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Abstract

Biologically plausible computational modeling of visual perception has the potential to link

high-level visual experiences to their underlying neurons’ spiking dynamic. In this work, we

propose a neuromorphic (brain-inspired) Spiking Neural Network (SNN)-driven model for

the reconstruction of colorful images from retinal inputs. We compared our results to experi-

mentally obtained V1 neuronal activity maps in a macaque monkey using voltage-sensitive

dye imaging and used the model to demonstrate and critically explore color constancy, color

assimilation, and ambiguous color perception. Our parametric implementation allows critical

evaluation of visual phenomena in a single biologically plausible computational framework.

It uses a parametrized combination of high and low pass image filtering and SNN-based fill-

ing-in Poisson processes to provide adequate color image perception while accounting for

differences in individual perception.

Author summary

In this work, we propose a biologically plausible computational framework for color per-

ception. The model initiates with simulating the responses of single and double opponent

cells to a visual stimulus in chromatic and achromatic channels. The double opponent

and the intensity channels are reconstructed using spiking neural networks and linearly

combined with the single opponent channels to provide the perceived image. Our model

allows the attribution of perceptual differences to the proportions between the single and

double opponent cells’ activity, while being general enough to account for a wide range of

visual phenomena including color constancy, color assimilation, and ambiguous color

perception.

Introduction

One of the most fundamental challenges in modeling human cognition is linking high-level

experiences to low-level biologically plausible computational models. Advances in
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computational neuroscience, cognitive science, and artificial intelligence continually power

our attempts to shed light on this grand challenge. One of the most interesting aspects of

human cognition is visual perception. Visual perception initiates with the derivation of light

intensity and color by retinal circuitry, which is propagated to the Lateral Geniculate Nucleus

(LGN), finally advancing to the primary visual cortex (V1) and on to higher processing areas

[1]. Interestingly, while visual information is represented as Spatio-temporal edges, the per-

ceived field of view features complete colorful filled-in surfaces, indicating that the brain

reconstructs visual constructs from edges [2]. Fronting extensive empirical research, two

prominent theories have been suggested to govern perceptual filling-in: (1) Symbolic or cog-

nitive theory according to surfaces’ color and shape are represented in higher- areas of visual

processing; and the (2) Isomorphic theory, according to surfaces emerge from activation

spreads from edges to the centers across the retinotopic map. This activation pattern propa-

gates across a two-dimensional grid of neurons, representing a planar field of view. The under-

lying neural mechanism of perceptual filling-in remains unclear, as experimental evidence

supports both hypotheses [3]. In visual perception modeling, chromatic and achromatic recep-

tive fields are typically modeled using spatial derivatives kernels [4]. Recently, we proposed

biologically plausible Poisson-driven perceptual filling-in Spiking Neural Networks (SNN),

demonstrating the reconstruction of images from their gradients [5]. SNNs are considered bio-

logically plausible as they feature spiking neurons and local learning rules without a Central

Processing Unit (CPU) nor a register-based memory.

In V1, visual data is represented as Spatio-temporal edges by color-responsive single- and

double-opponent neurons. While single opponent cells merely report the color of their recep-

tive field, double-opponent report chromatic edges and are orientation-selective [6–10]. Both

single and double opponent neurons were hypothesized to govern color perception. Recently,

Shapely and Colleagues suggested that while single-opponent neurons play a vital role as spa-

tial integrators at static low color contrast visual scenes, at higher contrast, and where colors

dynamically change, double-opponent neurons govern perception [7]. Visual perception also

comprises various processing pathways, combining chromatic and achromatic edge process-

ing. While the achromatic pathway reports on color-oblivious edges, the chromatic pathway

combines Red/Green and Yellow/Blue edges.

In this work, we extend our previous model, proposing an isomorphic theory-driven bio-

logically plausible SNN for the reconstruction of colorful images from retinal inputs (Fig 1).

We introduced a colored image (stimulus) to chromatic and achromatic channels, comprising

models of single and double opponent neurons. The derived chromatic and achromatic edges

were introduced into recurrent SNNs, implementing evidence-based feedback (horizontal)

connections [11,12] to reconstruct the embedded surfaces. Finally, the resulting surfaces were

linearly combined with single opponent outputs to produce a perceived image. A weighting

scheme controls the dominance of each channel in the perceived image, as was described by

Shapley and colleagues [7].

We further used our model to demonstrate and critically explore three important visual

phenomena: (1) color constancy, in which an object’ perceived color is perceived under vary-

ing lighting conditions [13]; (2) the color assimilation grid illusion, in which the color of a

grid is assimilated into the underlying black and white surfaces; and (3) ambiguous color per-

ception (e.g., #TheDress and #TheShoe). Interestingly, perceptual filling-in-driven visual illu-

sions, featuring chromatic and achromatic phenomena, have been long known for shedding

new light on neural mechanisms in the visual system [14–19]. For example, extensive research

has been conducted on color constancy [20], deciphering it as a result of either high-level pro-

cessing with which color is estimated in accordance with prior experience [21,22], or low-level

retinal [23] and V1 [24–26] processing. Our work provides a unique biological plausible
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computational framework in which these intricate visual phenomena can be critically and

exploratory examined.

Methods

Ethics statement

All experimental procedures were approved by the Animal Care and Use Guidelines Commit-

tee of Bar-Ilan University, supervised by the Israeli authorities for animal experiments, and

conformed to the National Institutes of Health (NIH) guidelines.

The neural engineering framework

SNNs comprise a network of interconnected spiking neurons [27]. In this work, we utilized

the Neural Engineering Framework (NEF) [28], a theoretical framework with which spiking

neurons can be used to design functional large-scale neural networks. With NEF, numerical

high-dimensional constructs (e.g., vectors and functions) can be loosely encoded, decoded,

and transformed. Following NEF, a spikes train δ is defined using:

diðxÞ ¼ Gi½aieixþ Jbi �; ð1Þ

where i is the neuron identifying index, x is the stimulus, e is the neuron’s preferred stimulus

Fig 1. A biological plausible computational framework for color perception. The model initiates with simulating the responses of single and double

opponent cells to a visual stimulus in chromatic (red-green and blue-yellow) and achromatic channels. The DO and the intensity channels are reconstructed

using SNNs and linearly combined with the SO channels to provide the perceived image. Image by Alexander Ivanov (Pixabay).

https://doi.org/10.1371/journal.pcbi.1010648.g001
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(encoding vector), G is a spiking neuron model (e.g., Leakey Integrate and Fire (LIF) neuron

model), α is a gain term, and Jb is a fixed background current.

An encoded high-dimensional numerical construct (vector), can be linearly decoded as x̂
using:

x̂ ¼
XN

i
aiðxÞdi; ð2Þ

where N is the number of spiking neurons, ai(x) is the postsynaptic low-pass filtered response

of neuron i to stimulus x and di is a representational decoder. Representational decoders are

optimized to reconstruct x using least squared optimization. Eqs 1 and 2 describe the encoding

and decoding of vectors with neural spiking activity within neuronal ensembles. Propagation

of data from one ensemble to another can be realized through weighted synaptic connections

(transformational decoders). Transformational decoders can be optimized such as x could be

transformed to an arbitrary f(x). Dynamic behavior is realized by recurrently connecting neu-

ronal ensembles (thus, integrating NEF’s representation and transformation principles). NEF

can be used to resolve the dynamic:

dx
�

dt ¼ f xðtÞð Þ þ u tð Þ; ð3Þ

where u(t) is input from another neural ensemble, defining a recursive connection that

resolves the transformation: τ�f(x)+x, where τ is the synaptic time constant. A detailed descrip-

tion of NEF is available in [28].

Single and double opponent channels

Our model initiates by simulating the responses of single and double opponent cells to a visual

stimulus [29] (Fig 1). We followed the central dogma in which the visual system utilizes sepa-

rate channels for processing achromatic data and colors of different wavelengths [9]. For the

chromatic pathway, we have implemented two pathways: L/M, and (L+M)/S, where L repre-

sents a long light wavelength (red), M represents an intermediate light wavelength (green),

and S represents a short light wavelength (blue). We used the RGB channels of the input image

to describe the L, M, and S color intensities. The achromatic pathway comprises a Low Pass

Filter (LPF) and a derivative kernel (following the on-center—off-center receptive fields of ret-

inal ganglion cells).

The three RGB color channels of the visual stimulus were converted to two red-green SORG

and blue-yellow SOBY single opponent channels, and the achromatic (grayscale) channel,

denoted ILPF, using:

SORG ¼ RG � Gðx; y; sÞ; ð4Þ

SOBY ¼ BY � Gðx; y; sÞ; ð5Þ

ILPF ¼ I � Gðx; y; sÞ; ð6Þ

where G(x,y,σ) is the normalized Gaussian Kernel: 1

N e
�
ðx2þy2Þ

2s2 in which N ¼
P

x2s

P
y2se

�
ðx2þy2Þ

2s2 ; ’�’

denotes the convolution operator, simulating the low-pass properties of the single opponent

channel [7], [8], [30]; and RG, BY (the chromatic channels), and I (the achromatic channel)
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were defined using:
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where Mopp is the color opponent transformation matrix in which a = 0.2989, b = 0587, and

c = 0.114. The spatial dimension s of the gaussian kernel (measured in pixels) is

� bW
2
c; . . . ; bW

2
c

� �
, where W was set to 21 during model execution and to 11 or 21 during

parameter evaluation (see parameter evaluation below for further details).

The chromatic double-opponent channels: DORG and DOBY as well as the achromatic deriv-

ative signal Ion−off were derived by convolving each chromatic single opponent channel with

the Discrete Laplacian operator L ¼

0 � 1 0

� 1 4 � 1

0 � 1 0

0

B
@

1

C
A, constituting:

DORG ¼ RG � L � DRG; ð8Þ

DOBY ¼ BY � L � DBY; ð9Þ

Ion� off ¼ I � L � DI: ð10Þ

Following Fig 1, Ion−off, DORG and DOBY, SORG, SOBY and ILPF were represented with spik-

ing neurons using Eq 1 and introduced into SNNs for surface filling-in.

Perceptual Filling-in with spiking neurons

In V1, visual data is represented as Spatio-temporal edges, constituting the image’s gradients.

The perception of filled surfaces from image gradients can be described using the diffusion/

heat equation:

@I
@t
� DI x; yð Þ ¼ div rIinput

� �
ð11Þ

wherer ¼ @

@x ;
@

@y

h i
is the gradient operator, D ¼ @2

@x2 þ
@2

@y2

h i
is the Laplacian operator, div is the

divergence (div F ¼ @Fx
@x þ

@Fy
@y ), I is the perceived image (i.e., the reconstructed image), and Iinput

is the input image (stimulus) [31], [32]. In the diffusion process, the inactive center of the

V1-represented stimulus is gradually filled-in with neuronal activity, supporting the percep-

tion of light intensity at the center of the outlined stimulus. This diffusion-governed perceptual

filling-in is often referred to as ’immediate’[2], following experimental evidence supporting

the almost instantaneous reconstruction of a perceived image [17], [18], [33]. This fast

dynamic allows the dismissal of @I
@t, the diffusion equation’s dynamic phase. Eq 11 can be
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therefore simplified to the steady-state Poisson equation:

DIðx; yÞ ¼ � divðrIinputÞ: ð12Þ

While the Poisson equation can be realized numerically by various techniques [34–36], we

recently demonstrated a biologically plausible solution using NEF-defined recurrent SNNs [5].

Our recurrent SNN iteratively solves the Poisson equation by rearranging Eq 11, as:

@I
@t ¼ div rIinput

� �
þ DI, which in conjunction with Eq 3, allows the definition of the recurrent

connection:

feedbackðIÞ ¼ t � ðdivðrIinputÞ þ DIÞ þ I: ð13Þ

Eq 13 can be iteratively defined as:

Ik ¼ t � ðdivðrIinputÞ þ DIk� 1Þ þ Ik� 1: ð14Þ

Following Eq 14, the perceived image Ik can be iteratively reconstructed in every timestep k.

Eq 14 can be discretized by the Discrete Laplace operator L:

Ik ¼ t � ðLðIinputÞ þ LðIk� 1ÞÞ þ Ik� 1: ð15Þ

Finally, the image I(x,y)k (the perceived pixel in (x,y) at time step k) can be derived using:

Iðx; yÞk ¼ t � ðdivðrIðx; yÞinputÞ þ Iðx; y � 1Þk� 1
þ Iðx; yþ 1Þk� 1

þ Iðx � 1; yÞk� 1

þ Iðxþ 1; yÞk� 1
� 4 � Iðx; yÞk� 1

Þ þ Iðx; yÞk� 1
ð16Þ

In Eq 16, each neuron has four recurrent connections with its four neighboring cells and

one recurrent connection with itself. In each time step, neural activity is spread to his adjacent

neurons. Here, we realized Eq 16 using a recurrently connected single-layer SNN. Therefore,

this connectivity scheme can be referred to as a horizontal neural connection [11,12]. In this

work, we further utilize this SNN to demonstrate color perception and the perception of visual

artifacts.

Image perception

For each color opponent channel as well as the intensity channel, the above filling-in process

was applied separately. Eqs 17–19 describe the inputs for Eq 12. Solving each equation yields

the filled-in surfaces ORG, OBY, OI for the RG, BY and Intensity opponent channels, respec-

tively.

DORGðx; yÞ ¼ � DORG ð17Þ

DOBYðx; yÞ ¼ � DOBY : ð18Þ

DOIðx; yÞ ¼ � Ion� off : ð19Þ

The perceived image is generated by combining the reconstructed achromatic pathways PI,
with the single and double opponent channels in each color pathway (PRG, PBY):

PRG ¼ bc � SORG þ ac � ORG; ð20Þ

PBY ¼ bc � SOBY þ ac � OBY ; ð21Þ
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PI ¼ bi � LPI þ ai � OI; ð22Þ

where PRG, PBY are the perceived results of the red-green, and blue-yellow channels, respec-

tively; αc, βc, αi and βi are weight parameters, indicating the weighted contribution of each

channel to the perceived result. In this study, we defined β = 1−α, allowing us to solely control

α in the simulations.

To transform the perceived result to an RGB image, the three opponent channels are con-

verted back to RGB representation using the inverse opponent transformation:

R

G

B

0

B
@

1

C
A ¼ fMOPPg

� 1

PRG

PBY

PI

0

B
@

1

C
A: ð23Þ

We used the Learning Perceptual Image Patch Similarity (LPIPS) metric to measure the

perceptual distance between the visual stimulus and the reconstructed image. In LPIPS, deep

visual features are extracted from pairs of images derived from ImageNet-trained neural net-

works [37] and compared using a weighted L2 distance (Euclidean distance). Weights were

adjusted such that this similarity measure agrees with human perceptions of patch similarity

[38], based on the Berkeley Adobe Perceptual Patch Similarity (BAPPS) dataset. BAPPS con-

tains two-alternative-force-choice (2AFC) and just-noticeable-difference (JND) judgment

experiments. As part of the 2AFC experiment, two distortions are applied to a reference image

patch, and observers must choose which distortion is closest to the original. In the JND experi-

ment, the observer is asked to determine if two patches—one reference and one distorted—are

the same or different.

The LPIPS distance is defined as:

d O; Pð Þ ¼
1

N

XN

i¼1

X

l
kwl � ðFlðO

iÞ � FlðP
iÞÞk

2

2
; ð24Þ

where Oi and Pi are the RGB values of pixel i in the original and the predicted (reconstructed)

image, respectively; N is the number of pixels, and Fl(�) donates the feature activations at the l-
th layer of the AlexNet [39] network F. Weights wl were optimized using the Berkeley Adobe

Perceptual Patch Similarity (BAPPS) dataset to match human perception; Perceptual distance

d was calculated by using the first five layers of AlexNet.

Model simulation

To evaluate our SNNs-driven model for color perception, we implemented the model using

the Nengo neural compiler (implemented with Python), with which high-level descriptions

can be translated to low-level spiking neurons [40]. The model was directly introduced with

the single and double opponent cells (SO and DO, Eqs 4–6,8–10) derived from RGB images.

For the DO cells, the spatial extents of the filters were used to represent a high-pass filter

(Laplacian), and for the SO cells, we chose a low-pass filter with a relatively large support (wide

spatial Gaussian profile). In simulations, the spatial parameters of the Gaussian kernel were

W = 21 pixels and σ = 5 (Eqs 4–6). Each pixel was encoded with five ensembles, each constitut-

ing 20 spiking neurons, representing five channels (SORG, SOBY, DORG, DOBY and Ion−off).

Time constant τ (Eq 16) was set to 0.25 in all simulations. Neurons were defined with a Spik-

ing-Rectified-Linear activation function [41]. Simulations were accelerated on a 12GB NVI-

DIA Tesla K80 GPU using the OpenCL-based Nengo Simulator [40].
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Voltage-sensitive dye imaging and analysis

Imaging and experimental procedures were fully described in [42]. Briefly, a monkey (6

years old 13 kg male macaque monkey (Macaca fascicularis)) was trained on a fixation task

while presented (21-inch CRT monitor; 85 Hz refresh rate; 100 cm from the monkey’s eyes)

with black (CIE-xy = 0.279, 0.266) or red (CIE-xy = 0.616, 0.341) squared surfaces of equal

luminance (15.5 cd/m2), background (CIE-xy = (0.279, 0.28); luminance (7.3 cd/m2) and a

variable size. We used a 3 to 4 seconds prestimulus (varied randomly) and a 300 ms stimulus

time. The center positions of all surfaces in the visual field were identical (stimulus fixation

within 2˚ about the fixation point; verified using eye movement monitoring). The monkey

was anesthetized, ventilated, and anchored (cemented to the cranium with dental acrylic)

using two 25mm cranial windows, bilaterally placed over the primary visual cortices. The

visual cortex was exposed (3–6 mm anterior to the Lunate sulcus) and stained using Oxonol

voltage-sensitive dyes. We used Micam Ultima’s imaging system, providing a resolution of

104 pixels at 10 kHz, each pixel summing the neural activity from about 500 neurons, located

at the upper 400 μm of the cortex. VSDI maps were averaged at 60–100 ms after stimulus

onset. We computed spatial cuts crossing through the edges and center of the activation

patches (an illustration of the spatial profile for the 1˚ square is shown in Fig 2B (top). VSDI

responses (Fig 2A) were averaged over the width of the spatial cuts resulting in the spatial

activity profiles shown in Fig 2B.

Fig 2. V1 recording and simulation results during perceptual filling-in of black and red squared surfaces. A. Averaged early (60–100 ms following stimulus

onset) Macaque V1 VSDI-measured neural activity map following exposure to black (left) and red (right) squared surfaces with various sizes (0.5˚– 8˚) (see

Methods); B. Spatial profiles crossing through the edges and center of the V1 activation patches. The continuous vertical line marks the peak activation position

in the 0.5˚ square response profile, which corresponds to the center of square in larger stimuli. Responses to a 2˚ square are marked with vertical dashed lines;

C. Model-derived results for the reconstruction of black and red squared surfaces with various sizes squares; D. Cross-sectional profiles of each reconstructed

square along the x-axis.

https://doi.org/10.1371/journal.pcbi.1010648.g002
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Results

Filling-in V1 recording and simulation

Macaque V1 neural responses to visual stimuli of black and red squared surfaces in varying

sizes, ranging from 0.5˚ to 8˚ visual degrees, were recorded using VSDI (originally reported in

[42]) (Fig 2A). We found that the spatial V1 neural responses pattern for small surfaces (0.5˚

and 1˚) were ’filled-in’, corresponding to the stimulus topographic map. Neural responses for

larger surfaces (2˚ to 8˚) showed ’un-filled’ areas, indicated by the low response amplitude at the

surface’s center. Furthermore, we derived spatial cross-sectional measurements through the

edges and center of the activation patches (an illustration of the spatial profile for the 1˚ square

is shown in Fig 2B, top). VSDI response was averaged over spatial cross-sections resulting in an

activity profile, depicted in Fig 2B. For comparison, we used our image reconstruction model

(Fig 1) to reconstruct five squares ranging from 5 to 80 pixels in length, each corresponding to a

different visual modality used in the experimental setting (Fig 2C). Since VSDI recorded signals

from the 2nd and 3rd V1 layers, which are double opponent cells dominant [6], we set αi and αc
to 1 for reconstruction. Briefly, these cortical layers are imaged using VSDI at high spatial reso-

lution (mesoscale, 502 μm2/pixel) and temporal resolution (100 Hz). While VSDI acquired sig-

nals emphasize subthreshold membrane potentials, it reflects supra-threshold membrane

potentials (i.e., spiking activity). The main advantage of this technique is the combination of

wide-field imaging with high spatio-temporal resolution, enabling the visualization of the whole

cortical activity patterns evoked by a visual stimulus. As a result, in this section, the simulation

solely considers the double opponent cells channel. In the reconstructed surfaces, only the small

5- and 10-pixels squares were completely filled-in. The centers of the larger reconstructed

squares were unfilled, corresponding to the neuronal inactive patches shown in VSDI. We mea-

sured the spatial activation profiles across the reconstructed squares (along the x-axis) and

applied a 1D Gaussian filter with σ = 2 to smooth the responses (Fig 2D). Our cross-sectional

simulation results correspond to the experimental neuronal activation profiles we experimen-

tally obtained in V1. We further compared the reconstructed VSDI profiles with the recorded

VSDI profiles using linear regression. The stimulus edges in each VSDI profile were aligned

(across the x-axis of each profile) to its corresponding simulated profile and R2 and its corre-

sponding p-value were derived (S1 Fig). Results shows R2 of 0.974, 0.824, 0.575, 0.938 and p-val-

ues of 1.3�10−55, 2.5�10−27, 4.7�10−14, 3.3�10−45 for the 0.5˚, 1˚, 2˚ and 3˚ profiles, indicating a

good model fit. R2 was not calculated in the 8˚ profile since the signal was essentially noise.

Color perception

We evaluated our color perception model by reconstructing four color images: a photograph

of a colored face, an image of a building with reflective surfaces, a dimmed lighted photograph

of the Louvre Museum, and a synthetic red square. The resulting reconstructions with various

values of αi, βi, αc, and βc, are shown in Fig 3. As a general guideline, when α is high, and β is

small, the reconstructed colors and intensities demonstrate high pass filtering as high spatial

frequencies are mostly reconstructed. For example, when αi is high, the reflection of the Lou-

vre in the water is clearer as the image’s finer details are better exposed. Increasing β (and

reducing α) instigates saturated colors and blurry edges. The synthetic red square image pro-

vides an intuitive illustration of this high- and low-pass filtering balance. When αc = 1, the red

square is not entirely filled, and its color edges are enhanced. Since the model exhibits high-

pass color filtration, the image’s complementary color–cyan–appears at the square’s exterior

edges. As αc decreases, the square’s center is filled with a reddish hue. Interestingly, the recon-

structed images are most similar to the original images when αi and αc are 0.5 indicating the
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important contribution of the different color channels to adequate image perception. We eval-

uated the importance of the filling-in component by removing it from the proposed perceptual

pipeline. Without a recurrent connection between the SO and DO channels, our model is sim-

plified to a combination of low- and high-pass filters where most of the band-pass signals

(intermediate frequencies) are absent. When αi and αc equal 1, the resulted reconstruction is a

high-pass filter of the image (the image’s Laplacian), whereas decreasing alphas merely adds

low frequencies to the results (S2 Fig).

The model’s reconstructed and original images were further compared using the LPIPS dis-

tance (Fig 3, right). As expected from visual inspection, the LPIPS distances for all four images

were found lowest when αi = 0.5 and αc = 0.5, indicating the importance of multiple channel inte-

gration. Finally, we further evaluated the proposed model with a non-spiking version (a conven-

tional neural network). A SNN is considered biologically plausible as is it uses spikes to represent

and transform data through local learning rules (Eq 2). However, we can analytically solve the

mathematical transformation our SNN strives to approximate. Under visual inspection, the recon-

structed results of the spiking and non-spiking neural networks are similar, pointing out the

Fig 3. Image reconstruction. Visual stimuli are presented in the first row and the reconstructed images are shown below, generated

with various values of αc, βc, αi and βi (aligned to the left of the corresponding images). LPIPS scores are shown on the right.

https://doi.org/10.1371/journal.pcbi.1010648.g003
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capacity of our model to exhibit relevant neural approximations. Interestingly, when measuring

LPIPS distances during models’ convergence, the SNN outperform the conventional neural net-

work, consistently reporting lower distances (S3 Fig). This might be due to the noise-introductory

effect, which is inherit in SNNs being a neural approximation, to the resolved diffusion process

(Eq 16). While here we used a SNN to increase the biological plausibility of the model, the

improved diffusive filling-in process may be an interesting topic for future work.

Color constancy

Color constancy lies at the foundation of numerous visual illusions [20], [43]. In this section,

we used the cube illusion created by Beau Lotto [44] to demonstrate how our SNN-driven bio-

logical plausible model can predict perceived colors under different illumination, as well as fil-

ter ambient illumination. The first row in Fig 4A illustrates three variations of the cube

Fig 4. Reconstruction of the cube illusion. A. The original cube images under three illuminations: natural, yellow, and blue (First row). The model

predictions with different sets of chromatic and achromatic parameters are shown in rows 2–5; B. Comparison between the true color (marked with an

asterisk) and the predictions of the model with αc = 1 and αc = 0.7. Results are presented in u’v’ (CIELu’v’) color space. Each color circle surrounds the

true and predicted colors of a sampled pixel in the patch. Black lines represent cone-opponent axes, S/(L + M) and L/(L + M). The intersection of the

lines represents the achromatic point.

https://doi.org/10.1371/journal.pcbi.1010648.g004
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illusion, illuminated by natural, yellow, and violet\bluish lights (Fig 4A, left to right). When

illuminated by natural (or white) light, the perceived color of each of the two marked patches

(Fig 4A, left cube) is profoundly different, despite having the same color (ground truth; GT).

A similar disparity between the perceived and GT colors is also apparent when yellow, and vio-

let\bluish illuminations are used (Fig 4A, middle and right cubes). We reconstructed these

images with our model with various values of αi, βi, αc, and βc (Fig 4A, 2nd to 5th row). We

were able to predict with our model the perceived color (i.e., the perceived and the GT colors

are similar) under different illuminations. Furthermore, using different chromatic parameters,

we could filter the ambient illumination in and out.

We further evaluated color constancy by observing the model’s results in the perceptually

uniform CIELu’v’ color space [45]. We assessed the reconstructed cube illusion under natural

light with different chromatic parameters (αc = 1 and αc = 0.7) and a constant achromatic

alpha (αi = 0.5) (Fig 4B). While the patches’ true colors are identical, we found that on the CIE-

Lu’v’ color space, when αc = 1, the predicted colors shift further away from each other as the

upper patch becomes reddish and the lower patch’s orange hue enhances. Under yellow illumi-

nation, while the yellow patch remains the same, when αc = 1, the blue shade of the blue patch’s

predicted color (gray in the original image) enhances, and the orange patch becomes reddish

(Fig 4C). The predicted color of the cube under blueish illumination, when αc = 1, shows that

while the blue patch remains the same, the gray patch becomes yellowish, and the purple patch

becomes reddish (Fig 4D). Exploring the results of the yellowish and blueish illuminations

(Fig 4C and 4D, respectively), we can see that the colors at αc = 0.7 are in between the original

and the predicted colors at αc = 1.

Color assimilation grid illusion

To demonstrate the importance of low-pass single opponent cells, we reconstructed the

color assimilation grid illusion in which a selective colored grid is superimposed over an

original grayscale image, resulting in a perceived color image [46]. The color assimilation

grid illusion is demonstrated in Fig 5 with a photograph of a colored face and a synthetic red

square. We used two images representing two different grids’ densities. Color assimilation is

predominantly parameterized with line width (here, 3 pixels), line angle (here, 45˚), satura-

tion ratio (here, 4), and line step, or the spacing between the grid’s lines (here, 15 and 50 pix-

els). Images were rescaled to 90x120 and created using the "grid illusion" online tool [47].

Results show that when βc is high (βc = 1), the predicted image’s grey areas gained color, sug-

gesting that the low-pass single-opponent part of the model must be dominant, allowing the

assimilation grid illusion to take place. As βc value decreases, the low-pass effect of the sin-

gle-opponent cells degrades, resulting in persistent achromatic areas. The model further

demonstrates that, as expected, as the grid becomes denser, the perceived image gets further

saturated with color, as testified by the measured LPIPS distances (Fig 5, right). We note

that to compare the model’s ability to reconstruct colors between the grid, as perceived in the

illusion, LPIPS was calculated on the reconstructed and the full-color images (not the grid

color images).

Interestingly, while the LPIPS distance for the red square is consistent with our perception

(the most similar image is obtained when αi = 0.5 and αc = 0), the LPIPS distances for the col-

ored face grid illusion are inconsistent. While the smallest LPIPS distances for the recon-

structed colored face grid illusion are obtained when αi = 1 and αc = 0.5 (for both grid

densities), by visual inspection, the perceived best results are obtained when αi = 0.5 and αc =

0. When presented with illusory and not natural images, our results demonstrate LPIPS’s fail-

ure to measure perceptive similarity.
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#TheDress and #TheShoe

In 2015, two images, hashtagged on social media as #TheDress and #TheShoe, became viral as

they depicted individual differences in color perception. In #TheDress image, some people

perceived the dress’s color as black and blue, while others perceived it as gold and silver (or

gold and white) [48–50]. Similarly, while some perceived the colors of #TheShoe as pink and

white, others perceived them as gray and cyan (turquoise) [50] (Fig 6A). Here we recon-

structed these two famous photos, allowing us to examine the model’s parameter space on the

predicted colors (Fig 6B). In #TheDress reconstruction, results show that silver (achromatic)

and gold (brownish) are perceived by setting the chromatic alpha to 1 (αc = 1), and blueish and

black are scented with a chromatic alpha of 0.5 (αc = 0.5). In #TheShow reconstruction, results

show that pink and light gray (slightly Cyanish) are perceived with a chromatic alpha of 1 (αc =

1), whereas the blueish and gray (dark achromatic) are scented with a chromatic alpha of 0.5

(αc = 0.5).

We further evaluated these results in the CIELu’v’ color space (Fig 6C). Results show that

the predicted colors are based on the chromatic parameters. When αc = 1, the dark brown (or

black) patch of #TheDress becomes more saturated and brownish-orange (goldish) in appear-

ance. The blue color of #TheDress turns more achromatic as it gets closer to the achromatic

point. #TheShoe’s gray patch becomes more reddish (pink) as it goes toward the red axis, and

the cyan (turquoise) patch becomes more achromatic as it moves toward the achromatic

point. However, when αc = 0.5, the predicted colors are getting closer to the ground truth col-

ors in both photos.

Fig 5. Reconstruction of the color assimilation grid illusion. A selective colored grid was overlaid on two grayscale images, creating

the visual stimuli, shown in the first row. The model predictions with different sets of chromatic and achromatic parameters are shown

in rows 2–5. LPIPS scores are shown on the right.

https://doi.org/10.1371/journal.pcbi.1010648.g005
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Parameter evaluation

To determine the influence of the model’s parameters on the predicted color, simulations were

conducted with different SO0s spatial parameters (W and σ), αi and αc. The simulation results

over a CIELu’v’ color space for both αi and αc (ranging from 0.5 to 1) are shown in Fig 7. With

each image (colored face, cube with natural-yellowish-blueish illumination, #theDress, and

#theShoe), we sampled pixels from different locations in the image where each location has a

different color (hue) and ran simulations with varying αi and αc. For further parameter evalua-

tion, we also changed the kernel size of the SO cell (W = 21, σ = 5, W = 11 and σ = 3; Eqs 4–6).

It appears that predictions can range over areas of CIELu’v’ color space as well as curves. As

Fig 6. Reconstruction of #TheDress and #theShoe photos. A. The original images; B. Model’s prediction with different sets of chromatic and

achromatic parameters; C. Comparison between the true color (marked with an asterisk) and the predictions of the model Results are presented

in u’v’ (CIELu’v’) color space. Each color circle surrounds the true and predicted colors of a sampled pixel in the patch. Black lines represent

cone-opponent axes, S/(L + M) and L/(L + M). The intersection of the lines represents the achromatic point. b) Comparison between the true

color (mark with red �) and the predictions of the model with αc = 1 and αc = 0.5 presented in u’v’ (CIELu’v’ 1976) color space. Each ellipse

surrounds the true and the predicted colors of a sampled pixel in the patch. Black lines represent cone-opponent axes, S/(L + M) and L/(L

+ M). The intersections of the lines represent the achromatic point.

https://doi.org/10.1371/journal.pcbi.1010648.g006

PLOS COMPUTATIONAL BIOLOGY Computational modeling of color perception

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010648 October 27, 2022 14 / 23

https://doi.org/10.1371/journal.pcbi.1010648.g006
https://doi.org/10.1371/journal.pcbi.1010648


well, the model appears to be more sensitive to the selection αi and αc rather than it is to the

selection of the spatial parameters of SO cells.

Model comparison

We further compared the prediction of the model to a modified version of the Retinex algo-

rithm, one of the most established retinal models in computational vision [51]. We used a sin-

gle-scale non-logarithmic version of Retinex, as was suggested in [52]. Retinex predictions are

described using:

Retinexðx; y; sÞ ¼ Iðx; yÞ � I � Gðx; y; sÞ: ð25Þ

where 0 � x � m � 1; 0 � y � n � 1 where m and n are the image width and height respec-

tively. In the Retinex algorithm, the filter response is computed separately for each of the three

Fig 7. Parameter evaluation with 21x21 and 11x11 kernel size (2nd and 3rd columns, respectively), compared with

Retinex prediction (right column). Input images are shown in the left column.

https://doi.org/10.1371/journal.pcbi.1010648.g007
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image channels (R, G, B). Here, we changed the spatial scale of the Retinex predictions for a

better alignment with our model, by modulating the parameter s:

G x; y; sð Þ ¼
exp � ðx2þy2Þ

s2

� �

Pm� 1

x¼0

Pn� 1

y¼0
exp � ðx2þy2Þ

s2

� � ð26Þ

Small s values result in high pass responses, while large s values produce more low pass fre-

quencies. As a result of the high-pass response, colors appear near the edges while achromatic

areas appear between the edges. Therefore, the Retinex algorithm results are approaching the

achromatic gray point when s decreases (Fig 7, right column). On the other hand, as s
increases, Retinex’s results obtain more chromatic colors (predicted colors that are closer to

the original color, in CIELu’v’ space). Retinex’s results verify our model predictions regarding

the individual perceptual differences in the images of #theDress and #theShoe (also demon-

strated in [52]), as well as the perception of color under different illuminations. In contrast to

Retinex, our proposed model is biologically plausible, allowing the attribution of these differ-

ences to the proportions between the single and double opponent cells’ activity. Furthermore,

in contrast to our model, Retinex was not able to predict as accurately the color assimilation

effect (S4 Fig), showcasing the generality of our proposed computational framework.

Discussion

Our parametric implementation of color perception allows critical evaluation of various visual

phenomena in a single biological plausible computational framework. It uses a parametrized

combination of high and low frequencies and an SNN-based filling-in process to provide ade-

quate color image perception while accounting for individual perception differences. This

work extends our previous SNN-based model [5], which addressed the images’ intensity chan-

nels alone. We show that while in the perceptual reconstruction of natural color images, both

single and double opponent pathways are required to achieve adequate results, the single

opponent pathway is sufficient to predict the perception of the color assimilation grid illusion.

Furthermore, we demonstrate individual differences in color perception using the #theDress

and #theShoe images. Our proposed model can further explain both the watercolor [14] and

the Cornsweet illusion [16] through the reconstruction of images from adapted gradients, as

we recently demonstrated [32].

Our SNNs-driven computational framework follows the model suggested by Shapley and

colleagues, which proposed dual opponent mechanisms for color perception [7]. When the

color contrast is low, human color perception is characterized by spatially low pass filtering,

where single-opponent neurons dominate visual perception. When color contrasts intensify,

visual perception shifts from low pass to edge-sensitive filtering, where double-opponent neu-

rons become the predominant mechanism. Our model parametrizes this duality with weighted

channel contribution, allowing critical examination of the model’s prediction. We modeled

the single opponent pathway with low-pass filtering, implemented by convolving a Gaussian

kernel- with an opponent color channel. The double opponent was modeled with high pass fil-

tering, serving as color contrast detectors [53]. In our proposed model, rather than combine

the double-opponent responses directly with the single-opponent responses, we used the dou-

ble-opponent responses as triggers for diffusive Poisson-driven recurrent SNNs, allowing the

reconstruction of low-pass properties from high-pass information. This is done in a diffusion-

like process, in which a double-opponent cell activates its neighbors (Eq 16). Our recurrent

SNN is a biologically plausible implementation of an iterative numerical solver of the Poisson

equation, allowing accurate perceptual prediction. However, since an ensemble of spiking
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neurons approximates each pixel’s value, the process cannot reach a steady state, correspond-

ing to the biological resource-constrained spike-based encoding.

In this work, we propose a biologically plausible SNNs-driven model which can serve as a

potential neural mechanism for perceptual color filling-in, corresponding with the spreading

of color signals in the cortex [3], [54]. Our model can be correlated with experimentational

findings in the cortex, providing further insights. We show with voltage-sensitive dye-imaging

in V1 of macaque monkeys in response to uniformly colored or achromatic large squares, that

there is an unfilled area (’hole’) of activity [42]. Our model predicts a similar pattern (partially

filled square) when the chromatic alpha is large (Fig 2). It should be noted that layers 2–3 are

the main cortical layers imaged by VSDI. The cells in these layers are mostly edge detectors

and these layers contain a high population of double-opponent cells [6]. Therefore, to compare

VSDI signals to simulations of black and red squares, we use αi = 1 and αc = 1 (large alphas) in

our simulation to account for only the double opponent pathway. As we increase the single

opponent pathway dominancy (by decreasing α and increasing β), this filling in the gap is

shrinking, suggesting that the integration of the single and double opponent mechanisms does

not occur in V1 but rather in higher visual regions. Furthermore, the cortex’s layer hierarchy

suggests that the receptive fields of higher visual layers correspond to wider spatial areas of the

stimulus [1]. This can be interpreted as having recursive (horizontal connections) layer-based

filling-in processes [55], which reduce the distance between edges in higher layers and the

propagation time of the spreading filled-in signal [56]. Our model layer-based design supports

this architecture. Consequently, this computational design can explain the results in [42],

which conclude that while V1 activity is insufficient to explain the perception of filled objects,

filling-in processes that occur at both low and high levels can produce the perception of filled

objects. Experimental studies on filling-in are consistent with these ideas, as neural activities in

V3 and V4 areas during perceptual filling-in effects were observed in response to the water-

color and Cornsweet illusions, texture, and afterimage filling-in [57–60].

Recently, Yang and colleagues demonstrated similar VSDI results [61]. Like the results

reported here, they showed that V1 responses in cortical layers 2–3 are enhanced at the surface

edges whereas the response at the surface center is suppressed. However, in this work we used

a range of surface sizes, allowing us to compute the slope of population propagation from the

edges to the surface’s center. Thus, supporting our assumption of having horizontal connec-

tions contributing to the filling-in phenomenon.

We demonstrate the model’s prediction of visual filling-in with various examples and criti-

cally examine related phenomena: color constancy, color assimilation, and individual percep-

tion. Color constancy and individual differences in color perception are widely discussed in

the literature. For example, Dixon and Shapiro [52] suggested that these visual phenomena

can be explained through high-pass filtering, which subtracts a blurred modality of an image

from the original one and adds a constant intensity value, shifting it back into the viewable

range [62]. This simple model was argued to account for different color perceptions, ground-

ing it on individual frequency processing characteristics. Given the appropriate spatial param-

eters, the authors demonstrated that this model could explain color constancy in several

illusions, such as the cube illusion [22] as well as the individual difference phenomenon

regarding the #theShoe and #theDress (their results are also reproduced in this current work;

Fig 7). However, this spatial filter cannot explain other brightness and color filling-in illusions,

such as the Cornsweet [16] and the watercolor [14] illusions, as well as color assimilation (S4

Fig). A naïve frequency filtering cannot explain these illusions as they are based on changes

generated at a thin edge, extending over large distances. While other models of color constancy

do relays on the combinations of high and low-pass filters [13], [51], [63], they are not biologi-

cally plausible. First, they entail different filter kernel sizes to account for individuals’ color
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perceptions. Secondly, they require the original high-resolution image for processing, which is

not conducted through the biological visual system. As was demonstrated by the model’s pre-

diction of #TheDress and #TheShoe, despite having only global parameters, our model was

able to capture differences in perception with respect to the model’s parameters (Fig 7). Thus,

concurring with Gegenfurtner and colleagues, who found that there are multiple answers to

the question, “what color is the dress?” [64]. Our results extend their finding and demonstrate

in a biologically plausible computational framework that there can be multiple responses to

any color image. In the colored face image, for example, people may perceive and name colors

differently. Some may name the orange part of the woman’s finger orange, while others might

call it yellowish or greenish (the original orange color changes to greenish-yellowish with

respect to the value of alpha; Fig 7, top row).

Our LPIPS-driven evaluation of the model demonstrates that LPIPS was unable to accu-

rately capture illusive perception. Therefore, while the image with the lowest LPIPS score is the

most perceptually similar to the GT, it might not capture the illusion. Therefore, here, LPIPS

scores were used not to identify which parameters gave the lowest scores, but rather to illus-

trate: 1) the model can reconstruct images that are perceptually similar to GT; 2) that the dem-

onstrated illusions, as were perceived by the brain, are different than the GT, resulting in a

higher LPIPS score; and 3) that color perception varies across individuals. If someone per-

ceives #theDress as black and blue, then their perception is more similar to the original/physi-

cal colors of the GT.

With #thedress image as a stimulus, numerous studies have attempted to identify the

underlying mechanisms that lead to different perceptions of colors among individuals. Toscani

and colleagues [65] investigated whether people who report different colors for #thedress do

so because they have different assumptions about the illumination in the scene. They found

that observers reporting the dress to be white (white perceivers) adjusted the background illu-

mination more bluely than observers reporting it to be blue (blue perceivers). The illumination

appeared less chromatic to blue perceivers. Therefore, they concluded that different assump-

tions about illumination chromaticity in the scene can explain ambiguity in the perceived

color of the dress. Similarly, Witzel and colleagues [66] and Aston and colleagues [67] con-

cluded that assumptions and priors about illumination affect perceived images. According to

Witzel and colleagues [66], prior-modified images of the dress can manipulate the perceived

color. The prior-modified image, however, did not predict the perceived color of the original

dress image in all observers. Therefore, they concluded that interpretations of the dress’ colors

are influenced by assumptions about illumination, but other factors may systematically affect

interpretations. Aston and colleagues [67] tested the possibility that color constancy could

explain this phenomenon. A color constancy with illumination discrimination task was used

to assess whether individual differences in generic color constancy could explain perception

differences in our observers. Using the dress photograph as an example, they demonstrated

that individual differences in perception may partly be explained by chromatic biases in illumi-

nation priors. Individual differences in color constancy, however, do not explain variability in

the perception of dress colors. Observers individually discount achromatic features: while

blue-black reporters focus on blue regions, while white-gold reporters focus on golden regions.

It is consistent with the hypothesis that attention and local image statistics play a role in under-

standing multi-stable images. Overall, these studies confirmed the importance of background

illumination, image statistics, and priors, but they could not explain the underlying mecha-

nism. Our model allows the attribution of perceptual differences to the proportions between

the single and double opponent cells’ activity, while being general enough to account for a

wide range of visual phenomena including color constancy, color assimilation, and ambiguous

color perception.
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In our suggested model, αi and αc are two parameters that can be modified to describe dif-

ferent visual phenomena (where βi = 1−αi and βc = 1−αc). To demonstrate how the model can

generate different perceptions, we manually modulated these parameters. In the brain, these

weights, however, are determined by visual processes that were not computationally modeled.

Moreover, these parameters might be computed locally within the brain, rather than globally,

as in our current framework. The precise channels’ weight setting is still unknown. When indi-

vidual perceptual differences are considered (e.g., #theDress and #theShoe), αi and αc are vary

among individuals and can even be different among images within an individual. For example,

one person may perceive the dress as blue and black (αc = 0.5), and the shoe as white and pink

(αc = 1). As a result, different images might be generated by a different weighting scheme.

These parameters can be determined using an unknown set of visual features, supporting the

concept of having them derived individually for each image. Therefore, we emphasize that our

model does not suggest the existence of a single set of parameters with which all illusions can

be accounted for, nor does it suggest that a single set of parameters would be sufficient for

modeling individual color perception. We rather suggest that a weighted combination of the

single opponent and the double opponent cells might model individual color perception.

Interestingly, a recent work [50] showed that the perception of these visual imageries remains

stable over time, possibly due to "one-shot learning," which allows for the first encounter’s

strong influence to determine observers’ perception [50], [68]. Thus, suggesting that, once

acquired, our color parameters stay constant. However, our model could be further developed

to account for adaptive changes and the support of local alpha values, corresponding to the

image’s regional contrast differences.
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