
Published online 15 March 2022 NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 1 1
https://doi.org/10.1093/nargab/lqac022

Unbiased integration of single cell transcriptome
replicates
Martin Loza 1, Shunsuke Teraguchi 1,2,3, Daron M. Standley 1,3 and Diego Diez 1,*

1Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan, 2Faculty of Data Science, Shiga
University, Hikone 522-8522, Japan and 3Research Institute for Microbial Diseases, Osaka University,
Suita 565-0871, Japan

Received November 10, 2021; Revised February 09, 2022; Editorial Decision February 22, 2022; Accepted February 23, 2022

ABSTRACT

Single cell transcriptomic approaches are becoming
mainstream, with replicate experiments commonly
performed with the same single cell technology.
Methods that enable integration of these datasets
by removing batch effects while preserving biolog-
ical information are required for unbiased data in-
terpretation. Here, we introduce Canek for this pur-
pose. Canek leverages information from mutual near-
est neighbor to combine local linear corrections with
cell-specific non-linear corrections within a fuzzy
logic framework. Using a combination of real and
synthetic datasets, we show that Canek corrects
batch effects while introducing the least amount of
bias compared with competing methods. Canek is
computationally efficient and can easily integrate
thousands of single-cell transcriptomes from repli-
cated experiments.

INTRODUCTION

Single cell sequencing technologies allow quantification of
RNA expression levels within a given cell with unprece-
dented resolution (1). However, these approaches require
integration over multiple observations to increase signal to
noise. In such efforts, the true biological signal can become
distorted. Even the most skilled operator using the same in-
strument will tend to observe systematic differences in repli-
cates. Although such batch effects are well-known, they do
not result from a single cause and thus are difficult to define
or correct (2).

Many methods to integrate single cell datasets obtained
from the same tissues using different technologies have
been introduced (3). One of the pioneering techniques is
the so-called Mutual Nearest Neighbors (MNN) correction
method (4). In this method, MNN pairs are used to identify
corresponding cells in two different batches. A pair-specific
correction vector is then defined as the difference between
the expression profiles of the cells from each MNN pair. The

correction vectors are then weighted to smooth the correc-
tions between adjacent cells. Subsequently, other tools have
been developed that use MNNs to integrate batches (5–7).
One popular method, implemented in the Seurat R pack-
age, finds MNN pairs in a correlated space using canonical
correlation analysis (CCA) (5). The identified pairs are used
as ‘anchors’ to correct batch effects. Another interesting ap-
proach, Harmony, iteratively removes batch effects by clus-
tering in a low dimensional space (8). LIGER applies a sim-
ilar clustering approach by segmenting cells using a shared
factor neighborhood graph under a low dimensional space
defined with an integrative non-negative matrix factoriza-
tion method (9).

In a comprehensive benchmark of 14 batch correction
methods, including the ones above, the methods were tested
under different scenarios to quantify the effects of data
acquired by different technologies, use of dissimilar cells,
data size, numbers of batches and simulated biases (3). The
three top-scoring methods were Harmony, Liger and Seu-
rat. However, the authors found that each method per-
formed differently on each test, with no obviously supe-
rior method (3). Another benchmark done on atlas-level
datasets found that the best integration approach strongly
depended on the target task (10). This ambiguity makes best
practices for integration of batches from replicated exper-
iments unclear. An important question is how much bias
such methods introduce and which of the methods is best
suited for this task. To address these issues, we introduce
Canek. Canek operates on two levels: it assumes mostly lin-
ear batch effects within a cluster of similar cells but allows
non-linear corrections between different clusters of cells in
a pair of datasets. This allows Canek to efficiently integrate
single cell transcriptomes from replicated experiments while
introducing minimal bias, thus preserving biologically rele-
vant information.

MATERIALS AND METHODS

Canek workflow

Figure 1 shows the workflow for correcting a pair of batches.
We define one of the batches as the query batch and the
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Figure 1. Overview of Canek workflow. (A) Canek starts with a reference batch and query batch, assuming a predominantly linear batch effect. (B) Cell
clusters are defined on the query batch and MNN pairs (arrows) are used to define batch effect observations. (C) The MNN pairs from each cluster are
used to estimate cluster specific correction vectors. These vectors can be used to correct the batch effect or, (D) a non-linear correction can be applied by
calculating cell-specific correction vectors using fuzzy logic.

other one as the reference batch. We correct the cells from
the query batch to match the cells from the reference batch.
When correcting more than two batches we perform an op-
tional hierarchical optimization of batch order (see Hierar-
chical integration section). The main steps of Canek’s work-
flow are:

1. Obtaining batch effect observations using mutual nearest
neighbors (MNN) pairs.

2. Clustering the query batch to define local groups of cells.
3. Calculating a batch effect correction vector for each clus-

ter.
4. Obtaining a fuzzy correction by smoothing the transi-

tions between the local correction vectors.

Canek expects input datasets to be log normalized. The
output dataset retains the same dimensionality (number of
genes) as the input batches.

Batch effect observations

The first step is to identify what we call batch effect obser-
vations. This is the gene expression differences of a set of
cells from the reference and query batches that will enable
us to estimate the batch effect.

To speed up computation and reduce the potentially neg-
ative impact of Euclidean distance metrics in high dimen-
sions, we take several steps. First, we focus on the top (2000
by default) most highly variable features (HVF). Ideally,
we want to choose features common to all batches, but the
number of common HVF diminishes drastically as the num-
ber of datasets increases. Therefore, we used the method im-
plemented in the Seurat package in FindVariableFeatures.
In this method, a list of highly variable features is calcu-
lated first for each batch independently. Then, the features
are ranked based on the number of times they are among
the top HVF in each batch. Finally, the top features in this
ranking are selected. This method will first favor features
found in all batches, then those in all but one, etc. Although
not perfect, we think this approach is reasonable and flexi-
ble enough for most applications. Next, we use the HVF to

calculate the first 50 principal components (PCs) (11) using
the prcom irlba function from the ilrba R package (12). This
lower dimensional space is used to identify MNNs, and in
the clustering and fuzzy correction steps. However, during
the calculation of the correction vector step, we use the orig-
inal input datasets. By focusing on the combination of fea-
tures that contribute the most to the variability in the data
and performing dimensionality reduction, we effectively al-
leviate most of the problems associated with Euclidean dis-
tances in high dimensions.

We calculate mutual nearest neighbors (MNN) pairs (4)
using 50 PCs to obtain batch effect observations. We as-
sume that at least one cell is shared between the batches to
integrate. The MNN pairs are defined by the intersection
of the crossed k nearest neighbors for each cell of two input
batches. For example, for a cell c1 from batch one, we find
the k closest cells from batch two, and for cell c2 from batch
two, we find the k closest cells from batch one. If c1 and c2
are mutually contained on each other’s nearest neighbor set,
they are considered as a MNN pair. In Canek, to identify
MNN pairs we first find the crossed 30 nearest neighbors of
the query and reference batches using the get.knn function
from the FNN R package (13). We then select those cells
that fulfill the MNN criteria to form cell pairs. We treat the
gene expression differences from these pairs as observations
of the batch effect.

Clustering

Following Haghverdi et al. (2018) (4) we assume that the
batch effect is almost orthogonal to the biological space,
and that the variations due to the batch effect are smaller
than the biological variation (see Supplementary material
of (4) for a deeper discussion of these assumptions). Small
variations to this orthogonality assumption can be caused
by noise or by non-linearities. A common way to deal with
non-linear dynamics is to linearize over bounded regions
(14), to solve each of these local problems, and, if necessary,
to join all the pieces back into a non-linear global solution.
Following this idea, we partition the query batch into clus-
ters, which we define as a bounded set of related cells, using
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the Louvain algorithm implemented in the igraph R pack-
age (15). By default, clustering is done using the first 10 PCs.

Correction vector

Following our local orthogonal batch effect assumption, for
each cluster we state the relation:

gi
Qk

= gi
Rk

+ gi
BEk

+ ε

where gi , i = 1, . . . , n, is the log-normalized gene expres-
sion level of the n genes from the input batches. The batch
effect gBEk is represented as an additive value in the query
batch gQk in terms of the same gene in the reference batch
gRk , k = 1, . . . , p, being p the number of MNN pairs from
the membership under analysis. Finally, ε represents a nor-
mally distributed random error term with mean zero and
standard deviation σ , which we assume to be independent
of gi on each cluster. Thus, using

gQk − gRk = gBEk + ε

on each gene i , the term gBEk + ε would be normally dis-
tributed with mean μ = gBE and standard deviation σ.
Accordingly, a good estimation of the batch effect would
be the mean of the gene expression subtraction between

MNN cells pairs (e.g. ĝBE = 1
n

p∑
k = 1

(gQk − gRk)). But there

is a complication with this approach, since erroneous pairs
between cells from distinct but related cell types could be
formed, resulting in the incorrect integration of dissimilar
subpopulations (5). To tackle this problem, reasoning that
abnormal pairs would appear as outliers to the normal dis-
tribution of gBEk + ε, we estimate a correction vector

CV = −

⎡
⎢⎣

ĝ1
BEk

= Med
(
g1

Qk
− g1

Rk

)
...

ĝn
BEk

= Med
(
gn

Qk
− gn

Rk

)

⎤
⎥⎦

where the function Med represents the statistical median,
which is less affected by outliers than the mean. Canek uses
this approach by default to reduce the impact from outliers,
but it is possible to perform an optional filtering step (with
extra computational cost) based on the interquartile range
to detect MNN outliers (see Filtering section).

Fuzzy correction

From the steps described above, each cell from the same
cluster will be assigned the same correction vector. We use
fuzzy logic to smoothly join the cluster-specific corrections
into a cell-specific one, where each cell has a unique cor-
rection vector (see Figure 1). Within this fuzzy logic frame-
work, the clusters previously identified will be considered as
memberships.

Using the PCs of the query batch, we create a minimum
spanning tree (MST) over the memberships’ center points
(MCs) using the mst function from the R package igraph
(15) (Supplementary Figure S1a, b). For each edge of the
MST, we construct a pair of membership functions (MFs).
These MFs are used to calculate a fuzzy score for the cells

(Supplementary Figure S1c, d). For example, let us con-
sider an edge that joins the centers of memberships num-
ber 1 (MC1) and 2 (MC2). For each cell j that belongs to
memberships 1 or 2, we define the vector Vj as a vector for
cell j from MC1 in the PCs embeddings. Similarly, let VMC2

be the vector corresponding to MC2. Then, we obtain the
scalar projection p j for each cell j onto the line connecting
MC1 and MC2 as:

p j = Vj · VMC2

‖VMC2‖
where the operator · denots the dot product, and ‖VMC2‖ is
the length of VMC2 . We then construct the MFs (i.e. MF1
and MF2) as

MF1 ( j ) = 1 − p j − pmin

pmax − pmin

MF2 ( j ) = p j − pmin

pmax − pmin

Here, pmax and pmin are the maximum and the minimum
of the scalar projections of the cells in the memberships
(pmax = max

j
p j and pmin = min

j
p j ). In this way, the mem-

bership function MF1 (MF2) takes the maximum value 1
(the minimum value 0) for pmin and the minimum value 0
(the maximum value 1) for pmax, respectively, and linearly
interpolates for the other values of the projections. (Supple-
mentary Figure S2).

We calculate cell specific correction vectors CVj by using
the Takagi-Sugeno approach (16) to combine the member-
ship’s correction vector CV(l) (see Correction Vector section)
with the membership functions:

CVj =
∑

l MFl ( j ) CV(l)

∑
l MFl ( j )

Each cell from the query batch gets a score between 0 and
1 for each of the memberships, which can be interpreted as a
probability of belonging to that membership. We note that
when a cell belongs to a membership connected to more
than one membership, the cell gets as many scores as the
number of other connected memberships. In this case, we
use the mean of these scores as the cell’s membership score,
while the scores from the other memberships remain un-
changed.

Even though the fuzzy scheme is applied in a low dimen-
sional representation, the final output is in the original di-
mensionality of the input datasets. We recommend using
Canek with the fuzzy step, but to skip it users can set the
boolean parameter fuzzy to FALSE. In this case the final
integration will be done using a membership-specific cor-
rection instead of a cell-specific one.

Hierarchical integration

The choice of reference batch may have a strong effect on
the integration. To address this potential problem, we carry
out hierarchical integration when there are more than two
input batches. The purpose is to determine the optimal or-
der of batches. First, we define the reference as the batch
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with the largest number of cells. Then, the query batch is
chosen to be the batch sharing the highest number of MNN
pairs with the reference, an indication of higher similarity
between batches. To this end, we obtain the first three PCs
using the prcomp irlba function in the irlba R package (12),
find the MNN pairs and select the query batch as the one
with the highest number of pairs. Once the reference and
the selected query batch are integrated, we define the inte-
grated batch as the new reference, and again select the query
batch following the same procedure as before. We continue
this process until all the input batches are integrated. The
hierarchical integration is optional and can be deactivated
by setting the boolean parameter hierarchical to FALSE. In
this case, the order of integration follows the order in the
input list.

Filtering

We assume that erroneous MNN pairs would appear as out-
liers from the normal distribution of gBEk + ε = gn

Qk
− gn

Rk

(see Correction Vector section). We use the median func-
tion to reduce the impact of these outliers on the correction
vector estimation. In addition, the user can select an extra
filtering step based on the interquartile range:

I QR = Q75 − Q25

where Q75 and Q25 are the 75th and 25th percentiles of
the distribution of the p MNN pairs’ Euclidean distance
d(k), k = 1, . . . , p. Therefore, we will select and filter any
outlier MNN pairs as:

MNNk I S outlier I F (d(MNNk) < (Q25 − 1.5I QR) |
d(MNNk) > (Q75 + 1.5I QR)).

Analysis details

Data pre-processing. We performed the same data pre-
processing for all the analyses. We implemented the ‘Stan-
dard Workflow’ from the Seurat R package (17), which in-
volves:

• Normalization: using the function NormalizeData. Gene
expression levels are divided by the total number of tran-
scripts and multiplied by 10,000. The results are then log
normalized.

• Identification of high variable features: using the function
FindVariableFeatures. Genes that show high variations
among cells are selected using the vst method.

Batch-correction algorithms. Table 1 lists the batch correc-
tion methods used.

To objectively compare the batch effect correction meth-
ods, we used the same pre-processed data and the same vari-
able genes on each method. We obtained the variable genes
from Seurat’s integration using the VariableFeatures(assay
= ‘integrated’) function from the Seurat R package (17)
and used the genes to reduce the pre-processed uncorrected
datasets. This is equivalent to running FindVariableFea-
tures in each batch independently and then obtaining (with
Seurat:::SelectIntegrationFeatures) the top features, as indi-
cated in the section ‘Batch effect observations’ (above). We
implemented the integration methods as follows:

Seurat. We used the FindIntegrationAnchors and Inte-
grateData functions with default parameters from the Seu-
rat R package (17).

Canek. We used the RunCanek function from the Canek
R package with default parameters.

MNN. We used the mnnCorrect(cos.norm.out = FALSE)
function with default parameters from the batchelor Bio-
conductor package (4).

Scanorama. We used the scanorama.correct(return den
se=TRUE) with default parameters from the scanorama
Python library (7).

ComBat. We used the ComBat function with default pa-
rameters from the sva R package (18).

Harmony. We used the RunHarmony function with de-
fault parameters from the harmony R package (8).

Liger. We used the RunOptimizeALS(k = 20,
lambda = 5) and the RunQuantileNorm functions with
default parameters from the SeuratWrappers R package
(9).

ComBat-seq. We used the ComBat seq function with de-
fault parameters from the sva R package (19).

scMerge. We used the scMerge function with default pa-
rameters from the scMerge R package (20). For the parame-
ter kmeansK, we used the number of cell types when known,
otherwise the number of clusters.

After correcting batch effects, we scaled each of the inte-
grated and uncorrected datasets using the ScaleData func-
tion from the Seurat R package, except for Harmony and
Liger integrations, as their output is already a low dimen-
sional space.

Dimensionality reduction. We obtained the principal com-
ponents (11) from the corrected and uncorrected datasets
using the RunPCA function from the Seurat R package.
We used the first 10 PCs as the standard in all the tests.
In the case of the Uniform Manifold Approximation and
Projection (UMAP) representation (21), we applied the
RunUMAP from the Seurat R package to the selected PCs.

Simulated data. We used the splatSimulate function from
the splatter Bioconductor package (22) to simulate three
batches with batch effect. Splatter allows us to simulate
cell types whether as groups or paths. Because we wanted
to assess cell type preservation on a mixed population sce-
nario with clearly defined groups along with a differentia-
tion process, we simulated paths and groups separately and
merged them. Then, we manually removed cells such that
the batches shared only one cell type. The final cell type
composition is:

After removing the cell types, the number of cells per
batch is: 1671 cells for Batch 1, 975 cells for Batch 2 and
964 cells for Batch 3, all of them with the same 2000 genes.

To obtain the gold standard without batch effects, we
used splatSimulate(batch.rmEffect = TRUE) and removed
the same cells as the simulations with batch effects.

Running time benchmark. We used the splatSimulate func-
tion from the Splatter Bioconductor package (22) to simu-
late two datasets with a 2,000 genes and a varying number
of cells in the range of 10k to 100k. Each dataset contained
three cell types with appearance probabilities of 0.3, 0.3 and
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Table 1. Batch effect correction methods used.

Method Batch effect corrected output Package version

Seurat Normalized gene expression matrix Seurat version 3.2.2 (5)
MNN Normalized gene expression matrix Bioconductor’s batchelor version 1.6.2 (4)
Scanorama Normalized gene expression matrix Scanorama version 1.6 (7)
ComBat Normalized gene expression matrix sva version 3.38.0 (18)
Harmony Normalized feature reduction vectors Harmony version 1.0 (8)
Liger Normalized feature reduction vectors Liger version 0.5.0 (9)
ComBat-seq Normalized gene expression matrix sva version 3.38.0 (19)
scMerge Normalized gene expression matrix scMerge version 1.6.0 (20)
Canek Normalized gene expression matrix Canek version 0.1.7

0.4 respectively. We applied each of the correction methods
five times on each of the simulated datasets and recorded the
time. We used the geom smooth function from the ggplot2
R package (23) to plot the time trend lines.

Public datasets. Table 3 lists the public datasets we used.

Jurkat/t293 data analysis. We used the following publicly
available datasets:

• 293T cells. https://www.10xgenomics.com/resources/
datasets/293-t-cells-1-standard-1-1-0

• Jurkat cells. https://www.10xgenomics.com/resources/
datasets/jurkat-cells-1-standard-1-1-0

• 50:50 Jurkat:293T cell mixture. https://www.
10xgenomics.com/resources/datasets/50-percent-50-
percent-jurkat-293-t-cell-mixture-1-standard-1-1-0

In the 50:50 Jurkat:293T cell dataset, we used the kmeans
function from the stats R package (31) with k = 2, checked
the expression of the XIST and CD3D3 genes and assigned
the appropriate cell type labels.

Spleen data analysis (pseudo-batch).

• We use the publicly available dataset from Tabula Muris
(25) https://ndownloader.figshare.com/files/13090478.

Pancreatic data analysis.

• We obtained the five public datasets (26–28,32,33) from
the SeuratData R package(5) and used the provided cell
type labels.

PBMC unstimulated and IFN-β-stimulated data analysis.

• We obtained the public datasets (29) from the SeuratData
R package (5) and used the provided cell type labels.

• We identified clusters using the Seurat functions Find-
Neighbors with 10 PCA dimensions and FindClusters
with the Leiden algorithm. Differentially expressed genes
were identified for the two clusters of CD14+ monocytes
using FindMarkers.

Human lung dataset. Single cell RNA-seq data and asso-
ciated metadata from human lung was downloaded from
GSE136831, loaded into R and converted into a Seurat
object (5). This object was converted into a list of ob-
jects with the SplitObject function using Library Identity as
batch variable. The standard processing workflow was used

to normalize and find highly variable features in each of
the libraries (see Data preprocessing above). This data was
passed to the function RunCanek with hierarchical integra-
tion set to FALSE. The integrated dataset was scaled using
ScaleData and Principal Component Analysis dimensions
were calculated with RunPCA. The top 25 principal compo-
nents were used to calculate UMAP using RunUMAP, and
to create the Shared Nearest Neighbors graph with Find-
Neighbors. Clustering was done using FindClusters with
the Louvain algorithm and a resolution of 1. Cells anno-
tated as multiplets in the original publication were removed.

Metrics. We evaluated the results from the batch-
correction methods by scoring the mixing between batches
with the k-nearest-neighbor batch effect test (kBET) (34),
and the cell purity preservation with the average Silhouette
width (Silhouette) (35). We used the kBET and batch sil
functions from the kBET R package (34).

The kBET metric provides a rejection rate within 0 and
1 after testing batch mixing at the local level. The kBET’s
score could be affected by the choice in the number of k-
nearest neighbors (kNN). To objectively assess the differ-
ent integration methods, following the idea of Tran et al.
(3), we obtained the mean cell number of the datasets and
performed the scoring by fixing the kNN size as the 5%,
15% and 30% of this mean. To ease the interpretation of
this metric, we calculated an ‘acceptance rate’, defined in
the kBET publication as 1 minus the rejection rate (34).

We used the Silhouette coefficient to assess cell purity
after integration (35). This metric analyzes the separation
among cells from the same cluster as compared with cells
from other clusters. Let a(i ) be the average Euclidean dis-
tance of cell i to all other cells from the same cluster as i ,
then the Silhouette width s(i ) is defined as:

s (i ) = b (i ) − a (i )
max (a (i ) , b (i ))

where b(i ) is calculated as

b (i ) = min
C

d (i, C)

being d(i, C) the average distance of cell i to all the other
cells assigned to different clusters C. We used the cell type
labels provided for each dataset as inputs to the Silhouette
coefficient, except on the pseudo-batch experiment, where
we obtained the cluster labels using the FindNeighbors and
FindClusters(resolution = 0.5) functions from the Seurat R
package.

https://www.10xgenomics.com/resources/datasets/293-t-cells-1-standard-1-1-0
https://www.10xgenomics.com/resources/datasets/jurkat-cells-1-standard-1-1-0
https://www.10xgenomics.com/resources/datasets/50-percent-50-percent-jurkat-293-t-cell-mixture-1-standard-1-1-0
https://ndownloader.figshare.com/files/13090478
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For both kBET and Silhouette metrics we used the ‘har-
mony’ and ‘iNMF’ embeddings from Harmony and Liger
corrections respectively. For the rest of the methods and the
Uncorrected data we used the first 10 PCs.

A high kBET acceptance rate represents a better mix of
the cells from both batches. A high Silhouette score repre-
sents a better separation between clusters. However, a high
kBET or Silhouette scores do not necessarily indicate a bet-
ter batch correction result. This is because the nature of the
dataset influence how much mixing is necessary to remove
batch effect. For example, a method that integrates all cells
into a single cluster disregarding cell types would yield a
much higher kBET score than a method that mixes batches
while preserving known cell types. For this reason, we con-
sider that kBET and Silhouette scores should be used as ob-
jective metrics only when there is an objective truth to com-
pare with (see pseudobatch and simulation experiments re-
sults). In the other cases, these metrics can be used as quan-
titative metrics to support PCA or UMAP representations.

RESULTS

Overview of Canek

Canek corrects multiple batches by integrating pairs of
batches sequentially. The dataset pairs that are input to
Canek are denoted reference batch and query batch (Fig-
ure 1A). Then the integrated dataset becomes the reference
to integrate the following batch. Batch effect observations
are defined using mutual nearest neighbors (MNN) (4) and
groups of similar cells are identified from the query batch
using clustering (Figure 1B). Canek estimates a correction
vector for each cluster using the median gene expression
differences between cells in each cluster of the query batch
and the corresponding cells in the reference as identified by
MNN (arrows on Figure 1c). The correction vector can thus
be used to remove the batch effect from each cluster in the
query batch. In this linear correction, the same correction
is applied to all the cells in the cluster (Figure 1C). Subse-
quently, Canek performs a non-linear correction by calculat-
ing a cell-specific transformation using fuzzy logic. This is
done by defining a minimum spanning tree among clusters
and then smoothing the transitions between the correction
vectors (Figure 1D). Using a combination of real and sim-
ulated data, we show that, Canek exhibits unbiased correc-
tions of single cell transcriptome data.

Canek successfully corrects batch effects in a Jurkat/293T
mixture dataset

An example where batch effects are clearly visible is the
mixture of cells used to demonstrate the 10× chromium
sequencing technology (24). The dataset consists of three
batches: one containing only 293T HEK (Human Embry-
onic Kidney) cells, another containing only Jurkat cells (im-
mortalized human T lymphocytes), and a third comprised
of a 50:50 mixture of 293T and Jurkat cells (24). Principal
component analysis (PCA) of the Uncorrected dataset is
shown in Figure 2A. Looking at cell-specific markers we can
see there is a cluster of cells expressing XIST (293T cells)
and two clusters of cells expressing CD3D (Jurkat cells).
While the cluster of 293T cells shows mixing of cells from

both batches, the two clusters of Jurkat cells show batch spe-
cific distributions, suggesting an unknown systematic bias.
We used different integration methods and assessed their
ability to correct the systematic differences in the Jurkat
cell data without introducing additional bias. To this end,
we applied batch correction using Canek and 8 state-of-
the-art methods: Combat, ComBat-seq, Harmony, Liger,
MNN, Scanorama, scMerge and Seurat (4,5,7–9,18–20).
Both Canek and MNN corrected the batch effect and en-
abled the identification of the expected cell population clus-
ters (Figure 2b,d). However, other methods, including Com-
bat and Seurat, resulted in incorrect mixing of cell popula-
tions (Figure 2C, E). The results for all methods are shown
in Supplementary Figure S3 for PCA, and Supplementary
Figure S4 for UMAP plots.

Next, we computed kBET and Silhouette scores for the
Uncorrected and corrected datasets (Figure 2F). We chose
the kBET metric to estimate the mixing of batches after cor-
rection, while the Silhouette metric enabled us to assess the
preservation of the original cell clusters. As described in the
Materials and Methods section in more detail, the metrics
in this case cannot be used to assess the performance of
the integration. However, they can be useful to identify how
much mixing or change in cell populations are induced by
the different methods. Furthermore, in this dataset, given its
simplicity, we know how a proper integration should look,
making the metrics plots more useful. Most methods show
similar values of kBET, indicating similar levels of mixing.
Methods that successfully integrated the batches while pre-
serving cell populations had higher values in the Silhouette
score. Canek, Harmony, MNN, and Scanorama all have
similar values, and lead to visually successful integrations
as seen in the PCA and UMAP plots. Combat, ComBat-
seq and Seurat resulted in good integration but different
levels of success in preserving the cell populations. Liger
showed very different behavior (high kBET and low Sil-
houette), suggesting excessive mixing while not preserving
cell populations. This agrees with the PCA/UMAP plots in
Supplementary Figures S3 and S4. This is a good example
where a larger kBET score does not necessarily corresponds
with better batch correction result. These results show that
Canek was able to successfully identify and correct the lo-
cal batch effect while preserving biologically meaningful cell
type differences.

Evaluation of correction bias

As shown above, batch correction methods can introduce
biases in the data that disturb the biological information or
alter the structure of cell populations (10,36). As single-cell
genomics technologies become mainstream, more labora-
tories will perform experiments under different conditions
with biological replicates obtained using a common tech-
nology. In this scenario, integration of datasets with mini-
mal impact on cell phenotype is essential.

We define batch correction bias as undesired correc-
tion that may alter the original biological signal. To quan-
tify how much bias correction methods introduce, we use
a pseudo-batch approach (shown schematically in Fig-
ure 3A). Starting from a single dataset we identified clus-
ters to define cell populations. Then we generated two
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Figure 2. Batch effect correction methods may incorrectly mix dissimilar cell types. Batch effect correction of three batches, two containing pure Jurkat and
HEK293T cells, and one with a 50:50 mix of Jurkat and HEK293T cells. (A) Jurkat and HEK293T cells are characterized by the expression of CD3D and
XIST genes respectively. Before correction Jurkat cells grouped by batch. (B–E) show the results of batch effect correction using Canek, Combat, MNN
and Seurat. Canek and MNN correctly integrated the Jurkat cells. Combat and Seurat incorrectly mixed Jurkat and HEK293T cells. (F) Scatterplot with
kBET and Silhouette metrics calculated for the Uncorrected dataset and after correction with Canek and 8 other methods. Higher kBET (acceptance rate)
and Silhouette scores mean better mixing of batches and a better delineation of cell types respectively.

pseudo-batches by sampling cells without replacement.
Each pseudo-batch preserves the information about the
original cell populations (clusters). Because no modifica-
tions to the original expression values were introduced dur-
ing the sampling process, the batch effect between the two
pseudo-batches is effectively zero. We assume that batch
correction methods should not correct in this scenario since
no batch effect exists, and identification of clusters from
the integrated batches should preserve the clusters obtained
from the original (uncorrected) dataset.

We applied this strategy to the droplet spleen dataset from
Tabula Muris (25). In Figure 3B, the first UMAP plot shows
the original dataset with cell clusters indicated with col-
ors. The next two UMAP plots show the cells from the two
pseudo-batches obtained after sampling. We applied batch
correction to these two pseudo-batches. To quantify the in-
troduced bias, we computed kBET and Silhouette scores for
the Uncorrected and corrected datasets. Since there was no
batch effect, the scores for the Uncorrected dataset corre-
sponded to the optimal values.

Figure 3C shows that Canek integration resulted in even
distribution of the cells from both batches and cluster dis-
tribution that resembled the original dataset. Figure 3D
shows that MNN failed to completely integrate this dataset,
with uneven distribution of cells from the pseudo-batches.

In Supplementary Figure S5 we show UMAP plots with re-
sults for each of the evaluated methods. Although in some
cases it was trivial to identify differences with the Uncor-
rected dataset due to obvious changes in cell distributions,
it was not always easy to evaluate the relative performance.
To do so, we calculated kBET and Silhouette scores and
compared them with those obtained from the Uncorrected
dataset, which represented the optimal values. Figure 3E
shows the scores for kBET and Silhouette metrics obtained
from this experiment. In this plot, the dashed lines indi-
cate the scores for the Uncorrected dataset, with the cross-
ing point representing the optimal value. Canek, Combat,
ComBat-seq and Harmony resulted in scores very close
to the optimal value. To estimate the variability of the re-
sults due to pseudo-batch sampling, we repeated this exper-
iment 10 times. Supplementary Figure S6 shows that Canek
obtained scores closest to the values of the Uncorrected
dataset, demonstrating that it introduced the least amount
of bias when no batch effect was present.

Evaluation of integration in simulated data

To estimate the ability to correct batch effects when the ef-
fect is known exactly, we compared Canek with other meth-
ods using simulated data. We simulated three batches with
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Figure 3. Correction methods may introduce biases. (A) Strategy for pseudo-batch generation: Starting from a single dataset with identified cell populations
(clusters), we sample without replacement to generate two pseudo-batches. Then, we integrate these pseudo-batches and check whether the integration
introduced biases comparing the result with the original dataset. (B) Pseudo-batch generation using the spleen dataset from Tabula Muris. The cells from
each batch are colored purple while all other cells are in grey. (C) Canek integrated the pseudo-batches without introducing biases to the cell distribution.
(D) MNN integration led to uneven distribution of cells from the pseudo-batches in the UMAP plot with e.g. some cells in batch 1 not covering all areas,
causing the grey cells in batch 2 to be seen. (E) Using kBET and Silhouette metrics, the mixing among batches and the cluster preservation were evaluated.
The optimal scores from the Uncorrected data are shown as dashed lines, while the scores from the correction methods are indicated as colored points.
Unbiased methods are those whose metrics are closest to the intersection of the gray lines.

Table 2. Cell type distribution on simulated data

Method Path cells Group cells

Cell-1 Cell-2 Cell-3 Cell-4 Cell-5

Batch-1 � � � - -
Batch-2 - � - � -
Batch-3 � - - - �

shared cell types using the splatter package (22) from which
we can obtain an integrated dataset to use as a gold stan-
dard (GS). Batch 1 was composed of two shared and one
unique cell type, whereas batches 2 and 3 had one shared
and one unique cell type (see Table 2 for complete descrip-
tion). Supplementary Figure S7 shows UMAP plots with
results for each of the evaluated methods. Figure 4A and

Table 3. Public datasets used

Dataset
Number of

cells Technology Reference

Jurkat cells 3258 10x (24)
HEK293T cells 2885
Jurkat:HEK293T
50:50 mixture

3388

Mouse spleen 1697 SMART-seq2 (25)
9552 10x

Human pancreas 8569 inDrop (26)
2285 CEL-seq (27)
1004 CEL-seq2
638 Fluidgm C1

2394 Smart-seq2 (28)
Human PBMCs
(Interferon beta)

13 999 10x (29)

Human lung 312 928 10x (30)
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Figure 4. Batch effect correction on simulated data with a known gold standard. Three batches were simulated to test the integration methods in a scenario
with a known gold standard. (A) The gold standard shows the UMAP plot for the batches without batch effect. Two cell types (Cell-1 and Cell-2) are
shared among different batches. (B) The Uncorrected dataset shows batch-specific differences in cells of the same type. (C) kBET and Silhouette metrics
for Uncorrected, Gold Standard (dashed lines) and the nine evaluated methods. Canek shows scores closest to the Gold Standard. (D) UMAP plot shows
that Canek correctly integrated the shared cell types while maintaining the identity of non-shared ones. (E) Harmony correction failed to integrate cells
from the same type.

B shows UMAP plots from the GS and the Uncorrected
dataset, respectively. Figure 4C shows kBET and Silhou-
ette scores from the GS (cross of dashed lines), Uncorrected
data, and integrated datasets. We expected the best correc-
tion methods to be close to the metrics from GS. These re-
sults show that Canek scores were closest to those of the GS.
This is consistent with the UMAP plot shown in Figure 4D,
where Canek corrected the differences among shared cell
types. Other methods including MNN, Scanorama, Com-
bat and Combat-seq returned similar results to Canek. In-
terestingly, Harmony returned scores very close to the Un-
corrected data, suggesting that it performed almost no cor-
rection, consistent with the UMAP plot in Figure 4E.

Application to real datasets

Next, we compared Canek with other methods on three real
datasets: Tabula Muris spleen, human pancreatic islets and
interferon beta stimulation (25–28,32,33).

First, we tested a scenario in which the same sample was
used with two different technologies simultaneously. For
this, we integrated the droplet and FACS batches from the
Tabula Muris spleen datasets (25). Supplementary Figure
S8 shows UMAP plots for the Uncorrected data, and the
correction done by Canek and the other 8 correction meth-

ods. Except for scMerge, which merged some cell popula-
tions, all the methods successfully integrated the datasets,
with cells from the same type found in the same clusters.
This demonstrates that Canek can integrate datasets even
from different technologies.

Next, we tested the scenario in which similar tissues were
used with different technologies. For this we integrated eight
human pancreatic islet datasets from five different tech-
nologies. Figure 5A shows the Uncorrected data, where the
batch effect caused the cells to cluster by batch. The re-
sults for all methods are shown in Supplementary Figure
S9. Figure 5 highlights the results from Canek and Seu-
rat. Seurat (Figure 5C) and MNN (Supplementary Fig-
ure S9g) mixed the batches almost perfectly. Canek (Fig-
ure 5B) was able to integrate the batches, but some differ-
ences remained. This dataset consists of samples from dif-
ferent technologies with varied numbers of cells sampled,
so it possible that this falls outside Canek’s assumptions of
small non-linear batch effects. Interestingly, the differences
remaining in Canek integration are correlated with disease
state (Supplementary Figure S10), with some of the samples
containing type 2 diabetes whereas other containing only
healthy individuals. Thus, it is also possible to speculate that
some of the observed differences represent true biological
differences.
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Figure 5. Integration datasets from different technologies. Eight pancreatic datasets obtained using different technologies were corrected. (A) UMAP of
Uncorrected dataset. Batch effects caused the cells to cluster by batch instead of by cell type. (B, C) UMAP of dataset after Canek and Seurat integrations.
(D) kBET and Silhouette metrics for Uncorrected, and the nine methods compared.

Finally, we evaluated the scenario wherein two samples
from different conditions were assayed using the same tech-
nology. For this we integrated a dataset obtained from
PBMCs with and without interferon beta stimulation (29).
In this scenario, differences between the same cell types
due to the stimulation were expected. Supplementary Fig-
ure S11a shows that in the Uncorrected data, cells separate
by batch. Supplementary Figures S11b-j shows the correc-
tion done by Canek and 8 other methods. After integrating
with Canek, B cells and T cells were almost completely inte-
grated but some differences remained. Differences in mono-
cytes and dendritic cells in the stimulated vs. non-stimulated
cells were more prominent. This is in agreement with ex-
periments showing that interferon beta induces stronger
changes in gene expression in monocytes compared to T
cells (37). To further validate this observation, we identi-
fied clusters in the integrated Canek dataset and identified
two clusters of CD14+ monocytes, cluster 1 coming primar-
ily from control and cluster 3 made primarily from inter-
feron beta stimulated cells (Supplementary Figure S12). We
calculated differential expressed genes between these two
clusters and found many differentially expressed genes, as
shown in the volcano plot in Supplementary Figure S12D.
Among the genes, the expression of EDN1 was up-regulated
in the cluster of IFNB stimulated monocytes, whereas IL1B
and RXRA were down-regulated (Supplementary Figure
S12E, F). This is in agreement with the results reported in
the original publication where these genes where experimen-
tally validated (29).

Integration of a human lung dataset

To evaluate how Canek performs on the task of integrating
samples from replicated experiments, we used a human lung
single cell dataset with 78 samples including IPF (n = 32;
idiopathic pulmonary fibrosis), COPD (n = 18; chronic ob-
structive pulmonary disease), and control donors (n = 28)
(30). This dataset consisted of 312 928 cells distributed over
107 sequencing libraries that we treated as different batches.

Figure 6A and B shows that Canek integration resulted in
good mixing among libraries while preserving the cell pop-
ulations identified in the original publication. These cell
types closely correlated with cell clusters based on Canek
integration (Figure 6C). Most cells were distributed evenly
among all cell types and disease conditions (Figure 6D).
Enrichment and depletion in cell populations associated
with disease were preserved (Supplementary Figure S13).
A group of macrophages enriched in IPF in clusters 12 (in-
terstitial macrophages expressing matrix metallopeptidase
9; MMP9, Figure 6E–G) and 16 (alveolar macrophages)
showed cells in a transitional state almost exclusively from
IPF donors (30). This demonstrates that Canek can inte-
grate a high number of replicated datasets while preserving
biologically meaningful information.

Computational performance

To compare the computational performance and scalability
of Canek and eight other batch correction methods, we sim-
ulated datasets using splatter and recorded the integration
time. We fixed the number of genes to 2000 and varied the
number of cells from 10k to 100k. Figure 7 shows run times
as a function of the number of cells. The fastest method was
Combat, followed by Scanorama, Harmony and Canek, all
of which showed near linear run time dependence and abil-
ity to integrate 100k cells in under 20 min. On the other side
of the spectrum MNN, Seurat, and ComBat-seq showed a
strong dependence of run time on data size. These results
demonstrated that Canek is a scalable method that can in-
tegrate hundreds of thousands of single-cell transcriptomes
efficiently.

DISCUSSION

Existing batch effect correction methods focus on integrat-
ing single-cell transcriptomics datasets obtained from dif-
ferent technologies and/or species, minimizing the differ-
ences among batches to obtain correlated cell types. While
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Figure 6. Integration of the lung dataset from Adams (2020). (A) UMAP plot showing the mixing between batches. (B) Cell populations described in the
original publication are preserved. (C) Clustering based on Canek integration matches with cell populations. (D) Distribution of cells by disease condition
shows even distribution except for a group of IPF specific cells in clusters 12 and 16. (E) MMP9 is highly expressed in cluster 12 (interstitial macrophages),
(F) in IPF donors. (G) Cluster 12 and 16 are enriched in cells from IPF.

these frameworks offer a powerful solution to integrate
datasets with strong differences between batches, they may
also introduce significant biases due to over-correction.
This represents a potential problem when these methods are
applied to datasets where we wish to preserve biological dif-
ferences (e.g. replicated experiments obtained with the same
technology). Over-correction could negatively affect down-
stream tasks such as clustering or differential gene expres-
sion analysis. Canek provides an unbiased batch effect cor-
rection method for single-cell transcriptomics data that is
suited for such integration of experimental replicates. We fo-
cused on preserving the inherent biological structure while
being flexible enough to deal with small non-linear differ-
ences that might appear on heterogeneous datasets. We ap-
plied Canek to simulated and real datasets and showed its
ability to correct batch effects without masking real biolog-
ical signals. We also tested Canek on a pseudo-batch sce-
nario with no batch effect and observed that it preserved
the biological structure and introduced the least undesirable
bias among tested methods.

We further showed that Canek successfully integrated
datasets from different technologies (e.g. the Tabula Muris
spleen dataset). Depending on the nature of the dataset,
Canek did not necessarily lead to the best batch mixing
(e.g. in the human pancreatic islet integration). However,
latent variables other than batch effects (i.e. disease condi-
tion) may influence the integration of these datasets. It is an
open question how to integrate complex datasets with co-
founding variables.

The main goal of Canek is to enable efficient and un-
biased integration of replicated experiments. Thus, we ap-
plied Canek to a large dataset from human lung disease.
We identified enrichment of cell populations reported in the
original publication, including cells in an apparently tran-
sitional state between interstitial to alveolar macrophages.
This showed that Canek was able to integrate large numbers
of replicated experiments while preserving biological infor-
mation.

Single cell genomics datasets performed on other modal-
ities like protein (CITE-seq) and chromatin accessibil-
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Figure 7. Runtime benchmark of Canek and other eight batch correction methods. Each method was run 5 times on different datasets with the number
of genes fixed to 2k and the number of cells varying in a range of 5k to 100k. The color code differentiates each of the methods, the dots represent the
runtime, and the lines represent the time increasing trends. Canek displayed a linear time increase over these conditions.

ity (scATAC-seq) are becoming more popular. Further-
more, integration of datasets with multi-modal (e.g.
RNA + ATAC) measurements are beginning to appear. We
are working to extend Canek’s approach to the integration
of multi-modal datasets.

As single-cell RNA-seq from replicated experiments us-
ing the same technology become more common, batch ef-
fect correction methods that conserve local differences will
become more important. Canek provides a solution to this
problem with an unbiased and computationally efficient
batch effect correction.
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