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I N T R O D U C T I O N

Since the early days of vision research, pioneered by the 
work of Hannover (1840), Müller (1856), and Schultze 
(1866, 1867), vertebrate photoreceptors have been  
classified as rods and cones by morphological criteria. 
Schultze (1866) correlated the visual habits of animals 
with the relative preponderance of rods and cones in 
their retinas; this led him to formulate the concept 
upon which the Duplicity Theory rests. The premise  
of this theory is that cones are the receptors for phot-
opic (bright light) vision, whereas rods are the recep-
tors for scotopic (dim light) sensing. Schultze (1866, 
1867) arrived at the correct conclusion that cones medi-
ate color perception.

Subsequent to Schultze’s time, visual cells have been 
described with intermediate morphological, physiologi-
cal, and molecular attributes that tend to blur the dis-
tinction between rods and cones (Walls, 1963; Pedler, 
1965; Crescitelli, 1972; Kojima et al., 1992; Ma et al., 
2001; Collin et al., 2004; Zhang et al., 2006). Neverthe-
less, the old classification has endured as regards to the 
vertebrate retina: its photoreceptors are rods and cones 
wherein cones typically exhibit a tapered outer seg-
ment, whereas rods do not. The functional significance 
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of this distinguishing feature, so prevalent in nature, re-
mains largely unexplored.

One of the potential benefits of tapering cone outer 
segments was introduced by Hodgkin and O’Bryan 
(1977) with their concept of critical taper. In their study 
of turtle cone electrical responses, these authors consid-
ered two limiting cases of cone geometry: the cylindri-
cal (untapered) form and another, in which the “outer 
segment tapers in such a way that all molecules have an 
equal chance of absorbing a quantum” (Hodgkin and 
O’Bryan, 1977). In the latter case, the outer segment 
must taper at a specific, critical angle, and light must be 
funneled by complete internal reflection from the broad 
to the narrow end of cone outer segments (Hodgkin 
and O’Bryan, 1977). The significance of critical taper 
is as follows.

Rods and cones are highly specialized cells with un-
usual properties. First, the sensory visual pigments that 
they use are extremely absorbent; i.e., they possess very 
high extinction coefficients, corresponding to large mo-
lecular absorption cross sections (Hárosi and MacNichol, 
1974). Second, visual pigment molecules are densely 

Functional significance of the taper of vertebrate cone photoreceptors

Ferenc I. Hárosi1 and Iñigo Novales Flamarique2

1Laboratory of Sensory Physiology, Marine Biological Laboratory, Woods Hole, MA 02543
2Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V3J 4M5, Canada

Vertebrate photoreceptors are commonly distinguished based on the shape of their outer segments: those of cones 
taper, whereas the ones from rods do not. The functional advantages of cone taper, a common occurrence in ver-
tebrate retinas, remain elusive. In this study, we investigate this topic using theoretical analyses aimed at revealing 
structure–function relationships in photoreceptors. Geometrical optics combined with spectrophotometric and 
morphological data are used to support the analyses and to test predictions. Three functions are considered for 
correlations between taper and functionality. The first function proposes that outer segment taper serves to com-
pensate for self-screening of the visual pigment contained within. The second function links outer segment taper 
to compensation for a signal-to-noise ratio decline along the longitudinal dimension. Both functions are sup-
ported by the data: real cones taper more than required for these compensatory roles. The third function relates 
outer segment taper to the optical properties of the inner compartment whereby the primary determinant is the 
inner segment’s ability to concentrate light via its ellipsoid. In support of this idea, the rod/cone ratios of primarily 
diurnal animals are predicted based on a principle of equal light flux gathering between photoreceptors. In addi-
tion, ellipsoid concentration factor, a measure of ellipsoid ability to concentrate light onto the outer segment, cor-
relates positively with outer segment taper expressed as a ratio of characteristic lengths, where critical taper is the 
yardstick. Depending on a light-funneling property and the presence of focusing organelles such as oil droplets, 
cone outer segments can be reduced in size to various degrees. We conclude that outer segment taper is but one 
component of a miniaturization process that reduces metabolic costs while improving signal detection. Compro-
mise solutions in the various retinas and retinal regions occur between ellipsoid size and acuity, on the one hand, 
and faster response time and reduced light sensitivity, on the other.

© 2012 Hárosi and Novales Flamarique This article is distributed under the terms of an 
Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months 
after the publication date (see http://www.rupress.org/terms). After six months it is available 
under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported 
license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

Th
e 

Jo
ur

na
l o

f 
G

en
er

al
 P

hy
si

o
lo

g
y



160 Photoreceptor morphology and function

reduced in cross section, leading to diminution of noise 
along the way.

The third and last function that we evaluate, efficient 
light collection and utilization of biomaterials, is based 
on the hypothesis that outer segment taper follows the 
optical properties of the inner segment. Rather than 
considering outer segment taper to be tied up with 
strictly outer segment functions, this idea proposes a 
multifaceted interdependence between inner and outer 
segments, as suggested by morphology.

Both cones and rods feature three distinct compart-
ments or subcellular organelles: an outer segment 
(limb), specialized for trapping light; an inner segment 
(cone ellipsoid), concerned primarily with energy pro-
duction and homeostatic functions; and a synaptic 
apparatus that communicates with other neurons (Fein 
and Szuts, 1982). Cone ellipsoids are usually the most 
conspicuous of the photoreceptor compartments in 
practically every retina, with primate foveal cones being 
a notable exception (Borwein et al., 1980; Packer et al., 
1989; Hoang et al., 2002). Cones are always broadest  
at their ellipsoid and tend to taper toward the outer  
segment, to which they attach closely (Fein and Szuts, 
1982). In some fish retinas, the two cone compartments 
appear as one confluent unit, so that it is hard to dis-
cern through the light microscope where the ellipsoid 
ends and the base of the outer segment begins. In con-
trast, rods rarely have any difference in width between 
the two limbs. Shape and size variation notwithstand-
ing, it is always the inner segment wherefrom light en-
ters the outer segment in the physiological setting. For 
these reasons, it seems logical to consider the two com-
partments combined as one optical unit.

Cone ellipsoids tend to taper from the thickest proxi-
mal region toward the distal outer limb, and this, most 
likely, is a ploy to concentrate light (Winston 1970, 1981). 
And if that is so, the outer segment taper may be depen-
dent on the light-gathering property of the inner seg-
ment. This idea is also bolstered by the observation that 
cones with oil droplets tend to have more tapered outer 
segments than those without this organelle (Nilsson, 
1965; Kolb and Jones, 1982; Röhlich and Szél, 2000; 
Bailes et al., 2006). In view of the high refractive index 
values of oil droplets (Ives et al., 1983), there is no doubt 
about their refractive role (Baylor and Fettiplace, 1975; 
Young and Martin, 1984). Given some light concentra-
tion property, cone ellipsoids could funnel parallel inci-
dent light into converging (conical) beams, which, when 
projected onto smaller lamellar areas, could result in 
equal photon catch (and signal) maintained at reduced 
noise. Even in the presence of light losses, increased 
tapering should be advantageous for the gains to be 
made in improved signal to noise (by lamellar shrink-
age) and in savings in detector material (by volume  
reduction). A practical solution ought to balance the 
advantages against the concomitant drawbacks, such as 

packed in lamellar membranes, which, in turn, are 
tightly stacked in hundreds of layers within the outer 
segment (the molecular packing within the membrane 
and the tightness of lamellar packing are probably as 
high as functional constraints will allow; see Wen et al., 
2009). Consequently, the pigment-laden lamellae in the 
more proximal layers act as light filters for the more  
dis tal layers. This phenomenon is known as self-screen-
ing (Brindley, 1970). As a result of self-screening, light 
quanta arriving in the physiological setting have a 
greater probability of being absorbed near the base  
of an outer segment than toward the apex. Thus, in a 
cylindrical rod, where lamellae are of equal size, signal 
generation declines steadily in more distal layers with 
a concomitant decline in efficiency (i.e., photocurrent 
production per unit volume; Schnapf, 1983). One pos-
sible way to improve performance is to trim the volume 
slices along the length of outer segments in proportion 
to the fall-off of lamellar absorption caused by self-
screening. A conical structure could accomplish this. 
Tapering is considered critical when the trimming of 
lamellar cross section along the taper is exactly propor-
tional to the fall-off of absorption rate, resulting in 
uniform efficiency (Hodgkin and O’Bryan, 1977). This 
idea, which was neither generalized nor experimentally 
tested, is the basis for the first potential function, over-
coming signal loss caused by self-screening, that we eval-
uate in this study.

A second function considered is that outer segments 
taper to enhance the signal-to-noise ratio along their 
lengths. Accordingly, taper would also be driven by 
another outer segment function: signal generation. 
Although the generation of signal and associated noise 
in photoreceptors are complex phenomena, in part be-
cause of the stochastic nature of underlying processes, 
such as the opening and closing of ionic channels or 
the binding and release of ligands at receptor sites in 
the enzymatic cascade of the light response, there is a 
consensus on the existence of thermal activation of 
visual pigment molecules and cGMP phosphodiester-
ases, both components giving rise to noise (Rieke and 
Baylor, 1996, 2000; Holcman and Korenbrot, 2005). 
Based on current understanding, the receptor signal con-
sists of a photocurrent generated through a narrow cir-
cumferential region of the outer segment membrane in 
response to the number of quanta absorbed in the adja-
cent volume containing one or a few lamellae (Baylor, 
1987). Noise, on the other hand, is assumed, on the 
most basic level, to be proportional to the total number 
of visual pigment molecules or cGMP phosphodiester-
ases contained in the same volume (Rieke and Baylor 
1996, 2000; Sampath and Baylor, 2002; Holcman and 
Korenbrot, 2005). Either way, the signal-to-noise ratio is 
expected to diminish along the outer segment length 
(z direction) in cylindrical cells. With a tapered outer 
segment, however, consecutive lamellae are progressively 
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M AT E R I A L S  A N D  M E T H O D S

Animals
The majority of data in this study originated from animals used in 
published works, either our own or those of others. However, 
some measurements were taken from studies that have yet to ap-
pear in the literature. These measurements originated from gold-
fish (Carassius auratus), common carp (Cyprinus carpio), zebrafish 
(Danio rerio), three-spine stickleback (Gasterosteus acuelatus), blue 
gill sunfish (Lepomis macrochirus), green sunfish (Lepomis cyanellus), 
rainbow trout (Oncorhynchus mykiss), coho salmon (Oncorhynchus 
kisutch), chinook salmon (Oncorhynchus tschawytscha), African 
clawed frog (Xenopus laevis), northern leopard frog (Rana pipiens), 
American bullfrog (Rana catesbeiana), Canada goose (Branta 
canadensis), green-winged teal (Anas crecca carolinensis), red-eared 
slider turtle (Trachemys scripta elegans), and mouse (Mus musculus). 
Animals were obtained from the following locations: zebrafish, 
local pet shop supplier in Burnaby (British Columbia, Canada); 
three-spine stickleback, Swan Lake (Victoria, British Columbia, 
Canada); blue gill sunfish, ponds around the Woods Hole, MA 
area; rainbow trout, Lower Mainland Trout Hatchery (Abbots-
ford, British Columbia, Canada); coho salmon and chinook 
salmon; Capilano River hatchery (North Vancouver, British Co-
lumbia, Canada); common carp, green sunfish, African clawed 
frogs, and northern leopard frogs, Marine Resources Centre of 
the Marine Biological Laboratory (Woods Hole, MA); and bull-
frogs, Aquatic Facility Centre of Simon Fraser University (Burn-
aby, British Columbia, Canada). The animals were kept in aerated, 
flow-through water tanks under a 12-h light/dark cycle while ex-
periments were being conducted. Fixed and fresh eyes from red-
eared sliders were provided by C. Carr (University of Maryland, 
College Park, MD) and E. Enos (Marine Resources Centre), re-
spectively. Fixed mouse eyes were obtained from staff at the Ani-
mal Care Facility of Simon Fraser University, and fixed eyes from 
Canada geese and green-winged teals (a species of northern 
duck) were provided by M. Juhas (Haida Gwaii Archipelago, 
British Columbia, Canada).

Laboratory animals were killed in a state of light or dark adap-
tation for histology or microspectrophotometry, respectively, and 
the retinas were processed as detailed in previous publications 
(Hárosi, 1987; Cheng et al., 2006; Novales Flamarique, 2011). All 
experimental procedures were approved by the Animal Care 
Committee of Simon Fraser University or the Marine Biological 
Laboratory, which are in compliance with the guidelines set  
by the Canadian Council for Animal Care and the National  
Institutes of Health.

Measurements
We obtained cell dimensions from live retinas (microspectropho-
tometry experiments) and from fixed, Epon-embedded retinas 
cut into thin (75 nm) sections and observed using a transmis-
sion electron microscope (model 7600; Hitachi; Fig. 1). These 
measurements were inner segment ellipsoid diameter (di), outer 
segment diameter at the base (do), outer segment diameter 
at a distance, z, from the base (dz), and outer segment length 
and tip diameter when possible (Fig. 2). In addition, densities 
of rods and cones were obtained from thick (1 µm) histologi-
cal sections.

Besides unpublished data, we obtained similar measurements 
from studies spanning the last 75 yr of anatomical literature. 
These included 116 species of fishes, covering the evolutionary 
spectrum from ancient groups like lampreys, elasmobranchs, 
and lungfishes to modern teleosts like killifishes, carps, and cich-
lids; 9 species of amphibians; 33 species of birds; 19 species of 
reptiles; 31 species of mammals; and 8 species of monotremes 
and marsupials. Table 1 details the species examined and the 
works consulted.

reduced acuity and some light loss by ellipsoid leakage. 
As such, a standard cone should not exist, but there 
should be variously tapered structures in nature that 
represent compromise solutions to different sets of con-
straints. Although the third function does not lend itself 
to testing via a single mathematical relationship, its 
validity can be ascertained by examining structure–
function relationships in different species and compar-
ing outer and inner segment taper-related variables that, 
from the aforementioned reasoning, should be posi-
tively correlated.

Our analysis of cone taper focuses on photoreceptor 
properties that have been routinely selected for during 
the course of evolution such as improved signal detec-
tion and metabolic savings by efficient use of biomateri-
als (see, for instance, the photoreceptor innovations of 
anchovies; Novales Flamarique, 2011). Early vertebrates, 
like extant hagfishes and larval ascidians, evolved ciliary 
photoreceptors that acted as shadow detectors, presum-
ably conferring some of these animals an advantage in 
dim light environments (Collin, 2010). Natural selection 
acting on mutations to these ancestral designs led to a 
large number of novel photoreceptor features, includ-
ing changes in outer segment shape (from conical to 
rodlike and vice versa, the transmutation hypothesis; 
Walls, 1963), multiple photopigments for color vision 
(Bowmaker, 2008), phototransduction enzymes with 
varying response kinetics (Hisatomi and Tokunaga, 
2002), and, with a focusing eye, photoreceptor mosaics 
that improved overall sensitivity and/or visual acuity 
(van der Meer, 1992). As per other selective traits, the 
shape and size of photoreceptors are expected to vary, 
and each form may subserve multiple functions, though 
perhaps none optimally. Indeed, natural selection may 
retain a given form because it is either nondeleterious or 
because it confers some advantage to the individual 
(Bell, 2009). We therefore surmised that our analysis 
could reveal various advantages of taper to cone photo-
receptor function.

The primary thrust of this study is theoretical. Atten-
tion is focused on morphological and biochemical prop-
erties of vertebrate photoreceptors. The aim is to gain 
insight into the principles governing their structure and 
function. In addition to the analytical approach, experi-
mental results are used for testing theoretical predic-
tions. The empirical data include cellular dimensions, 
which were derived by light and electron microscopic 
measurements, in situ visual pigment determinations by 
microspectrophotometry, in vitro visual pigment data 
obtained by spectrophotometry, electrophysiological de-
terminations, and comparative anatomy. The cited em-
pirical data are derived from either published articles in 
the literature or hitherto unpublished work from our 
laboratories. The three potential functions of cone taper 
that we evaluate are considered in sequence; for each, 
the consequences and ramifications are examined.
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Each datum presented in the graphs of this study is the mean 
from a minimum of 15 cells for species used in live cell recordings 
(Table 2) and anywhere from three to thousands of cells for spe-
cies data originating solely from the literature. Some publications 
failed to report cell numbers for the morphological data pre-
sented; in such cases, we took the numbers as averages for the 
entire retina. In our presentation of figures, we show parallel 
analyses for species for which measurements from live cells were 
obtained and those whose measurements originated from histo-
logical work, primarily from the published literature.

Methods to evaluate the first biophysical function
Evaluation of this function relied on a comparison of anatomi-
cally and physiologically derived measures of two parameters: 
characteristic length and taper, as described in Appendix 1. Two 
methods were used in the evaluation. The first involved the calcu-
lation of the required characteristic length, ah1

1, from Eq. 6 
(Appendix 1) for each cell. The results were then compared with 
two separate estimates of characteristic length, az

1 and az
1, 

obtained with the aid of Eqs. 10 and 16 (Appendix 1). The neces-
sary parameter values for the latter calculations were derived 

Figure 1. Electron micrographs of vertebrate photoreceptors 
illustrating diverse outer segment tapers and ellipsoid mor-
phologies. (A) Goldfish single cone (SC) and rod (R) flanking 
one member of a double cone (DC). The cone ellipsoids are 
packed with mitochondria (Mi). Cone outer segments (black 
arrows) taper, whereas those of the rods do not (white arrow; 
only a portion of the rod outer segment is visible). (B) Single 
cone, double cone, and rod of coho salmon. In this species, 
there is a clear gradient in the size of cone mitochondria from 
smaller, at the level of the myoid, to larger, at the level of the  
ellipsoid. (C) Double cone from a mummichog killifish show-
ing megamitochondria (M) associated with the ellipsoid of each 
double cone member. This species also has ellipsosomes, which 
arise from megamitochondria as the cristae disappear. (D) Rod  
and single cone from a bullfrog. The rod mitochondria are 
long and compacted; the single cone exhibits an ellipsosome-like 
structure (E*) in the ellipsoid. (E) Two single cones among 
rods in the bullfrog retina; one of the cones contains an oil 
droplet (*). Note the large difference in size between rods 
and cones. (F) Single cones and rods from a Canada goose. 
The single cones show different types of oil droplets. As in the 
frog, elongated mitochondria pack rod inner segments, and 
the mean diameter of cone ellipsoids (entrance aperture) is 
similar to that of rods. (G) Single cones of the red-eared slider 
turtle showing large oil droplets and pronounced cone taper. 
(H) Rods of the mouse retina. The cones in this and similar 
nocturnal species are hard to identify without molecular mark-
ers. Bars, 2 µm.

Figure 2. Drawings of single cones from fresh retinal prepara-
tions illustrating the morphological parameters measured as well 
as the taper angle, . The cellular dimensions were obtained from 
video images recorded via a microscope equipped with a cali-
brated infrared-sensitive video system. (A) Single cone from blue 
gill sunfish. (B) Single cone from leopard frog. (C) Cone outer 
segment (left) from B and an idealized representation of that of  
the optically equivalent rod (right). The equivalency is based on  
the assumption that both cells have equal entrance aperture with  
diameter di and that the cone ellipsoid funnels the incident flux 
to the outer segment without loss. The cellular dimensions (in µm) 
for these cones were as follows: (A) for the blue gill sunfish,  
di = 8.3, do = 5.0, dz = 2.9, z = 18, and the inner segment length, li = 
25.2; (B) for the leopard frog, di = 7.2, do = 2.8, dz = 1.3, z = 6.3, 
and li = 17.5. The parameter z, in these two cases, equals the outer 
segment length, and dz is the diameter at the tip of the outer seg-
ment. The asterisk in B depicts an oil droplet.
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TA B L E  1

List of species for which literature data were obtained and sources

Common name Scientific name References

Fishes

Narrow-mouthed lamprey Geotria australis Collin et al., 2003

South hemisphere lamprey Mordacia mordax Collin et al., 1999, 2004; Collin and Pottert, 2000

Sea lamprey Petromyzon marinus Dickson and Graves, 1979

River lamprey Lampetra japonica Ishikawa et al.,1987, 1989

Southern fiddler ray Trygonorhina fasciata Braekevelt, 1992a

Short tail stingray Dasyatis brevicaudata Braekevelt, 1994a

Blue spotted mask ray Dasyatis kuhlii Kohbara et al., 1987; Theiss et al., 2007

Giant shovelnose ray Rhinobatus typus Hart et al., 2004

Eastern shovelnose ray Aptychotrema rostrata Hart et al., 2004; Litherland and Collin, 2008

Sting ray Dasyatis sayi Hamasaki and Gruber, 1965

Electric ray Narcine brasilensis Ali and Anctil, 1974

Freshwater sting ray Paratrygon motoro Ali and Anctil, 1974

Red stingray Dasyatis akaiei Kohbara et al., 1987

Sepia stingray Urolophus aurantiacus Kohbara et al., 1987

Thornback ray Platyrhina sinensis Kohbara et al., 1987

Spiny dogfish Squalus acanthias Stell, 1972

Mediterranean dogfish Centroscysmus coelolepis Bozzano, 2004

Small spotted dogfish Scyliorhinus canicula Bozzanao et al., 2001

Black mouth dogfish Galeus mealstomus Bozzanao et al., 2001

Longsnout dogfish Deania eglantina Kohbara et al., 1987

Nurse shark Ginglymostoma cirratum Hamasaki and Gruber, 1965

Lemon shark Negaprion brevirostris Gruber et al., 1963

Great white shark Carcharodon carcharias Gruber et al., 1975; Gruber and Cohen, 1985

Mako shark Isurus oxyrinchus Gruber et al., 1975

Thresher shark Alopias vulpinus Gruber et al., 1975

Blue shark Prionace glauca Gruber et al., 1975; Kohbara et al., 1987

Banded houndshark Triakis scyllia Kohbara et al., 1987

Silky shark Carcharinus falciformis Gruber et al., 1975

White tip shark Carcharinus longimanus Gruber et al., 1975

Sandbar shark Carcharinus milberti Gruber et al., 1975

Brown bamboo shark Chiloscyllium punctatum Harahush et al., 2009

White tip reef shark Triaenodon obesus Litherland and Collin, 2008

Epaulette shark Hemiscyllium ocellatum Litherland and Collin, 2008

Ornate wobbegong Orectolobus ornatus Litherland and Collin, 2008

Australian lungfish Neoceratodus forsteri Bailes et al., 2006

South American lungfish Lepidosiren paradoxa Ali and Anctil, 1973

Coelacanth Latimeria chalumnae Locket, 1973

Green sturgeon Acipenser medirostru Sillman et al., 2005

Pallid sturgeon Scaphirhynchus albus Sillman et al., 2005

Siberian sturgeon Acipenser baeri Govardovskii et al., 1992

Amur sturgeon Acipenser shrenckii Fang et al., 2004

Shovelnose sturgeon Scaphirhynchus platorhynchus Sillman et al., 1999a

Paddlefish Polyodon spathula Sillman et al., 1999a; Sillman and Dahlin, 2004

Florida garfish Lepisosteus platyrhincus Collin and Collin, 1993

Bowfin Amia calva Ali and Anctil, 1976

Goldeye Hiodon alosoides Braekevelt, 1982

European eel Anguilla anguilla Braekevelt, 1984, 1985, 1988a,b

American eel Anguila rostrata Ali and Anctil, 1976

Northern anchovy Engraulis mordax Novales Flamarique, 2011

Goldfish Carassius auratus Stell and Hárosi, 1976

Carp Cyprinus carpio Bunt and Klock, 1980

Japanese dace Tribolodon hakonensis Hárosi and Hashimoto, 1983

Roach Leucisus rutilus Engström and Rosstorp, 1963; Zaunreiter et al., 1991
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TA B L E   (Continued)

Common name Scientific name References

Tench Tinca tinca Douglas and Wagner, 1982

Zebrafish Danio rerio Nawrocki et al., 1985; Forsell et al., 2001; Kim et al.,2005

Cutlips minnow Exoglossum maxillingua Collin et al., 1996a

Silverjaw minnow Ericymba buccata Moore et al., 1950

Creek chub Semotilus atromaculatus Collin et al., 1996b

Gangfish Loregonus lavateus Reckel et al., 1999

Common white sucker Catostomus commersoni Novales Flamarique and Hárosi, 1997;  
 Novales Flamarique and Hawryshyn, 1998

Razorback sucker Xyrauchen texanus Novales Flamarique et al., 2007

Channel catfish Ictalurus puntatus Sillman et al., 1993

White catfish Ictalurus catus Sillman et al., 1993

Brown bullhead Ictalurus nebulosus Welsh and Osborn, 1937; Ali and Anctil, 1976

Coho salmon Oncorhynchus kisutch Cheng et al., 2006, 2007

Chum salmon Oncorhynchus keta Cheng et al., 2006

Pink salmon Oncorhynchus gorbuscha Cheng et al., 2006

Chinook salmon Oncorhynchus tschawytscha Cheng et al., 2006

Atlantic salmon Salmo salar Novales Flamarique, 2002, 2011; Cheng et al., 2006

Rainbow trout Oncorhynchus mykiss Kusmic and Gualtieri, 2000; Cheng and Novales Flamarique,  
 2007; Cheng et al., 2007, 2009

Smelt Osmerus eperlanus Reckel et al., 2003

Salamander fish Lepidogalaxias salamandroides Collin and Collin, 1998

Waryfish Scopelosaurus lepidus Munk, 1977

Greenland cod Gadus ogac Ali and Anctil, 1976

Antarctic cod Dissostichus mawsoni Meyer-Rochow and Klyne, 1982

Bald rock cod Trematomus borchgrevinki Meyer-Rochow and Klyne, 1982

Emerald rock cod Trematomus bernacchii Meyer-Rochow and Klyne, 1982

Common cod Gadus callarias Engström, 1961

Burbot Lota lota Engström, 1961

Tadpole fish Raniceps raninus Engström, 1961

Silver hake Merluccius bilinearis Ali and Anctil, 1976

Capelin Mallotus villosus Ali and Anctil, 1976

Mummichog killifish Fundulus heteroclitus Anctil and Ali, 1976; Novales Flamarique and Hárosi, 2000

Mangrove killifish Rivulus marmoratus Ali et al., 1989

Four-eyed fish Anableps anableps Borwein and Hollenberg, 1973

Guppy Lebistes reticulatus Müller, 1952; Yacob et al., 1977; MacNichol et al., 1978;  
 Kunz et al., 1983

Pipefish Corythoichthyes paxtoni Collin and Collin, 1999

Halfbeak Dermogenys pusillus Reckel et al., 2002; Reckel and Melzer, 2003

Australian rainbowfish Melanotaenia maccullochi Reckel et al., 2002; Reckel and Melzer, 2003

Celebes rainbowfish Marosatherina ladigesi Reckel et al., 2002; Reckel and Melzer, 2003

Sea needle Belone belone Reckel et al., 2001, 2002; Reckel and Melzer, 2003

Lesser weever Trachinus vipera Kunz et al., 1985

European perch Perca fluviatilis Ahlbert, 1973; Guma’a, 1982

Yellow perch Perca flavescens Ali and Anctil, 1976

Green sunfish Lepomis cyanellus Burnside and Ackland, 1984; Dearry and Barlow, 1987

Butterfly fish Pantodon buchholzi Braekevelt, 1990a

Black bream Acanthopagrus butcheri Shand et al., 1999

Blackstriped cardinalfish Apogon angustatus Fishelson et al., 2004

Iridescent cadinalfish Apogon kallopterus Fishelson et al., 2004

Yellowstriped cardinalfish Apogon cyanosoma Fishelson et al., 2004

Cook’s cardinalfish Apogon cookie Fishelson et al., 2004

Rock bass Ambloplites rupestris Munz and McFarland, 1977

Large-mouth bass Micropterus salmoides García and de Juan, 1999

Striped bass Morone saxatilis Paillart et al., 2006

West Australian dhufish Glaucosoma hebraicum Shand et al., 2001

Black sea bass Centropristis striata Singarajah and Hárosi, 1992
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Common name Scientific name References

Snake mackerel Gempylus serpens Munk, 1985

Walleye Stizosteidon vitreum vitreum Zyznar and Ali, 1975; Januschka et al., 1987

Sauger Stizosteidon canadense Ali and Anctil, 1977

Nile tilapia Oreochromis niloticus Braekevelt et al., 1998

Golden dwarf cichlid Nannacara anomala Wagner, 1978; Douglas and Wagner, 1982

Velvet cichlid Astronotus ocellatus Braekevelt, 1992b

Burton’s haplochromis Haplochromis burtoni Pietzsch-Rohrschneider, 1976

Goldsinny wrasse Ctenolabrus suillus Engström, 1963

Corkwing wrasse Crenilabrus melops Engström, 1963

Winter flounder Pseudopleuronectes americanus Evans and Fernald, 1993

Amphibians

African clawed frog Xenopus laevis Kinney and Fisher, 1978a,b; Hollyfield et al., 1984; Röhlich  
 et al., 1989; Röhlich and Szél, 2000

Leopard frog Rana pipiens Nilsson, 1965

Bullfrog Rana catesbeiana Hisatomi et al., 1998

Edible frog Rana esculenta Reichenbach and Fuchs, 1983

Tropical toad Bufo marinus Moody and Robertson, 1960; Hárosi, 1975

Tiger salamander Ambystoma tigrinum Hárosi, 1975; Mariani, 1986; Braekevelt, 1993a;  
 Sherry et al., 1998; Ma et al., 2001

Axotol Ambystoma mexicanum Custer, 1973

Red-back salamander Plethodon cinereus Braekevelt, 1992c

Newt Triturus viridescens Keefe, 1971

Birds

Chicken Gallus domesticus Meyer and May, 1973; Araki et al., 1984; Szél et al., 1986;  
 Oishi et al., 1990

Pigeon Columba livia Cohen, 1963; Mariani and Leure-duPree, 1978;  
 Cserháti et al., 1989

Crow Corvus brachyrhynchos Braekevelt, 1994b

Great blue heron Ardea Herodias Rojas et al., 1999a

Yellow-crowned heron Nycticorax violaceus Rojas et al., 1999a

Black-crowned heron Nycticorax nycticorax Gondo and Ando, 1995

Cattle egret Bubulcus ibis Rojas et al., 1999a

Tricolored egret Egretta tricolor Rojas et al., 1999a

American white ibis Eudocimus ruber Rojas et al., 1999a

Roseate spoonbill Ajaia ajaja Rojas et al., 1999a

Wilson’s plover Charadrius wilsonia Rojas et al., 1999b

Short-billed dowitcher Limnodromus griseus Rojas et al., 1999b

American woodcock Scolopax minor Rojas et al., 1999b

Black-winged stilt Himantopus himantopus Rojas et al., 1999b

Willet Catoptrophorus semipalmatus Rojas et al., 1999b

Red-tailed hawk Buteo jamaicensis Braekevelt, 1993b

Great horned owl Bubo virginianus Braekevelt, 1993c

Barred owl Strix varia Braekevelt et al., 1996

Mallard duck Anas platyrhynchos Braekevelt, 1990b

Australian galah Eolophus roseicapillus Braekevelt and Richardson, 1996

Emu Dromaius novaehollandiae Braekevelt, 1998

Japanese quail Coturnix coturnix japonica Konishi, 1965; Oishi et al., 1990; Rojas et al., 2007

Eastern tree sparrow Passer montanus Gondo and Ando, 1995

House swallow Hirundo rustica Gondo and Ando, 1995

Great tit Parus major Engström, 1958

American robin Turdus migratorius McNeil et al., 2005

Hermit thrush Catharus guttatus McNeil et al., 2005

Mourning dove Zenaida macroura McNeil et al., 2005

Common grackle Quiscalus quiscula McNeil et al., 2005

Oil bird Steatoinis caripensis Martin et al., 2004; Rojas et al., 2004

Common pauraque Nyctidromus albicellis Rojas et al., 2004
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Common name Scientific name References

Ring billed gull Larus delawarensis Emond et al., 2006

Gray gull Larus modestus Emond et al., 2006

Reptiles

Red-eared slider Pseudemys scripta elegans Baylor and Fettiplace, 1975; Leeper, 1978; Kolb and Jones,  
 1982, 1987; Ohtsuka and Kawamata, 1990

Snapping turtle Chelydra serpentina Baylor and Fettiplace; 1975; Leeper; 1978

Reeve’s turtle Geoclemys reevesii Ohtsuka, 1985; Ohtsuka and Kawamata; 1990

Garter snake Thamnophis sirtalis Wong; 1989; Sillman et al., 1997

Ball python Python regius Sillman et al., 1999b

Common boa Boa constrictor imperator Sillman et al., 2001

Mississippi alligator Alligator mississippiensis Kalberer and Pedler, 1963; Sillman et al., 1991

Caiman Caiman crocodilus Govardovskii et al., 1988

Tokay gecko Gekko gecko Pedler and Tilly, 1964; Crescitelli, 1972

Blue-tailed day gecko Phesulma inunguis Pedler and Tansley, 1963; Pedler and Tilly, 1964

Coastal banded gecko Coleonyx variegates Dunn, 1966

Mediterranean gecko Hemydactilus turcicus Pedler and Tilly, 1964; Loew et al., 1996

House gecko Hemydactilus garnotii Loew et al., 1996

Scinc gecko Teratoscincus scincus Govardovskii et al., 1984; Loew et al., 1996

Chameleon Chamaleo chamaleo Armengol et al., 1981

Western fence lizard Sceloporpus occidentalis Young, 1977; Bernstein et al., 1984

Ornate dragon lizard Ctenophorus ornatus Barbour et al., 2002

Tuatara Sphenodon punctatu Meyer-Rochow et al., 2005

Bouton’s skink Cryptoblepharus boutonii Röll, 2001

Mammals

Stumptail macaque Macaca arctoides Hoang et al., 2002

Rhesus monkey Macaca mulatta Cohen, 1961; Leach, 1963; Dowling, 1965; Young, 1971;  
 Borwein et al., 1980

Crab-eating macaque Macaca fascicularis Borwein et al., 1980

Pigtail macaque Macaca nemestrina Packer et al., 1989

Owl monkey Aotes trivirgatus Jones, 1965; Murray et al., 1973; Ogden, 1975

Vervet monkey Cercopithecus aethiops Braekevelt, 1987

Human Homo sapiens Missotten, 1966; Dieterich and Rohen, 1970; Steinberg et al.,  
 1977; Curcio et al., 1990; Hoang et al., 2002

Dog Canis domesticus Shively et al., 1970; Hebel, 1971

Wolf Canis lupus Peichl et al., 2001

Cat Felis domesticus Steinberg et al., 1973; Braekevelt, 1990c

Ferret Mustela putorius furo Braekevelt, 1983a

Mink Mustela vison Dubin and Turner, 1977; Braekevelt, 1990d

Spotted hyena Crocuta crocuta Calderone et al., 2003

Rabbit Oryctologus cuniculus Szél et al., 1988

Cow Bos taurus Szél et al., 1988

Pig Sus scrofa domesticus Szél et al., 1988; Hendrickson and Hicks, 2002

Domestic sheep Ovis aries Braekevelt, 1983b

Mouflon Ovis musimon Peichl, 2005

Long-finned pilot whale Globicephala melaena Peichl et al., 2001

13-lined squirrel Spermophilus tridecemlineatus West and Dowling, 1975; Anderson and Fisher, 1976

Mexican ground squirrel Spermophilus mexicanus West and Dowling, 1975; Anderson and Fisher, 1976

California ground squirrel Spermophilus beecheyi Anderson and Fisher, 1976

Eastern gray squirrel Sciurus carolinensis Cohen, 1964; West and Dowling, 1975;  
 Anderson and Fisher, 1976

Western gray squirrel Sciurus griseus Anderson and Fisher, 1976

Prairie dog Cynomys ludovicianus West and Dowling, 1975

Mouse Mus musculus Carter-Dawson and LaVail, 1979

Tree shrew Tupaia belangeri Kühne, 1983; Foelix et al.,1987; Müller and Peichl, 1989;  
 Petry and Hárosi, 1990; Petry et al., 1993; Knabe et al., 1997

African giant rat Cricetomys gambianus Peichl, 2005

TA B L E   (Continued)
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from inner to outer segment. To test this, we used critical taper 
(Appendix 1) as a benchmark and expressed actual taper as the 
ratio az

1/ah1
1, indicating how many critical characteristic 

lengths would equal the characteristic length considered realistic.

R E S U LT S

Cone taper exceeds critical taper
Table 2 presents typical morphometric data obtained 
from live photoreceptors during microspectrophoto-
metric experiments, in this case from individual photo-
receptors of goldfish. Values of derived variables (e.g., 
taper, characteristic length, and concentration factor) 
are also presented. Figs. 3–6 show means from analo-
gous datasets for the various species examined.

Comparison of data in columns 8–10 of Table 2 re-
veals that the characteristic length corresponding to 
critical taper differs from the characteristic length cal-
culated from known data. Moreover, the difference in 
most cases goes far beyond the margin of error (0.1 µm, 
from repeated measures). Except for one cone (Table 2, 
row 1) that came close to having critical taper, the ah1

1 
values for the rest of the cones are much smaller than 
expected. A smaller characteristic length, however, 
means a larger absorption coefficient. We can consider, 
for instance, the blue-absorbing single cone on line 25 of 
Table 2. For it to have critical taper, the axial extinction 
would have to be 3.8-fold higher than a realistic value.

As is apparent from columns 6 and 7 of Table 2, the 
taper of real cones is excessive. For the vast majority of 
species studied, whether the data originated from live 
cell measurements (Fig. 3 A) or from fixed, histological 
material (Fig. 3 B), the mean cone taper () was at least 
1.5 times the critical taper (). Only in the case of bats, 
the giant African rat, and foveal-perifoveal cones of pri-
mate retinas was cone taper statistically the same as critical 
taper (P > 0.05, paired t tests). On average, the ratio / ± 
SD was 4.8 ± 2.4 for fishes, 5.1 ± 1.7 for amphibians, 

from previous determinations performed on equivalent cells. 
For example, it was assumed that cones with vitamin A2–type 
pigments share the properties with those of the yellow perch, 
goldfish, or Japanese dace and have the following parameter 
values: ´ = 30,000 liter mol1 cm1, c = 3.5 mM, R = 2.2, and S┴ = 
0.0125 µm1. For cones using vitamin A1–type pigments, ´ = 
42,000 liter mol1 cm1, c = 3.5 mM, R = 2.5, and S┴= 0.0175 µm1 
(Hárosi and MacNichol, 1974; Hárosi, 1975, 1976, 1984, 1985; 
Hárosi and Hashimoto, 1983). The estimated characteristic 
lengths were not significantly affected by the particular values as-
sumed for individual parameters. For instance, we could have used 
Liebman and Granda’s (1971) specific absorbance of 0.0130 µm1 
to obtain az

1 = 33.4 µm or assumed 3-mM pigment concentra-
tion and an infinite dichroic ratio (k = 1.5), as did Hodgkin and 
O’Bryan (1977), and arrived at az

1 = 32.2 µm. These values are 
similar to those reported in Table 2.

As a second method for testing the validity of the first function, 
we calculated a new diameter (dz) for each cell that would occur 
at critical taper by using az and the rest of the geometrical data in 
Eq. 5 (Appendix 1). The actual taper, , obtained with dz, was 
then recalculated using dz in Eq. 17. The resulting  represents 
taper for each cell that would satisfy invariance of flux density 
along the outer segment.

Evaluation of the second biophysical function
Eq. 30 of Appendix 2 is an expression for the signal-to-noise ratio 
along an outer segment. This equation was scrutinized to assess 
the validity of the second proposed function.

Evaluation of the third biophysical function
For the lack of a compact theoretical expression (Appendix 3), 
this function could not be verified experimentally. Our approach 
here was to test whether several morphological observations across 
phyla were consistent with it. For instance, the difference in light-
gathering efficiency by tapered versus nontapered photoreceptors 
(Appendix 3) led us to predictions about the rod/cone ratios 
of primarily diurnal animals; i.e., animals with both diurnal and 
crepuscular/nocturnal rhythms, but in which the primary rhythm 
is diurnal, and in which utilization of both cone and rod pathways 
occurs during the day (these species are to be contrasted with 
those that are fully diurnal, e.g., some ground squirrels [West and 
Dowling, 1975; Anderson and Fisher, 1976], or primarily noc-
turnal, e.g., the giant African rat; Peichl, 2005). In addition, we 
postulated that there should be a correlation between outer seg-
ment taper and ellipsoid concentration factor (Eq. 33, Appendix 3), 
the latter being a measure of the ability to concentrate light 

Common name Scientific name References

Madagascar rousette Rousettus madagascariensis Müller et al., 2007

Seba’s short-tailed bat Carollia perspicillata Müller et al., 2009

Greater horseshoe bat Rhinolophus ferrumequinum Kim et al., 2008

Monotremes and marsupials

Echidna Tachyglossus aculeatus Young and Pettigrew, 1991

Fat-tailed dunnart Sminthopsis crassicaudata Arrese et al., 2002, 2003

Honey possum Tarsipes rostratus Arrese et al., 2002, 2003

Mouse opossum Thylamis elegans Palacios et al., 2010

Tammar wallaby Macropus eugenii Hemmi and Grünert, 1999

Quokka Setonix brachyurus Arrese et al., 2005

Quenda Isoodon obesulus Arrese et al., 2005

Agouti Dasyprocta aguti Rocha et al., 2009

In the case of the northern anchovy, only retinal areas with regular cones were evaluated (Novales Flamarique, 2011).

TA B L E   (Continued)
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and birds and some fishes and monotremes, have oil 
droplets (lungfishes) or have ellipsosomes (killifishes) 
in the ellipsoid region (Fig. 1). Among the reptiles, the 
ratio for the strictly diurnal garter snake (5.3) was about 
half that of primarily nocturnal snakes like the boa  
and ball python (mean of 11). Overall, phylogenetic 

5.5 ± 2.1 for birds, 5.7 ± 3.8 for reptiles, 4.6 ± 3.2 for 
mammals, and 4.3 for marsupials (two species). Among 
the fishes, the mean elasmobranch ratio (7.2 ± 2.7) was 
about twice that of teleosts (3.8 ± 1.4), and the highest 
ratios among the teleosts were for lungfishes (5.2) and 
killifishes (4.8), which, like most amphibians, reptiles, 

TA B L E  2

Measured parameters and computed variables from fresh preparations of goldfish retina used in microspectrophotometry experiments

Cell type di do dz z   ah1
1 az

1 az
1 az

1/ah1
1 Fc

m m m m º º m m m

DC1-R 8.9 6.1 4.6 18.3 2.3 2.26 32.4 33.8 34.7 1.04 2.12

DC1-G 8.4 5.3 3.0 18.3 3.6 1.97 16.1 33.8 34.7 2.10 2.51

DC2-R 9.6 6.9 4.6 19.8 3.3 2.53 24.4 33.8 34.7 1.38 1.93

DC2-G 9.1 6.1 3.8 12.2 5.4 2.36 12.9 33.8 34.7 2.62 2.22

DC3-R 9.4 6.9 4.6 13.7 4.8 2.64 16.9 33.8 34.7 2.00 1.85

DC3-G 8.8 6.1 4.6 10.7 4.0 2.39 19.0 33.8 34.7 1.78 2.08

DC4-R 9.2 4.6 3.0 10.7 4.3 1.80 12.5 33.8 34.7 2.70 4.00

DC4-G 9.8 6.1 4.6 7.6 5.6 2.44 13.5 33.8 34.7 2.51 2.58

DC5-R 9.1 5.4 2.9 19.6 3.6 2.00 15.8 33.8 34.7 2.14 2.84

DC5-G 8.4 6.9 4.1 21.4 3.7 2.50 20.5 33.8 34.7 1.64 1.48

DC6-R 9.2 7.6 4.7 19.4 4.3 2.79 20.2 33.8 34.7 1.67 1.46

DC6-G 8.1 6.8 4.5 18.3 3.6 2.52 22.1 33.8 34.7 1.52 1.41

DC7-R 6.5 3.8 2.4 12.9 3.1 1.46 14.0 33.8 34.7 2.41 2.92

DC7-G 6.4 3.3 2.1 12.3 2.8 1.28 13.6 33.8 34.7 2.48 3.76

DC8-R 8.3 5.5 3.7 13.3 3.9 2.11 16.8 33.8 34.7 2.01 2.28

DC8-G 7.8 5.2 3.6 12.8 3.6 2.01 17.4 33.8 34.7 1.94 2.25

DC9-R 8.7 5.8 3.5 18.2 3.6 2.15 18.0 33.8 34.7 1.88 2.25

DC9-G 8.4 6.1 4.2 19.4 2.8 2.24 26.0 33.8 34.7 1.30 1.89

DC10-R 10.2 7.6 4.5 18.4 4.8 2.82 17.6 33.8 34.7 1.93 1.80

DC10-G 9.6 7.2 4.6 17.4 4.3 2.69 19.4 33.8 34.7 1.74 1.77

SC1-R 9.1 6.1 3.8 15.2 4.3 2.31 16.1 33.8 34.7 2.10 2.22

SC2-R 8.8 6.1 3.8 16.7 3.9 2.29 17.6 33.8 34.7 1.92 2.08

SC3-R 6.2 4.5 3.0 12.6 3.4 1.74 15.5 33.8 34.7 2.17 1.89

SC4-R 8.2 4.1 2.8 12.8 2.9 1.58 16.8 33.8 34.7 2.01 4.00

SC5-B 9.3 6.1 3.8 8.4 7.8 2.43 8.87 33.8 34.7 3.81 2.32

SC6-B 9.4 6.1 4.6 7.6 5.6 2.44 13.5 33.8 34.7 2.51 2.37

SC7-B 9.2 6.5 4.8 12.2 4.0 2.52 20.1 33.8 34.7 1.68 2.00

SC8-B 9.3 6.2 4.1 14.8 4.1 2.36 17.9 33.8 34.7 1.89 2.25

SC9-B 8.8 5.8 3.9 13.6 4.0 2.22 17.1 33.8 34.7 1.97 2.30

SC10-B 8.7 6.1 3.6 10.1 7.1 2.40 9.58 33.8 34.7 3.53 2.03

Rod1 2.2 2.2 2.1 42.0 0.1 0.69 451 33.8 34.7 0.07 1.00

Rod2 2.0 2.0 2.0 39.1 0.0 0.64  33.8 34.7 0.00 1.00

Rod3 2.1 2.1 2.0 38.4 0.1 0.67 389 33.8 34.7 0.09 1.00

Rod4 2.3 2.3 2.3 44.0 0.0 0.71  33.8 34.7 0.00 1.00

Rod5 1.9 1.8 1.8 36.6 0.0 0.59  33.8 34.7 0.00 1.11

Rod6 1.9 1.9 1.9 39.7 0.0 0.60  33.8 34.7 0.00 1.00

Rod7 2.1 2.0 2.0 40.3 0.0 0.63  33.8 34.7 0.00 1.10

Rod8 2.2 2.1 2.1 41.3 0.0 0.67  33.8 34.7 0.00 1.10

Rod9 2.0 2.0 2.0 43.5 0.0 0.62  33.8 34.7 0.00 1.00

Rod10 1.9 1.7 1.7 35.5 0.0 0.57  33.8 34.7 0.00 1.25

Rod11 2.2 2.2 2.2 38.0 0.0 0.71  33.8 34.7 0.00 1.00

Rod12 2.1 2.0 2.0 37.7 0.0 0.65  33.8 34.7 0.00 1.10

Rod13 2.2 2.2 2.2 41.8 0.0 0.70  33.8 34.7 0.00 1.00

DC, double cone; SC, single cone. R, G, and B indicate the presence of visual pigments with maximum wavelength of absorption in the red (LWS opsin), 
green (RH2 opsin), or blue (SWS2 opsin) regions of the spectrum.
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Signal-to-noise ratio increases beyond that predicted  
by critical taper
Examination of Eq. 30 (Appendix 2) reveals the follow-
ing: (a) when Az is invariant in z (cylindrical outer 
segment), the signal-to-noise ratio, S/N, diminishes ex-
ponentially along z as a result of self-screening; (b) if Az 
versus z diminishes by tapering, the S/N will undergo 
proportionate increases; (c) for critical taper, when Az 
varies in accordance with Eq. 4 (Appendix 1), the expo-
nential terms cancel, and the S/N becomes indepen-
dent of z. From Eq. 30 we can also deduce that, for 
excessive taper, i.e., when a cone cross section (Az) di-
minishes faster than the exponential fall-off of signal, 
the signal-to-noise ratio may actually increase toward 
the apex of a cone outer segment. Eq. 30 thus reveals an 
important tendency: more taper means greater im-
provement in the signal-to-noise ratio along an outer 
segment. For this reason, in the absence of other re-
quirements, cones should taper as much as possible.

Inner segment morphology as a major determinant of 
outer segment taper
For the lack of a compact theoretical expression (see 
Appendix 3), the third function linking inner segment 
morphology to outer segment taper could not be veri-
fied experimentally. Nevertheless, several observations 
were consistent with it, as demonstrated by the fol-
lowing analyses using examples from diverse phyloge-
netic groups.

Teleosts, like the goldfish, have typically large, plump 
inner segments and shorter outer segments compared 
with the rods (Fig. 1). The average goldfish cone in this 
study had an entrance aperture (assumed to be equal to 
the broadest region of the ellipsoid) of 8.7-µm diame-
ter, wherefrom light would be funneled to the base of 
the outer segment with a mean diameter of 5.9 µm 
(Table 2). The concentration factor, FC, by Eq. 33 
(Appendix 3) is 2.2. The outer segment volume calcu-
lated by Eq. 34 yields 277 µm3. The volume of a cylinder 
with equal base diameter is 399 µm3. Their ratio gives 
1.4 for the geometry factor, FG, by Eq. 35. Additionally, the 
volume reduction ratio, VR, is obtained at 3.1 by Eq. 36. 
Thus, the cone outer segment uses 32% of the volume 
of that of the hypothetical optically equivalent rod. The 
rod cells measured in these goldfish preparations were 
quite uniform, with an average outer segment diameter  
of 2.1 µm and lengths in the range of 36–44 µm. For a 
40-µm-long rod outer segment, we can calculate the 
axial absorptance by Eqs. 3 and 22 using az (Appendix 1). 
Accordingly, such a rod would absorb 69% of the light 
incident at its base. By a similar calculation, the 15-µm-
long cone outer segment would absorb only 35% of the 
flux it receives. Therefore, the rod is the better light 
detector of the two. However, this rod collects a mere 
fraction of what a single cone can gather from the retinal 
illumination. In fact, it would take (8.7/2.1)2 = 17.2 rods 

groups with focusing structures in the ellipsoids (e.g., 
oil droplets, microdroplets, and megamitochondria) 
had larger / ratios than those lacking them.

Both methods of assessment led to the same general 
observation: overall, cones are more tapered than they 
ought to be for critical taper. Therefore, cone outer  
segment taper overcompensates for the loss of signal 
caused by self-screening. In contrast, rod outer seg-
ments, if tapered at all, have less than critical taper 
(Table 2), with the potential exception of rods in lam-
preys and geckos, species in which the two photoreceptor 
types are hard to classify because they exhibit intermedi-
ate morphological and molecular attributes (Collin  
et al., 2004; Muradov et al., 2008; Zhang et al., 2006).

Figure 3. Ratio of observed taper to critical taper (/) in rela-
tion to observed taper (). (A) Species from which live cell mea-
surements were obtained. (B) Species for which measurements 
originated from the literature. Recall that taper is defined as the 
angle between the axis of the cone and the inclination of the 
contour line, which, upon precession, describes the conical sur-
face. Critical taper is the taper required to exactly compensate 
for light flux diminution by absorption (self-screening) so that 
flux density remains invariant throughout the outer segment. In 
general, taper was highest for species with focusing organelles in 
the ellipsoids.
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12 ± 7.4 and 13 ± 10 (mammals), and 12 and 16 (marsupi-
als, two species). Among the fishes, the rod/cone ratios 
of teleosts were better predicted than those of elasmo-
branchs; the mean predicted and observed ratios for 
these two groups were 6.2 ± 9.0 and 6.4 ± 9.1 (teleosts) 
and 8.5 ± 12 and 10 ± 9.1 (elasmobranchs). Overall, the 
highest rod/cone ratios occurred for the walleye (a tel-
eost with "remarkably large cones"; Januschka et al., 
1987) and the mink. The best predictions occurred 
within the teleosts and mammals, especially for pri-
mates (predicted and expected mean rod/cone ratios 
were 16 ± 7.3 and 17 ± 8.8). The worst predictions (i.e., 
ratio of expected to predicted, or vice versa, >2) occurred 
within the birds (owls) and reptiles (snakes) as well as 
for elasmobranchs and one teleost, the snake mackerel. 
Some of these animals (e.g., owls, several species of elas-
mobranchs, and large snakes) were included in the 
analysis because of reported crepuscular (cone driven) 
activity, although they may be primarily nocturnal and 
perhaps not very appropriate for inclusion in these re-
gressions. Indeed, the rod/cone ratios of primarily noc-
turnal or fully diurnal animals are not very well predicted 
based on our principle of equal flux sharing between 
photoreceptor types (Fig. 5). Primarily nocturnal or 
dark habitat–dwelling species, which include deep 
ocean sharks and eels, several mammals (e.g., the mouse, 
African giant rat, bats, and the spotted hyena), the oil 
bird, and marsupials (opossums and the tammar wal-
laby), have large to very large rod/cone ratios (some 
exceeding 100:1). At the other end of the spectrum, 
strictly diurnal species like some ground squirrels, the 
prairie dog, and the tree shrew have very small rod/
cone rations (≤0.1). None of these species, located at 
either extreme of the rod/cone ratio range, were in-
cluded in the analysis leading to Fig. 4 B.

to intercept as much incident flux as the average cone 
considered here. The rod/cone ratio in goldfish was re-
ported to be 15:1 (Stell and Hárosi, 1976). The reason-
ably satisfactory agreement between predicted and 
observed ratios suggests that, in this animal, intercep-
tion of equal light flux, a property linked to inner seg-
ment aperture, appears to be the criterion driving rod 
and cone densities.

When this analysis was applied to the other, predomi-
nantly diurnal, species studied, the correlations between 
observed and expected rod/cone ratios were surpris-
ingly good (Fig. 4, A and B). On average, the rod/cone 
ratio expected and observed ± SD for the various phylo-
genetic groups were as follows: 6.9 ± 10 and 7.6 ± 9.2 
(fishes), 1.4 ± 1.6 and 1.5 ± 0.58 (amphibians), 2.0 ± 2.1 
and 1.4 ± 2.0 (birds), 5.0 ± 3.4 and 6.8 ± 7.4 (reptiles), 

Figure 5. Regression of expected rod/cone ratios as a function 
of those observed for fully diurnal and primarily nocturnal spe-
cies. Data originated from the literature.

Figure 4. Regressions of expected rod/cone ratios as a function 
of those observed for primarily diurnal (though birythmic) spe-
cies. (A) Data for species from which live cell measurements were 
obtained. (B) Data for species for which measurements origi-
nated from the literature.
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Figure 6. Regressions of the ratio of realistic to critical charac-
teristic length (az

1/ah1
1) as a function of concentration factor 

(FC). Recall that the characteristic length is the distance along 
the outer segment at which the light flux, , falls to 0.368 of the 
incident light flux at the base, o. The concentration factor is 
the square of the ratio between ellipsoid diameter at its largest 
cross section and outer segment base diameter, i.e., FC = (di/do)2, 
and represents coupling of light flux without loss from ellipsoid 
to outer segment. (A) Data for species from which live cell mea-
surements were obtained. (B) Data for species for which measure-
ments originated from the literature.

to be 7 µm, whereas the mean diameter of the outer 
segment base was 2.9 µm. Repeating the procedure used 
previously, we can calculate, by using Eqs. 33–36 (Ap-
pendix 3), the following: FC = 5.8, Vc = 20.1 µm3, Vr = 
39.6 µm3, FG = 1.97, and VR = 11.4. The optically equiva-
lent cylinder, as indicated in Fig. 2 C, has a volume of 
231 µm3. Thus, the cone outer segment volume is 
only 9% of that of the cylinder.

The preparations where frog single cones were lo-
cated also had rhodopsin-containing red rods with an 
outer segment diameter equal to the widest region of 
the ellipsoid, with a mean diameter of 7 µm. This find-
ing may be interpreted in terms of the cone ellipsoid’s 
light-gathering property and suggests that the entrance 
aperture of single cones and red rods are equal in frogs. 
Further support for the idea of equal flux collection by 
these cells in the frog retina can be found in the elec-
tron microscopic studies of Nilsson (1964, 1965). He 
showed, among other things, that red rods and single 
cones have about equal areas in cross section at the 
inner segment level (Nilsson, 1964). These photorecep-
tors, therefore, may indeed gather nearly equal fluxes 
from a uniform retinal illumination.

The actual volume of a red rod outer segment (at a 
length of 66 µm) is 2,500 µm3. Using known parame-
ters and Eqs. 3 and 22 (Appendix 1), we can calculate 
that these rods may catch 94% of axially incident light, 
whereas the average cone catches only 23% of it. 
Thus, a typical red rod may be a fourfold better ab-
sorber of axial light than a single cone (at the max of 
their respective visual pigments). However, the cone 
outer segment volume, Vc, as calculated previously, is 
nearly 100-fold smaller than that of the rod. The rod/
cone ratio expected, 1, is similar to that assessed from 
published micrographs (means of 1–1.5; Kinney and 
Fisher, 1978a; Hollyfield et al., 1984; Röhlich and Szél, 
2000). The fact that cones absorb a smaller portion of 
the incident light is not a handicap under daylight con-
ditions, when high absolute sensitivity is not required. 
For the same reason, the loss of light by leakage from 
cone ellipsoids can be tolerated when light is plentiful. 
Therefore, frog rods and cones can serve the retina 
equally well despite their large disparity in size. By mak-
ing cones with large entrance aperture and an ability to 
concentrate light, outer segment size reduction be-
comes possible at some cost in detector efficiency and 
sacrifice in acuity.

Upon review of the preceding examples, the data sug-
gest a positive relationship between outer segment taper 
and ellipsoid concentration factor, FC. The latter vari-
able is a measure of light concentration from the ellip-
soid into the outer segment. We have plotted the ratio 
az

1/ah1
1, indicating how many critical characteristic 

lengths would equal the characteristic length consid-
ered realistic, against FC for the various species exam-
ined (Fig. 6, A and B). The correlations are positive, 

In contrast to the comparable size of photoreceptors 
in teleosts and mammals, the retinas of amphibians 
have colossal rods and minute cones (Fig. 1). The di-
chotomy in outer segment size is seldom as pronounced 
as in frog species, with the possible exception of the 
salamanders (Crescitelli, 1972). However, even in these 
animals, the important feature determining rod and 
cone densities appears to be the equal sampling of the 
plane, where, presumably, the image of the outside 
world is formed within the eye.

As an example, the mean cone ellipsoid diameter (en-
trance aperture) of the African clawed frog was found 
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(Röll, 2001; Barbour et al., 2002) and primates (Borwein, 
1981). In primates, high visual acuity is the product 
of tightly packed, long, rodlike foveal cone outer seg-
ments, each having a diameter of 1 µm; these are 
connected by cone fibers to the rest of their compart-
ments that are laterally displaced and squeezed out to 
the slopes of the foveal pit (Borwein, 1981; Packer et al., 
1989). Foveal cones have no ellipsoids, and, therefore, 
they must collect light without the aid of any other 
structure. However, parafoveal cones, and other cones 
in general, are built with joint outer and inner compart-
ments, where the latter is the thicker of the two to inter-
cept a larger area of retinal illumination at the cost of 
reduced regional acuity (Packer et al., 1989; Hoang  
et al., 2002). As flux is funneled from the entrance ap-
erture to a smaller exit aperture at the distal end of el-
lipsoids, structural modifications become feasible in outer 
segment tapering and size. Cone miniaturization has 
several advantages, including improved signal-to-noise 
ratio, faster visual pigment regeneration (i.e., recovery 
from bleaching), and material savings as a result of 
reduced volume. The drawbacks are reduction in ab-
solute sensitivity vis-à-vis rods and some light losses from 
detection as a result of ellipsoid leakage.

Rods, on the other hand, are specialized for high ab-
solute sensitivity and not for rapid response (Burns and 
Lamb, 2003). The eyes of deep-sea fishes provide exqui-
site examples for such sensitive detector structures 
(Locket, 1977). The cylindrical form appears well suited 
for on-demand tailoring of outer segment length, which 
may reach hundreds of micrometers in fish species liv-
ing at great depths. The use of multiple banks and as-
semblages of rods, in addition to long ones, also appears 
to be aimed at catching scarce photons in the darkness 
of the deep ocean (Locket, 1977; Munk, 1977; Collin  
et al., 1998). Rods do not jeopardize detection effi-
ciency by the use of light-concentrating schemes at the 
ellipsoid level; they have wider acceptance angles for 
oblique rays than cones do. Other mechanisms, how-
ever, may operate to concentrate light onto the outer 
segment. For instance, some nocturnal mammals, like 
the mouse, show an inverted chromatin nuclear pattern 
that, together with a quasi-columnar organization of 
rod nuclei, serves to channel light from the outer 
nuclear layer toward the outer segments (Solovei et al., 
2009). Signal pooling from multiple rods (at a sacrifice 
of spatial resolution) and coincidence detection should 
further improve scotopic performance as well as signal-
to-noise ratio (Peichl, 2005).

Improved light funneling by oil droplets
Oil droplets are optical devices used by most cones in 
avian, amphibian, and reptilian eyes. Oil droplets are 
highly refractive spherical globules (Ives et al., 1983); 
they may be clear or colored (Kolb and Jones, 1987; 
Hart et al., 2006). Because of their location at the distal 

though not particularly strong, especially when all the 
species studied are considered (Fig. 6 B). The lack of a 
strong correlation for the ensemble of species may in 
part reflect the lower accuracy of data obtained from 
histological material (especially from published figures) 
as opposed to live cell measurements. In addition, and 
perhaps more importantly, it may be an indication of 
other factors, such as the presence of oil droplets or 
light losses caused by ellipsoid leakage, affecting the 
extent of outer segment taper, none of which were con-
sidered in the calculations (for an instance of light loss 
estimation, see Baylor and Fettiplace, 1975). Neverthe-
less, the correlations, albeit approximate ones, between 
the cone ellipsoid concentration factor and outer seg-
ment taper expressed as a multiple of critical taper sup-
port the third function.

D I S C U S S I O N

Emerging view on structure–function relations in 
vertebrate photoreceptors
Our analysis supports the three postulated functions for 
cone taper: (1) compensation for light loss resulting 
from self-screening, (2) increased signal-to-noise ratio 
along the length of the outer segment, and (3) improved 
light capture and material savings by shape continuity 
between inner and outer segment. Cone taper, as deter-
mined in this work, was found quite variable and, for 
the most part, beyond that predicted for critical taper 
(Table 2 and Fig. 3). Consequently, cones appear to 
achieve full compensation for the light loss caused by 
self-screening while improving signal-to-noise ratio 
along their outer segments. Support for the third func-
tion points to a dominant role of the inner segment in 
shaping the outer segment, leading to a process of min-
iaturization and, as a result, metabolic savings in bioma-
terials. The trade-offs in such structural modifications 
are in absolute sensitivity and visual acuity, with spatial 
resolution being inversely related to receptor cross sec-
tion (Snyder and Miller, 1977; Neave, 1984; van der 
Meer, 1992; Haug et al., 2010). Large cone ellipsoids 
combined with excessively tapered outer segments 
could achieve miniaturization, but only in the presence 
of light funneling. Therefore, an ellipsoid light concen-
tration property was suggested by logic and implied by 
the third function.

In every retinal region, a trade-off is expected be-
tween acuity and receptor size. The typical example is 
the retina of some diurnal teleosts where the highest 
visual acuity, found in the mid to upper frontal field, is 
subserved by smaller, densely packed cones in the cen-
tro- and ventro-temporal areas of the retina (Beaudet  
et al., 1997; Novales Flamarique, 2005, 2011; Cheng 
and Novales Flamarique, 2007). Other more extreme 
examples are the specialized foveas of diurnal lizards 
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significantly under bright light conditions, likely as a 
result of the negative effects of glare (Gall and Fernández-
Juricic, 2009). Other bird species like herons and os-
prey routinely hunt in shady habitat or at crepuscular 
periods (unpublished data), reducing their exposure to 
glare and other blinding factors such as the light flickers 
produced by waves near the water surface. In fact, such 
flicker may be used by fish for camouflage, as multiple 
species have developed body markings that resemble the 
light patterns (McFarland and Loew, 1983). Fast-moving 
predators, like some insects and birds, have critical fusion 
frequencies that surpass the predominant flicker oc-
curring in surface waters (in the range of 1–5 Hz), im-
proving visual contrast of underwater targets (McFarland 
and Loew, 1983). Given a mean diffusion coefficient 
of 0.4 µm2 s1 for activated opsins (Wang et al., 2008), be-
tween 3 and 13% of the (bleached) visual pigment 
mole cules in a 1-µm-diameter lamellae would get re-
placed by intact ones between flickers, contributing to 
fast recovery from bleaching.

On light collection mechanisms
The idea that cone inner segments concentrate light  
has been around for a long time. For instance, O’Brien 
(1946) proposed it in his theory explaining the Stiles-
Crawford effect (O’Brien, 1951; Johnson and Tansley, 
1956; Enoch, 1963). Concerning vertebrate photorecep-
tors, turtle cone ellipsoids have been compared with ideal 
light collectors (Baylor and Fettiplace, 1975; Winston, 
1981). The name refers to nonimaging optical devices 
that concentrate light by internal reflection onto the 
smallest possible exit aperture (Winston, 1970). In the 
case of an invertebrate eye, Levi-Setti et al. (1975) sug-
gested that the crystalline cone in an ommatidium of 
Limulus is an ideal light collector. Subsequent work by 
Land (1979), however, showed that the crystalline cones 
can form images and that they pass light through a re-
fractive index variation scheme. Similar refractive index 
gradients have not been uncovered in vertebrate photo-
receptors, and the mechanism of importance remains to 
be sorted out. Internal reflection, refraction, and even 
diffraction may play some role. Cone ellipsoids are not 
truly homogeneous, as they contain abundant mito-
chondria that might function akin to a Fresnel zone 
plate. The one conclusion that is certain at present is 
that an oil droplet must have a major contribution to the 
refractive power of the system. Another open question is 
whether investigations of waveguide modal patterns in 
vertebrate visual cells would facilitate the understanding 
of structure–function relationships between photore-
ceptor compartments (Snyder and Menzel, 1975).

Oblique incidence and the Stiles-Crawford effect
Stiles and Crawford (1933) discovered that the visual sen-
sitivity of the human eye depends on the direction from 
which light enters the pupil (known as the Stiles-Crawford 

end of inner segments anterior to the base of outer seg-
ments, they may serve as light filters as well as focus-
ing devices (Young and Martin, 1984; Vorobyev, 2003). 
A spherical body with high refractive index immersed 
in a lower index medium will behave as a positive lens 
with a short focal length. Thus, an oil droplet (or a con-
centrated group of microdroplets, as in diurnal snakes; 
Wong, 1989) is expected to further concentrate the 
light funneled by the ellipsoid. As such, increased outer 
segment tapering and size reduction become feasible. 
And indeed, observational evidence bears this out: the 
most extreme cases of outer segment volume reduction 
are found in oil droplet–containing cones (Fig. 1). Oil 
droplet focusing might be advantageous not only in al-
lowing further reductions in detector cross section, but 
also in quickening recovery from blinding exposures, 
as when experiencing glare.

For an elaboration of the last point, note the follow-
ing: whereas scotopic sensitivity in primate and teleost 
vision may take tens of minutes to regain dark-adapted 
levels after a bright “bleaching” exposure, photopic sensi-
tivity returns to former levels in a few minutes (Rushton, 
1965; Thomas and Lamb, 1999; Kenkre et al., 2005; and 
unpublished data for teleosts). This indicates that cones 
recover their sensitivity in vivo faster than rods do. 
Experiments in vitro also reveal the same tendency in 
chemical regeneration of visual pigment: in the pres-
ence of copious amounts of exogenous 11-cis retinal, 
whereas rods regenerate slowly, cones recover rapidly 
and repeatedly after several bleaching exposures, and, 
in each case, they regain most of their visual pigment  
in a few seconds (Hárosi, 1984). Consider now the oil 
droplet–equipped cones in a fishing bird’s eye. Given 
the short focal lengths of spherical lenses, an oil droplet 
will focus light in a specific region of an outer segment 
lamella, which would receive intense illumination. Let’s 
assume, for the sake of the argument, that only 10% of a 
lamella is illuminated. When the bird skims over a body 
of water, reflected sunlight could be a blinding experi-
ence. In case of a human observer, extensive bleaching 
in retinal receptors would occur, resulting in temporary 
blindness. However, in cones with oil droplet focusing, 
only a fraction of the visual pigment complement would 
get bleached, and, in the assumed lamella, 90% of the 
visual pigment would remain unexposed. Because lat-
eral and rotational diffusion drives visual pigment mol-
ecules rapidly in the receptor membranes (Wang et al., 
2008), the bleached molecules would quickly be ex-
changed with unbleached ones from the adjacent mem-
brane area. Therefore, most of the cone’s sensitivity could 
recover in milliseconds, at least three orders of magni-
tude faster than a recovery based on normal biochemi-
cal regeneration (Kenkre et al., 2005).

The aforementioned mechanism could improve the 
foraging performance of birds like the black phoebe, a 
sit-and-wait predator whose visual searching increases 
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O’Bryan, 1977). As a consequence, taper that is equal 
to or exceeds the critical value indicates compensation 
for self-screening.

Geometric derivation of the absorption coefficient
Perfect compensation for light absorption caused by 
self-screening imposes two requirements. The first is in-
variance of flux density with respect to z, so that Jo = Jz; in 
other words, the light flux impinging on the base (o) 
divided by the cross-sectional area (Ao) is equal to the 
transmitted flux (z) divided by the corresponding cross 
section (Az) along the entire length of the outer seg-
ment. Accordingly,

 Φ Φo o z z/A /A .=  (1)

The second requirement is that visual pigment ab-
sorption be the only reason for the diminution of flux 
(i.e., light leakage is absent). This means that the incident 
light rays interact with the cell boundary at angles () 
below the critical angle (c) so that total internal reflec-
tion prevents light from escaping (see the section Critical 
angle estimations for data confirming this). Thus,

 Θ Θ≤ c .  (2)

The exponential law of absorption,

 Φ Φz oexp az ,= −( )  (3)

sets forth the variation of flux in an absorbing medium 
along the z direction (z) in terms of the incident flux 
(o) multiplied by an exponential function of variable 
(z) and a characteristic constant of the medium, called 
the absorption coefficient (a). The latter is inversely 
proportional to the attenuation, or characteristic, length, 
at which  falls to exp(1) = 0.368 of o. Upon com-
bining Eqs. 1 and 3, we obtain

 Φ Φz o z o/  A /A  exp az .= = −( )  (4)

The circular cross section of a cone with diameter d is  
A = d2/4, and thus, Eq. 4 may be written as

 d  d exp az/2 ,z o= −( )  (5)

wherefrom the absorption coefficient for testing the 
first function is expressible as

 a  2/z  ln d /d .h1 o z= ( ) ( )  (6)

The surprising outcome gleaned from Eq. 6 is that the 
absorption coefficient, a purely spectroscopic quantity, 
may be determined from measurements of distance in-
volving the base diameter, do, a second diameter, dz, and 
their separation along the z coordinate.

effect of the first kind [SCE1]). O’Brien (1946) was the 
first to advance a theory to explain it, and there have 
been others (e.g., Snyder and Pask, 1973; reviewed by 
Enoch and Bedell, 1981). The third hypothesis is con-
sistent with the SCE1. Accordingly, cone ellipsoids are 
imperfect concentrators; they lose light by leakage. The 
lower refractive indices of cone inner and outer seg-
ments provide reduced critical angles as compared with 
those of rods (Appendix 1). But rods, with more uni-
form and denser distal compartments, have larger criti-
cal angles and thus can tolerate a wider range of off-axis 
rays. The combination of these properties may be suffi-
cient to account, at least qualitatively, for the larger 
photopic and smaller scotopic SCE1 (Enoch and Bedell, 
1981). Further support for the third function comes 
from a finding by Westheimer (1967) that foveal cones 
of the human eye have a reduced (i.e., rodlike) Stiles-
Crawford effect when compared with parafoveal cones. 
Also supportive is the small directional sensitivity dis-
played by the human achromat, an abnormal condi-
tion in which vision depends entirely on rod function 
(Nordby and Sharpe, 1988).

Summary
We have provided evidence to support the notion that 
cone outer segment taper follows from the shape of the 
ellipsoid, a structure that serves to concentrate light 
onto the outer segment. The advantages of taper and 
cone miniaturization include compensation for light 
loss caused by self-screening, metabolic savings in struc-
tural components, higher signal-to-noise ratio, and 
accelerated regeneration of visual pigment. The trade-
offs are in absolute sensitivity and visual acuity. As sug-
gested by the different sizes of photoreceptors and their 
relative densities across phylogenetic groups, species 
have evolved visual cells that presumably optimize these 
trade-offs for life in particular environments. As such, 
there is no model cone or rod but a range of sizes and 
shapes dictated by the ecological constraints guiding the 
evolution of each species.

A P P E N D I X  1

Derivation of equations to test the first biophysical 
function: Cone outer segments taper to compensate for 
light flux diminution by absorption (self-screening) so 
that flux density remains invariant or increases with axial 
distance along the outer segment
The list of symbols and definitions used in the testing 
of this function are shown in Table 3. The following 
sections present geometric and spectrophotometric 
definitions of key variables (e.g., absorption coeffi-
cient and taper) used to evaluate whether a cone taper 
is critical, i.e., whether it compensates exactly for 
light flux diminution by self-screening (Hodgkin and 
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makes use of the transverse specific absorbance, S┴, 
determined in a side-on oriented outer segment. The 
two methods are interdependent by the dichroic ratio, 
R, as shown in the section Anisotropic absorbance by 
visual cells.

Isotropic absorbance by solutions
The light-absorbing property of a homogeneous, iso-
tropic medium is expressed in terms of either the natu-
ral or the decadic logarithm of incident to transmitted 
light fluxes. Thus, absorbance (optical density) may be 
written as

 D  ln /  cz1 o z= =( )Φ Φ α  (7)

 or D  log /  cz,2 o z= =( )Φ Φ ε  (8)

in which c is the concentration, z is the path length, 
and  is the molecular or chromophoric (Napierian) 
and ´ is the molar (decadic) extinction coefficient of 
the light-absorbing substance. Substituting Eq. 3 in 
Eqs. 7 and 8, the absorption coefficient for a random 
ensemble of absorbing molecules can be related to  
 and ´ as

 a c  2 3 3 c.= =α ε. 0  (9)

Note that a, , and ´ are applicable to isotropic pig-
ments and that they are also wavelength dependent. 
Their values at max are often used as single-valued 
parameters (e.g., Warrant and Nilsson, 1998).

Anisotropic absorbance by visual cells
Rod and cone outer segments in side view exhibit  
intrinsic linear dichroism, revealing their anisotropic  
nature. Because the absorption vectors of the visual 
pigment molecules lie nearly parallel with the lamellar 
(x-y) planes, axially traveling light (z direction) is well 
absorbed; this makes photoreceptors more effective 
light catchers in this direction than an isotropic solu-
tion of the same pigment would be at the same concen-
tration and path length.

By a generalization of Eq. 9, the first formula to ex-
press the end-on (axial) absorption coefficient along 
the z direction is

 a   k c  2 3 3 k c,z
′ = =α ε. 0  (10)

in which k is the anisotropy factor accounting for the 
gain by the ordered distribution; k may be as large as 1.5 
(perfect two-dimensional random array) and as small as 
1.0 (three-dimensional random array). By polarized 
absorbance measurements of side-on oriented recep-
tors, the dichroic ratio, defined as R = A┴/A║, can be 
determined, and k can be expressed as a function of R, 
as follows.

TA B L E  3

List of symbols and definitions pertaining to the first biophysical function

Symbol Definition

 Total light flux (photons s1)

o, z Value of  at z = 0 and at distance z from base

A Cross-sectional area of outer segment, assumed to be equal 
with the surface area of a transverse membrane, referred 
to as a lamella (Eckmiller, 1987). One rod disk, also called 
flattened saccule, has the surface of two lamellae

Ao, Az Value of A at the base and at distance z from it

A┴, A║ Outer segment absorbance for transversely and axially 
polarized light

Jo Incident flux density (photons s1 m2); Jo = o/Ao

Jz Transmitted flux density through level z from base;  
Jz = z/Az

R Dichroic ratio: absorbance ratio at two orthogonal 
polarizations; R = A┴/A║

S┴ Specific absorbance at transverse polarization; S┴ = A┴/d 

d Outer segment diameter (mean)

do, dz Outer segment diameter at base and at a distance z  
from the base

c Concentration of visual pigment in appropriate units

 Molecular extinction coefficient (µm2 per molecule; 
Eqs. 7 and 9)

´ Molar extinction coefficient (liter mole1 cm1; 
Eqs. 8 and 9)

max Wavelength of peak extinction

k Anisotropy factor: ratio of anisotropic to isotropic 
absorbance

a Absorption coefficient (usually in cm1; Eq. 3)

a1 Characteristic length (reciprocal of a) expressed in m 
(signifies the distance at which z reduces to 36.8% of o)

ah1 Absorption coefficient required for invariance of light flux 
along the outer segment, as by Eq. 6

ah1
1 Characteristic length, based on invariance of light flux 

along an outer segment (m)

az Absorption coefficient obtained by Eq. 10

az Absorption coefficient obtained by Eq. 16

az
1, az

1 Characteristic lengths (m) obtained from az and az

 Taper, as defined by Eq. 17

 Angle of incidence with respect to cell axis

c Critical angle of , defined as c = 90°  c

c Critical angle with respect to normal of boundary (Eq. 19)

i, o Angles of incidence and refraction to normal of boundary

n1, n2 Refractive indices of two optical media forming a boundary

z Axial distance within outer segments (m), with z = 0 
at the base

Spectrophotometric determinations of  
the absorption coefficient
Two methods have been established for the determina-
tion of the axial absorption coefficient of a vertebrate 
photoreceptor outer segment in situ (Hárosi and 
MacNichol, 1974; Hárosi, 1975, 1982). The first one re-
quires knowledge of the visual pigment’s molar ex-
tinction coefficient, ´, its equivalent (random) molar 
concentration, c, and the dichroic ratio, R, or some 
equivalent measure of anisotropy. The second method 



176 Photoreceptor morphology and function

therefore, lead to dependent estimates of the axial 
absorption coefficient, even though the two are based 
on different determinations.

A definition of taper
As a geometrical characterization of a cone taper,  is 
defined here as the angle between the axis and the incli-
nation of the contour line, which, upon precession, 
describes the conical surface:

 τ = − tan d d /2z .1
o z

– [( ) ]  (17)

The axial distance, z, is the separation between the base 
of a right cone, with diameter do, and a parallel slice, 
with diameter dz. For a cone cell,  describes an average 
inclination of the contour line between two slices 
(corresponding to do and dz), and it cannot account for 
a point-by-point variation that Eq. 5 describes.

Critical angle estimations
The refractive indices for rod and cone inner and outer 
segments have been measured only for a few animal 
species in a handful of studies. The obtained values are 
as follows: the refractive index for rod ellipsoid and 
outer segment, 1.40 and 1.41, respectively; for cone 
ellipsoid and outer segment, 1.39 and 1.385, respec-
tively; and for the extracellular matrix (mucopolysac-
charide), 1.34 (see Borwein, 1981 for primary citations).

At a boundary between two transparent media, one 
denser with refractive index n1 (inside), the other rarer 
with refractive index n2 (outside), light rays will refract 
according to Snell’s law:

 n  n ,1 i 2 osin sinϕ ϕ=  (18)

in which i and o are the corresponding angles of inci-
dence and refraction with respect to the normal. Be-
yond a certain angle of incidence in the denser medium, 
no refraction occurs, and there is total internal reflec-
tion. The critical angle (for which sin o = 1) can be ex-
pressed from Eq. 18 as

 ϕc
1

2 1 sin n /n .= ( )–  (19)

From this, c of Eq. 2 can now be obtained as

 Θc c 9 .= −0° ϕ  (20)

Substitution of the numerical values cited above in Eqs. 19 
and 20 leads to the following critical angles in c: 
15.4° and 14.6° for cone ellipsoid and outer segment and 
16.8° and 18.1° for rod ellipsoid and outer segment, re-
spectively. In these calculations, we assumed that the rele-
vant optical parameters used in critical angle calculations 
are those that have been determined (Borwein, 1981), 
notwithstanding the fact that photoreceptors and their 
surroundings are neither homogeneous nor isotropic. 

If a cylindrical vessel is homogeneously filled with 
N absorbing molecules, each possessing a transition 
moment M, the total extinction (E = NM) may be writ-
ten as E = Ex + Ey + Ez. The fractions expressed in the 
three spatial coordinates are equal for a three-dimen-
sional random array so that Ex/E = Ey/E = Ez/E = 1/3. 
The measurable fraction of extinction in the z direction 
is half of the two orthogonal components:

 0. /5 E  E /E  1 3.x y+( ) =  (11)

In a similar model, a cylindrical photoreceptor may be 
regarded, in its simplest form, as an imperfect two- 
dimensional random array for which Ex = Ey and Ex/Ez = R. 
With these, the z fraction is expressible as

 E /E  E / 2E  E   1/ 1  2R .z z x z= +( ) = +( )  (12)

Viewed from the z direction (i.e., end-on), the measur-
able fraction is

 
0 0

0

. .

.

5 E  E /E  5 E  E /E  

5 1  1/ 1  2R  

x y z+( ) = −( ) =

− +( )  =   R/ 1  2R .+( )
 (13)

The anisotropy factor (k) in the z direction is obtain-
able from the above as the ratio of end-on extinctions 
(the two-dimensional versus the three-dimensional frac-
tions) and is given by (see Hárosi, 1975, 1982)

 k  3R/ 1  2R .= +( )  (14)

Thus, ´, c, and R yield the axial absorption coefficient 
of a photoreceptor with the aid of Eqs. 10 and 14.

The second formula for the calculation of the axial 
absorption coefficient makes use of the microspectro-
photometrically determined transverse specific absor-
bance, S┴ = A┴/d, in which A┴ is the peak absorbance 
(of the  band) for transversely polarized light of the 
outer segment in side-on orientation and d is the mean 
cell diameter, presumed to be equal with transverse 
path length. The following relationship,

 ( )εc   S 1  2R /3R,= +( )⊥
 (15)

has been found useful in relating in vitro spectrophoto-
metric data to those obtained by in situ microspectro-
photometry (Hárosi, 1975). The substitution of Eqs. 14 
and 15 into Eq. 10 leads to the desired equation:

 a  2 3 3 S .z
′′ = ⊥. 0  (16)

Therefore, the axial absorption coefficient is also at-
tainable from the transverse specific absorbance by 
Eq. 16. Anisotropy is implicit in S┴ since Eq. 15 may 
also be written as S┴ = k(´c). The latter relationship 
shows the interdependence of Eqs. 10 and 16, which, 
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of other lamellae. Although there clearly is an observ-
able spreading of excitation, for the sake of simplicity, 
all messengers for signal are assumed to originate in 
one lamella. (5) Noise is generated like signal in lamel-
lae under the conditions set forth in the preceding 
assumption. Whether thermal isomerization of the 
chromophore or subsequent biochemical steps are 
the cause (Rieke and Baylor 1996, 2000; Sampath and 
Baylor, 2002; Holcman and Korenbrot, 2005), it is as-
sumed here that noise is proportional to the number of 
visual pigment molecules contained within each layer.

The objective of this appendix is to relate the genera-
tion of signal and noise to outer segment taper. Given 
an absorbing medium, an incident flux will either be 
absorbed or transmitted, provided that assumption 1 
holds. In general terms,

 Φ Φ Φo a z .= +  (21)

When normalized to the incident flux, Eq. 21 may be 
rearranged as

 Φ Φ Φ Φa o z o/  1 / .= −  (22)

The left-hand side in Eq. 22 is usually referred to as ab-
sorptance, Ab = a/o, whereas the fraction on the right-
hand side is called transmittance, T = z/o. Optical 
density (or absorbance), as defined previously in Eq. 7, is 
the logarithm of T–1. After substitution of Eq. 3 in Eq. 22 
and rearrangement, the rate of photon absorption by a 
monolayer of thickness , with incident flux o, is

 Φ Φa o 1  exp a .= − −[ ( )]δ  (23)

Because visual pigments are hydrophobic chromopro-
teins, they must be membrane bound. For this reason, the 
shortest meaningful axial path length of the visual pig-
ment in a vertebrate photoreceptor is a single layer. Al-
though the exact numerical value of  for the present is 
immaterial, it is assumed to be 15 nm. This is half the repeat 
distance of the 30 nm obtained for rod disks by electron 
microscopic and x-ray crystallographic determinations 
(for references, see Fein and Szuts, 1982). The value of  = 
1.5 × 106 cm permits estimation of the magnitude of the 
exponent in Eq. 23. Based on Eqs. 10 and 14, the absorp-
tion coefficient for a “typical” rhodopsin-containing cone 
is expected to be near 420 cm1 (a1 = 24 µm), which 
would make the value of the exponent 6.3 × 104.

In view of the probable magnitude of  and assump-
tion 2, and also considering pigment anisotropy accord-
ing to Eq. 10 and expressing the concentration as

 c  n/A  J /  n /A ,t n z z= = =δ δ δ  (24)

we can derive the following formula from Eq. 23:

 Φ Φ Φa o o z z1  1  k c  k n /A ,= − − =[ ( )]α δ α  (25)

What constitutes the surrounding medium is especially 
questionable. This, sometimes referred to as interstitial 
matrix, is commonly equated with mucopolysaccharide, 
as done here. However, microvilli of the pigmented epi-
thelial cells and the calycal processes that come in contact 
with at least parts of inner and outer segments may play 
a role in setting the refractive properties of these cells.

Outer segment taper, as defined by Eq. 17 and deter-
mined from our observations and published photo-
micrographs (see Results), indicate angles <14°. These 
values are within the requirement of Eq. 2, and thus, 
they justify the original assumption concerning the fun-
neling of axial rays by total internal reflection.

A P P E N D I X  2

Derivation of equations to test the second biophysical 
function: Cone outer segments taper to improve signal-to-
noise ratio along their lengths
The list of symbols and definitions used to evaluate this 
function are presented in Table 4. We make the fol-
lowing five assumptions. (1) Incident light consists of an 
axial flux of parallel, uniform, and steady illumination 
at the base of outer segments with negligible reflection 
and scattering losses. (2) Visual pigment molecules are 
packed uniformly in transverse membranes of all rods 
and cones with constant surface density: Jn = n/At = no/
Ao = nz/Az. (3) Activation of visual pigment molecules 
requires not only light absorption but also chromo-
phore isomerization, commonly referred to as bleach-
ing. To take this into account, the quantum efficiency of 
bleaching, , must be factored in (Dartnall et al., 1936). 
(4) Signal is constituted by a photocurrent generated 
through the cell envelope at each lamella, independent 

TA B L E  4

Additional list of symbols and definitions pertaining to the second 
biophysical function

Symbol Definition

a, az Absorbed flux in one layer at the base and at depth z

Jn Surface density of pigment (molecules m2); Jn = n/At

 In situ path length in visual cells corresponding to a single 
pigment-laden lipid bilayer (lamella);  = 15 nm is taken as 
its equivalent thickness

At Total lamellar surface area of an outer segment

c Concentration of visual pigment; c = n/At = Jn/

n Total number of visual pigment molecules contained  
in an outer segment

no, nz Number of visual pigment molecules in a lamella  
at the base and at z

pz Probability of absorption of a quantum by a single layer at z

 Quantum efficiency of bleaching; number of photons 
absorbed per number of photoactivations that result in 
bleaching

Sz Signal from light activation (ionic current) at level z

Nz Noise produced in the dark at level z (ionic current)
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introduce definitions of key variables (e.g., concentra-
tion factor) for its evaluation.

Assuming a perfect two-dimensional random array of 
absorbers, the angle of incidence with respect to the op-
tic axis () will reduce the absorption probability of 
unpolarized light by a factor (Winston, 1981):

  ƒ . ( )  5 1  cos .2= +0 Θ  (31)

Evaluated for  = 15°, Eq. 31 yields ƒ = 0.97. Thus, 
oblique incidence for angles up to 15° causes only a 
small drop (3%) in absorption efficiency. In the follow-
ing treatment, we assume, therefore, that oblique inci-
dence does not significantly affect the in situ absorption 
efficiency of the visual pigment molecules embedded in 
the transverse lamellae.

Flux concentration in a tapered outer segment
In the absence of absorption, the flux density of a con-
verging (conical) beam increases in the direction of 
convergence. The conceptually simplest case occurs 
when the incident cone of light matches exactly the 
outer segment taper. This, however, leads to the same 
analysis covered previously, where an axially parallel 
beam was assumed to be incident on the base of a ta-
pered outer segment, in which total internal reflection 
prevailed. In terms of flux densities, Eq. 26 may also be 
written as

 J  J A /A k n /A exp azaz o o z z z= ( ) ( ) −( )α  (32)

to indicate a rate of absorption density increase by the 
factor Ao/Az. For obtaining the signal generation in a 
lamella at z, however, the total absorbed flux is needed, 
not the flux density. Multiplying Eq. 32 by Az, though, 
takes us back to Eq. 26. Therefore, the preceding analy-
sis leading to Eq. 30 is also valid for this case.

Besides the matching case, the convergence of the 
beam incident upon the outer segment may also be 
lesser or greater than that of the structure. The slightly 
convergent case is the simplest one, and it may be han-
dled as the axially parallel beam was above (see previous 
paragraph), necessitating no new analysis. The greater 
beam convergence, however, warrants further consider-
ations. Some aspects of the latter case are discussed in 
the manuscript in connection with the effect of oil 
droplet focusing.

Flux concentration in a cone ellipsoid
The third function presupposes the existence of a 
mechanism whereby cone ellipsoids funnel light from a 
broader, proximal portion toward a narrower, distal end 
and that this property makes a significant impact on the 
structure and function of outer segments. Consider a 
flux i incident at the entrance aperture (largest cross 
section) of an ellipsoid to produce a flux density Ji. If this 
flux is coupled without loss to a smaller exit aperture, 

in which the exponential term in Eq. 23 was represented 
by the first two terms of its series expansion (the second 
and higher order terms being negligibly small). Thus, 
the rate of absorption in a pigment layer is proportional 
to the incident light flux times the products of anisot-
ropy factor (k), pigment type (), and surface density 
of the pigment (Jn = nz/Az). By extending Eq. 25 to de-
scribe a multilayered system with self-screening, the rate 
of absorption by one layer at depth z is

 Φ Φaz z z o k n /A exp az .= ( ) −( )α  (26)

A second method of obtaining the rate of quantum 
absorption by a single layer of visual pigment is based 
on the interpretation of the chromophoric absorption 
coefficient () as the absorption cross section of one 
molecule in a random array (Dartnall, 1972). The prob-
ability of a quantum at max to be caught by a single layer 
of visual pigment, with anisotropy factor k, is express-
ible as a ratio of the sum of all the molecular cross sec-
tions to that of the available total area:

 p  k n /A .z z z= α  (27)

When we scale up from one photon to an incident pho-
ton flux of o, Eq. 27 will reproduce the preceding rela-
tionship described by Eq. 25.

The rate of signal generation in a lamella at z is ex-
pected to be proportional to the rate of photon absorp-
tion in that layer (assumptions 3 and 4). Thus, the 
signal should be formally similar to Eq. 26:

 S  C k n /A exp az ,z S z z o= ( ) −( )αγ Φ  (28)

with CS being a conversion factor between photon ab-
sorption and corresponding photocurrent.

The noise produced at layer z may be given (assump-
tion 5) as

 N  C n ,z N z=  (29)

in which CN is again a conversion factor. In taking the 
ratio between Eqs. 28 and 29, nz will cancel out, and the 
signal-to-noise ratio becomes (with C as a new constant)

 S /N  C k /A exp az .z z o z= ′ −( ) αγ( )Φ  (30)

A P P E N D I X  3

Derivation of equations to test the third biophysical 
function: Cone outer segments taper in accordance with 
the optical properties of their inner segments, facilitating 
light capture and reducing use of biomaterials
The list of symbols and definitions used to evaluate this 
function are presented in Table 5. The following sections 
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VR is an indicator of proportion between the outer limb 
volumes of a cone and an equivalent rod, when both 
have equal inner segment entrance aperture and inci-
dent flux. Discounting light losses, these two cells could 
produce the excitation of an equal number of visual 
pigment molecules to equal illumination. Clearly, the 
cone is the more efficient receptor of the two because it 
uses only a fraction of the rod’s detector apparatus. This 
means reduced amounts in lipid membrane, visual pig-
ment, and all the other components of the enzymatic 
cascade required for generating signals in terms of pho-
tocurrent modulation.

Dr. Ferenc I. Hárosi passed away in November 2008. During his 
career, he was the leading innovator in the field of microspectro-
photometry, starting with the making of the first computerized 
dichroic microspectrophotometer in the 1970s. His insights into 
photoreceptor physiology and visual pigment properties opened 
new fields of investigation that are actively pursued by many a 
prominent scientist today. He was my friend and mentor and an 
inspiration to vision scientists of all ages. Dr. Hárosi is, and will 
always be, profoundly missed; thank you for everything, friend.
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 J /J  A /A  d /d  F .o i i o i o
2

C= = ( ) =  (33)

The significance of FC, named here concentration 
factor, is that it shows the proportion by which the base 
of a photoreceptor can be reduced in area while still 
capable of detecting all of the incident flux i. Al-
though the issue of light losses by leakage remains to 
be considered, this property reveals the feasibility of  
detector miniaturization.

Volume reduction of a cone outer segment
Whereas the outer limb of rods approaches the cylindri-
cal form in nearly all instances, cone outer segments 
usually appear truncated, not pointed. Therefore, the 
frustum of a cone is a more realistic representation of a 
cone outer segment. The volume of the frustum of a 
cone is defined with a diameter of base do, of tip dt, and 
altitude h as

 V  /4 h/3 d  d d  d .c o
2

o t t
2= ( ) + + ( )π  (34)

Compared with the volume of a cylindrical rod, Vr = 
(/4)hdo

2, their ratio is defined as

 V /V  F ,r c G=  (35)

in which FG is named the geometry factor. Experience 
shows that the value of FG is variable and tends to fall 
between 1.5 and 3, the latter being the largest for a right 
cone (dt = 0). With these two factors combined, the vol-
ume reduction ratio is defined as

 V  V /V  F F .R req c G C= =  (36)
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Additional list of symbols and definitions pertaining to the third 
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