terms of immune infiltration by applying the lncRNA signature 
(Figure 6B) and the relative immune score in ssGSEA was shown in 
Figure 6C. Subsequently, the immune infiltration in breast cancer 
tissues between high-risk and low-risk group was investigated by 
the CIBERSORT algorithm. The proportion of 22 immune cells in 
each subgroup were shown in a bar plot (Figure S7A). The results 
revealed that CD8 T cells, T cell CD4 memory resting, B cell naive 
and B cell memory were negatively correlated with the risk score 
and macrophage M0 and macrophages M2 were positively cor-
related with the risk score (Figure S7B). For further investigat-
ing the underlying mechanism of different risk groups reflected 
by lncRNA signature, validation cohort GSE96058 was also cal-
culated by ssGSEA to verify the differences in risk grouping at 
the immune level (Figure S7C). Correlation analysis revealed that 
there were similar co-expression immune infiltration models be-
tween the training set and the validation set (Figure S7D). The 
population of different immune cells displayed similar expression 
patterns indicated that the ssGSEA algorithm was very accurate in 
calculating the data sets from two different sources. Interestingly, 
by analysing the mutation annotation files of the TCGA BRCA co-
hort, we found that high-risk group owned higher tumour muta-
tion burden score than low-risk group (Figure S7E), which implied 
that poorer survival of high-risk group may be associated with 
higher level of mutation.

3.7 | LncRNA LINC01215 associated with immune-
related function

After ESTIMATE algorithm was processed, the higher estimate 
score was found in low-risk group. Similarly, the fraction of immune 
and stromal cell was associated with low-risk group (Figure 7A). To 
further elucidate the underlying biological mechanism of the lncR-
NAs involved in the signature, we calculated Spearman correlation 

coefficient among members of lncRNA signature and immune/
stromal scores of ESTIMATE algorithm, only lncRNA LINC01215 
was mostly positive correlated with immune scores and negative 
correlated with risk scores (Figure 7B). Furthermore, we used 
Pearson correlation analysis of the mRNAs with potential rel-
evance to the lncRNAs in the model. We set the meaningful cor-
relation threshold to correlation > 0.4; consequently, only lncRNA 
LINC01215 was predicted to associate with multiple immune-re-
lated pathways via GO analysis among mRNAs satisfied with the 
cut-off value (Figure 7C). The possibility that other components 
may have potential immune biological functions was not high; 
therefore, we regarded LINC01215 as a hub immune lncRNA in 
our prognostic signature. As described in our previous analysis,25 
we set up a lncRNA related ceRNA network for LINC01215 in 
order to predict its possible relationships with post-transcriptional 
regulation for further future (Figure 7D).

4  | DISCUSSION

With the rapid development of bioinformatics technology, lncR-
NAs, which were previously considered to be transcriptional noise 
1, were demonstrated by accumulating evidence to contribute to 
carcinogenesis and tumour progression.26 LncRNAs have emerged 
as important regulators for prognostic prediction when selecting ap-
propriate treatment choices in a variety of human cancers, including 
breast cancer.27,28 Some lncRNAs were considered to be beneficial 
prognostic indicators to predict prognosis in breast cancer; for in-
stance, lncRNA GACAT3 predicted poor prognosis,29 and lncRNA 
H19 was associated with poor prognosis and promoted cancer 
stemness.30 However, due to the limited number of screened lncR-
NAs and unsatisfactory predictive performance, many potential and 
valuable lncRNAs still need to be identified to improve the predictive 
accuracy for breast cancer patients.31,32 Therefore, given that the 
components involved in the construction of the model and the ac-
curacy of some existing prognostic signatures were still not perfect 
and that the effect of the signature on different stratification groups 
was not well predicted, we were inclined to construct a more ef-
ficient signature of breast cancer patients.

In the present study, we found that the seven-lncRNA signa-
ture was significantly associated with most of the stratification 
groups containing almost all existing clinical features of breast 
cancer patients. Based on the presence or absence of molecu-
lar markers for oestrogen or progesterone receptors and HER2, 
breast cancer was categorized into 3 major subtypes with differ-
ent prognoses.33 The AJCC-TNM staging system was also a use-
ful prognostic prediction; patients with somatic co-mutation of 
TP53 and PIK3CA were also associated with unfavourable survival 
compared with non-carriers.34 Bearing these findings in mind, 
we conducted stratification analysis of the OS rate for patients 
grouping under the above conditions with the risk score obtained 
from the formula and, interestingly, found that the P-value in all of 
the groups above was statistically significant. In addition, we built 
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a nomogram to predict individual 5- and 10-year overall survival 
rates and death odds, and the performance of the nomogram was 
highly consistent with the predicted model. Thus, our nomogram 
may provide simple, accurate prognosis predictions for breast can-
cer patients.

The most significant demonstration in our analysis was that we 
tried to figure out the underlying mechanism of different risk groups 

identified by our lncRNA signature. Above all, functional enrichment 
analysis, which indicated that risk-related DEGs were primarily in-
volved in multitude of immune pathways, was conducted after reclas-
sifying the microarray according to the risk groups. We speculated 
that tumour immune microenvironment may has the potential to in-
fluence prognosis classification of breast cancer patients. It is worth 
noting that the complex interplay between tumour cells and tumour 

F I G U R E  7   LncRNA LINC01215 function prediction. A, Stromal score and immune score were calculated via ESTIMATE method between 
high-risk group and low-risk group in TCGA BRCA cohort. B, Linear regression among members involved in lncRNA signature associated with 
ESTIMATE scores and risk scores, and the number in the right of the plot was coefficient. C, Go analysis of mRNAs highly co-expressed with 
LINC01215. D, Sankey plot showing the ceRNA network of LINC01215

F I G U R E  6   Functional characteristics of the prognostic signature. A, Differences in pathway activities scored by GSVA between high-risk 
group and low-risk group. DN, down; v1, version 1; v2, version 2. B, Heatmap of 973 patients from the TCGA BRCA cohort using ssGSEA 
scores from 24 immune cell types. C, Violin plot of relative infiltration level of immune cells in TCGA BRCA cohort. *P < .05; **P < .01; 
***P < .001; P ≥ .05, not significant
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microenvironment not only plays a pivotal role during tumour develop-
ment, but also has significant effects on immunotherapeutic efficacy 
and overall survival of patients.35,36 Here, the immune infiltration lev-
els of patients were assessed by three different methods and we found 
that patients with the better prognosis were clustered into the high 
immune infiltration cluster in training cohort or validation cohort. It 
has been reported that immune cells intratumoural and peritumoural 
distribution, immune cells composition and the breast tumour overall 
immune context and histology could influence not only the malignancy 
of the tumour but also the immunotherapy effect.37,38 The high im-
mune infiltration in the low-risk group partly reflected the lower ma-
lignancy of the patients and the better effect of various treatments, 
which meant our signature could not only distinguish the survival 
prognosis of patients but also reflect the infiltration levels of immune 
cells. Moreover, the risk score was in contrast to the TMB patterns to 
determine the prognosis of breast cancer patients, suggesting that the 
poor prognosis of the high-risk group may be due to the more mutant 
genes in this group. As current immunotherapy is still in its infancy for 
breast cancer, the patients with poor prognosis may get benefit from 
immunotherapy due to its high TMB score with more mutant genes.39

The biological function of the seven lncRNAs used in our signa-
ture has rarely been reported or studied previously. With the help 
of co-expression analysis, LINC01215 was predicted to be a hub im-
mune-related lncRNA highly connected with multiple immune path-
ways, especially the T cell activation associated pathways, which 
was reported to be related to immune checkpoint therapy.40,41 
Combined with our correlation analysis, LINC01215 was highly pos-
itive correlated with immune score calculated by ESTIMATE algo-
rithm and highly negative correlated with risk score, we postulated 
that this lncRNA took pivotal participation for lncRNA signature in 
distinguishing the levels of immune cells infiltration. The positive 
correlation between highly expressed LINC01215 and pathways 
highly associated with immune process suggested the importance 
of this lncRNA in breast cancer, meaning that such an lncRNA could 
serve as a potential diagnostic and therapeutic target in future re-
search. In order to better study this promising lncRNA in the future, 
we set up a ceRNA network, the most common regulation form of 
lncRNA, to facilitate research.

In the current study, we performed a comprehensive evaluation 
of the prognostic signature generated and validated in our study, 
which is a clinically promising tool that can be used to classify breast 
cancer patients into subgroups with distinct outcome, immune in-
filtration levels and even the mutation patterns. The accuracy and 
universality of our model was the highest relative to previous stud-
ies.15,42 Our current analysis should be further validated by prospec-
tive studies in multi-centre clinical trials. Admittedly, there may be 
some biases in the process of selecting prognostic multi-lncRNA 
signatures; nevertheless, due to this signature's high relevance to 
prognosis and immune infiltration, the roles of these lncRNAs merit 
further study, especially for breast cancer.

In conclusion, the 7-lncRNA signature is a potential prognostic 
tool for predicting the overall survival rate of breast cancer patients 
grouped by stratification of multiple clinicopathological risk factors. 

A nomogram comprising a 7-lncRNA signature may help to predict 
individual odds of death and help clinicians manage patients with 
breast cancer. Importantly, our lncRNA signature generated and val-
idated in our study might be associated with distinct survival out-
come of breast cancer patients, immune infiltration levels and even 
the tumour mutation burden scores.
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