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Abstract

Diffusion and migration play pivotal roles in microbial communities - shaping, for
example, colonization in new environments and the maintenance of spatial structures of
biodiversity. While previous research has extensively studied free diffusion, such as range
expansion, there remains a gap in understanding the effects of biologically or physically
deleterious confined environments. In this study, we examine the interplay between
migration and spatial drug heterogeneity within an experimental meta-community of E.
faecalis, a Gram-positive opportunistic pathogen. When the community is confined to
spatially-extended habitats (’islands’) bordered by deleterious conditions, we find that
the population level response depends on the trade-off between the growth rate within
the island and the rate of transfer into regions with harsher conditions, a phenomenon
we explore by modulating antibiotic concentration within the island. In heterogeneous
islands, composed of spatially patterned patches that support varying levels of growth,
the population’s fate depends critically on the specific spatial arrangement of these
patches - the same spatially averaged growth rate leads to diverging responses. These
results are qualitatively captured by simple simulations, and analytical expressions
which we derive using first-order perturbation approximations to reaction-diffusion
models with explicit spatial dependence. Among all possible spatial arrangements, our
theoretical and experimental findings reveal that the arrangement with the highest
growth rates at the center most effectively mitigates population decline, while the center
arrangement with the lowest growth rates is least effective. They thus serve as optimal
arrangements bounding the mixed phase, where diverging outcomes emerge by tuning
spatial arrangements. Extending this approach to more complex experimental
communities with varied spatial structures, such as a ring-structured community,
further validates the impact of spatial drug arrangement. Our findings suggest new
approaches to interpreting diverging clinical outcomes when applying identical drug
doses and inform the possible optimization of spatially-explicit dosing strategies.
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Author summary

In this study, we develop an automated platform to experimentally investigate
short-term population growth and migration dynamics under spatial drug heterogeneity.
Our findings reveal that the collective spatial response of the population can vary
significantly, even with the same migration rate and averaged drug dose, due to different
spatial drug arrangements. By constructing a simple reaction-diffusion model, we
observed that simulated short-term spatial growth rate closely matches the
experimental data. Furthermore, this short-term spatial growth rate aligns well with the
long-term spatial growth rate, defined by the largest eigenvalue, as the spatial system
quickly enters the equilibrium growth state. Using concepts from perturbation theory,
we derived an analytical relationship between the boundary diffusion effect,
homogeneous growth effect, and heterogeneous effect. Our results highlight that in
spatially-extended habitats, the spatial growth response is an emergent property. The
bacterial population remains near equilibrium, suggesting that the spatial growth rate
measured at an ecological scale may be used to predict resistance evolutionary behavior.

Introduction 1

The bacteria infection and resistance has become a worldwide health problem [1–4]. 2

Starting from the 1940s, the use of antibiotics has been one of the most powerful tools in 3

taming microbial pathogens [5]. In laboratory studies, people usually study the response 4

of well-mixed population to the drug [6–16,16–22]. However, the living environments in 5

the human body are usually spatial-relevant and heterogeneous; evidence has been 6

found in the gut and tumor [23,24]. Some previous studies show that, spatial gradients 7

in drug concentration dramatically accelerated resistance evolution [12,25–41]; under 8

drug gradients the slow bacteria can be more resistant and thus give us a trade off [42]. 9

On a larger spatial scale, like organ level, spatial drug heterogeneity is also found 10

between lung and gut, which elevates the bacteria survival and resistance [43]. Some 11

theories have also been developed to find out the non-monotonic evolution behavior 12

under spatial drug heterogeneities [44] and genotypic fitness landscapes [45]. Diverging 13

clinical outcomes—whether the pathogen population is cleared or not—arise due to the 14

complex dynamics of bacterial populations [46]. How generally spatial drug 15

heterogeneity shapes the bacterial growth dynamics and spatial collective response of 16

population, thus altering treatment outcomes, is still not fully understood. 17

Most experimental studies have focused on monotonic drug 18

gradients [25,42,47,48,48,49], 2-well drug sanctuary environments [50–52], and the 19

range expansion of surface-attached biofilms [53–55]. However, the drug environment 20

within the human body, like in the gut, is typically more non-monotonically 21

heterogeneous and fluctuating [56]. In addition to forming condensed biofilms, bacteria 22

often exist in a planktonic form, living in a liquid environment. While many studies 23

focus on range expansion both theoretically and experimentally [57,58], they frequently 24

assume a free-diffusion model that requires infinite free space—an assumption that is 25

unrealistic in natural or human environments where physical or biological confinement 26

is common. In human bodies, bacteria or tumor cells are often confined by tissues, 27

vessels, or immune and acidic environments, like scattered islands surrounded by the sea 28

in island geography. These confined boundaries can be deleterious - migrating out of the 29

confined regions can be deadly. For example, cancer patients who experience radiation 30

therapy have radiation regions where bacteria will die. These deleterious regions are 31

also common when the regions are surgically removed, or nutrition severed. Greater 32

attention needs to be given to confined environments and bacteria migration between 33

these deleterious boundaries. Furthermore, there is a lack of investigation into ecological 34
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time scale dynamics under spatial drug heterogeneity. Clinically, treatment-induced 35

resistance [59] is often a result of drug heterogeneity and inefficient bacterial clearance, 36

occurring at an ecological level before the onset of evolution. Therefore, despite its 37

simplicity, studying short-term bacterial responsive dynamics under controllable 38

non-monotonic spatial heterogeneity and a deleterious confined environment, may be 39

key to better understanding diverging clinical outcomes and pathogen recurrence in 40

hospitals and patients. 41

In this study, we utilize the wild-type Gram-positive opportunistic pathogen 42

Enterococcus faecalis as our experimental bacterium. E. faecalis thrives in the human 43

gastrointestinal tract and is responsible for numerous clinical infections, including 5 to 44

15 percent of cases of infective endocarditis and urinary tract infections [60–64]. To 45

investigate how spatial drug heterogeneity affects bacterial population dynamics under a 46

deleterious confined environment, we employ a specialized, island-like experimental 47

system with 2 absorbing boundaries, facilitated by a pipetting robot. First, we 48

demonstrate that bacterial migration in a confined environment yields distinct 49

population survival outcomes when the drug is homogeneously distributed, indicating 50

that system size and drug concentration are critical factors, presenting a trade-off 51

relationship. In environments with arbitrary non-monotonic drug gradients, our findings 52

reveal that spatial drug heterogeneity significantly alters population dynamics, with the 53

effects of different spatial arrangements being as substantial as, or even greater than, 54

the drug effect itself. Furthermore, we observe that increasing the drug amount and 55

migration rate leads to markedly different outcomes for different selected spatial 56

arrangements. We hypothesize that spatial drug arrangements, combined with 57

boundary effects, create varying levels of spatially favorable habitats. These results are 58

qualitatively captured by simple simulations and analytical expressions derived using 59

first-order perturbation approximations to reaction-diffusion models with explicit 60

spatial dependence. Among all possible spatial arrangements, our theoretical and 61

experimental findings reveal that central drug-free habitats most effectively mitigate 62

population decline, while central drug habitats are the least effective. This aligns with 63

the previous theoretical finding on optimal fragmentation of invasion in heterogeneous 64

habitats [65]. Extending this approach to more complex experimental communities with 65

varied spatial structures, such as a ring-structured community, further validates the 66

impact of spatial drug arrangement. Our findings build a direct link between theoretical 67

predictions and experimental validations of bacterial population response under spatial 68

drug heterogeneity. It may provide new approaches to interpreting diverging clinical 69

outcomes when applying identical drug doses and inform possible optimizations of 70

personalized dosing strategies. 71

Experimental set-up for bacterial growth and diffusion 72

dynamics under drugs 73

To study the effect of short-term diffusion, we let the E. faecalis bacteria population 74

migrate to its nearest neighbor along the 1D space, by each row of the 96 well 75

plates(Figure 1B). The system size is determined by the number of wells selected from a 76

total of 12 wells per row. For each well plate, we can then have 8 replicates for the data 77

analysis. Migration is achieved by exchanging small volumes of growth media between 78

adjacent wells. The experiments were started with a uniform initial population density 79

profile, and after each diffusion cycle the cell density was measured by the plate reader. 80

To ensure spatial drug homogeneity, we administer a uniform drug concentration D to 81

each well. In contrast, spatial drug heterogeneity is achieved by varying drug 82

concentrations across wells. For simplicity and without loss of generality, we utilize a 83
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combination of drug-free wells and high-drug wells beyond minimal inhibitory 84

concentration(MIC) that completely inhibit bacterial growth. Different spatial drug 85

arrangements are then created by permuting these drug-free and high-drug wells. 86

Linezolid(LZD) are used in this study. Drugs are preloaded in the form of media. 87

To maintain a deleterious environment, for the bacteriostatic drug Linezolid that 88

only inhibits bacteria growth, at the end of each diffusion cycle, b fraction of the total 89

volume V will be taken out from the 2 boundary wells, and then they will be re-supplied 90

with drug-free media or high-drug media, depending on the spatial arrangement of the 91

drug, to compensate for the media and drug loss. This also helps us keep the drug 92

distribution roughly unchanged. Therefore, we can ignore the drug diffusion dynamics. 93

To ensure that the bacterial population remains within the exponential growth 94

phase, we control our experiment to be of limited duration, focusing on an ecological 95

time scale. Specifically, the total experiment time is set to span 8 cycles (each cycle 96

being either 2 or 4 hours). This approach helps to maintain the integrity of the spatial 97

drug response and minimizes the complexity introduced by extended experiments. In 98

particular: 1. The short duration prevents the emergence of mutations and resistance 99

evolution in the bacterial population. 2. The population is away from carrying capacity. 100

3. Drug diffusion effects are kept minimal, preserving the initial drug concentration 101

distribution. This experimental setup allows us to isolate and observe the targeted 102

spatial and collective drug responses without the interference of longer-term 103

evolutionary and diffusion dynamics. 104

Mathematical model formulation 105

At the continuous limit, this experimental system is actually a simplified Fisher-KPP 106

equation with 2 absorbing boundaries 107

∂u

∂t
= β

∂2u

∂x2
+ g(D(x))u, (1)

with u(0, t) = 0, u(L, t) = 0 to describe the deleterious environment outside of our 108

spatially-extended habitats. u(x, t) is the cell density at position(well) x at time t. 109

g(D(x)) the growth rate at position x corresponding to the drug concentration D. β is 110

the diffusion or migration rate and L is the length of the wells used in a well plate. In a 111

discrete version of this reaction-diffusion equation, L represents the number of total 112

wells used, as the spatially-extended habitats. By comparing it with the discrete 113

dynamical equation of the experimental protocol, we can connect g, β with our 114

experimental parameters, g = g(u0), β = b∆x2

∆t (1 + ⟨g⟩∆t), where 115

∆x = 1 well,∆t = 0.25/0.5h (Supplementary Information). 116

The system will experience a transient, fluctuating population change over space at 117

initial times. After the system is equilibrated and entering a stable growth or decline 118

phase, the survival criterion is given by the largest eigenvalue of the operator 119

(Supplementary Information) 120

λ0 = ∥Ω∥ =

∥∥∥∥g(D(x)) + β
∂2

∂x2

∥∥∥∥ (2)

For our model, the largest eigenvalue can be separated into 2 terms which describe 121

the growth (geff ) and boundary diffusion effect (π
2β
L2 ). The bacteria gives a declining 122

response when 123

λ0 = geff − π2β

L2
< 0. (3)

For the homogeneous case, geff = ⟨g⟩ = g(D) is exactly the growth rate 124

corresponding to the drug concentration; for the heterogeneous case, geff can be 125
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Fig 1. Schematic of growth-migration dynamics in a deleteriously confined
environment, and experimental design. A. The illustration above shows a
bacterial population growing and migrating freely in an unbounded environment with
spatial drug heterogeneity. The following illustration represents the population
proliferating and migrating in a deleteriously confined environment. B, C The E.
Faecalis was grown overnight and then diluted 1:1 into different 96-well plates with a
spatially uniform density profile, but different drug concentrations D and spatial
arrangements, at initial time T = 0. After every growth cycle of T h, bacteria migration
was done by transferring the same amounts V b of bacteria liquid to both neighboring
wells along the columns; V is the total volume per well and usually is 200µL; b is the
transferred fraction. Bacteria at 2 boundary wells were taken out at the same volume
V b. Cycles would be repeated after the growing density curve had equilibrated. Usually
it’ ∼ 8 times. Cell density profiles were measured by plate reader exactly before the
migration/volume transfer.

approximated by the 1st-order perturbation theory, as geff = ⟨g⟩+ ⟨u0|δg|u0⟩ 126

(Supplementary Information), where ⟨g⟩ = 1
L

∫ L

0
g(D(x))dx describes the spatial 127

homogeneous effect, and ⟨u0|δg|u0⟩ = 2
L

∫ L

0
g(D(x)) sin2

(
πx
L

)
dx describes the spatial 128

heterogeneous effect. u0 =
√

2
L sin

(
πx
L

)
is the eigenvector corresponding to the largest 129

unperturbed eigenvalue, and δg = g(D(x))− ⟨g⟩ is the growth rate deviation. Although 130

here we only consider the single-drug response of the homogeneous bacterial population, 131

in our recent work, the derivation results above can be generalized to multi-strain 132

systems under multi-drug selections with tunable spatial gradients, determining the 133

most dominant resistant strain [66]. 134
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Results 135

Bacteria shifts from growth to decline by increasing drug 136

concentrations and boundary diffusion 137

A natural question to ask first, is how diffusing outside the deleterious confined 138

environment, the boundary diffusion effect β
L2 , shapes the population dynamics. For 139

simplicity, we start with homogeneous growth rates with all same drug concentration D 140

over the space, modulated by a bacteriostatic drug Linezolid. It inhibits bacterial 141

growth but does not cause a decline in the population itself. By varying drug 142

concentrations D over patches, we find that, under low drug concentrations, bacteria 143

can adapt and thrive despite the deleterious environment, leading to an increase in cell 144

density. This is reasonable because the uniform growth rate, which drives the increase 145

in population density, outcompetes the boundary diffusion effect β
L2 , which diminishes 146

the population. As drug concentrations D go higher, the bacterial growth diminishes 147

significantly, impairing the population’s ability to reproduce sufficiently to counteract 148

cell loss by the boundary diffusion effect. This imbalance causes the population to 149

decline, ultimately resulting in extinction as cell density trends towards zero over a long 150

time limit. Figure 2A depicts bacterial growth dynamics in drug-free conditions (D=0 151

µg/ml) and under high drug concentrations (D=8 µg/ml). As we can see, by increasing 152

the drug concentration(Figure 2B, left panel), the spatial collective response of 153

population transit from growth to decline. The criterion for bacterial decline, with 154

experimental data, is determined by comparing the final optical density(OD) to the 155

initial ODs, as detailed in the Supplementary Information (Supplementary Information). 156

Next we fix the homogeneous growth rate(with no drug) to investigate the boundary 157

diffusion effect β
L2 , by tuning the system size L. Again, the population shift from growth 158

to decline when the system size L is shrinked from 12 wells to 3 wells (Figure 2B, right 159

panel), as predicted by the largest eigenvalue criterion. Thus population declines or not 160

hinges on the trade-off between homogeneous growth rate g(D), and boundary diffusion 161

effect β
L2 . Our experimental data matches well with the growth and decline phases in 162

the phase diagram (Figure 2C), where the transition boundary is determined by 163

λ0 = ⟨g⟩ − π2β
L2 = 0. Since growth rate is homogeneous here we use ⟨g⟩ to replace g(D), 164

for comparison with spatially heterogeneous growth rates. This quantitative trade-off 165

relationship matches with the classic critical patch size result Lc = π
√

β
g , in the study 166

of reaction-diffusion models, particularly in ecological and biological contexts [67]. It 167

may be helpful to explain the colonization of gut microbime in the human body [23]. 168

Different spatial drug arrangements modulate growth dynamics 169

After understanding how a deleteriously bounded environment incurs population decline, 170

we next investigate the effect of spatial drug heterogeneities. In homogeneous drug 171

environments, bacterial communities either grow or decline, determined by boundary 172

diffusion and a fixed spatially averaged growth rate. However, in a spatially 173

heterogeneous drug environment, different spatial drug arrangements may result in 174

varying temporal growth dynamics, leading to different population outcomes, even with 175

the same spatially averaged growth rate ⟨g⟩. The next question to explore is how spatial 176

drug heterogeneity alters growth dynamics experimentally, and whether any new 177

emerging patterns can be predicted with our simplified reaction-diffusion model 178

(Figure 2D). 179

For a specific total drug amount, or a fixed spatially averaged drug concentration or 180

growth rate ⟨g⟩, numerous spatial drug arrangements can be designed. For simplicity, 181

we use D = 0 µg/ml and D = 8 µg/ml with different spatial arrangements to create a 182

November 22, 2024 6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2024. ; https://doi.org/10.1101/2024.11.21.624783doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.21.624783
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 2 4 6 8 10

position

0.08

0.10

0.12

0.14

0.16

0.18

O
D

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28
O

D
A

B

C D

Heterogeneity

No Drug

D=8ug/ml

0.00 0.05 0.10 0.15 0.20 0.25

growth rate <g> / h − 1

0.00

0.02

0.04

0.06

0.08

0.10

b
o

u
n

d
a

ry
 d

if
fu

s
io

n
  β

/L
2
 /
w

e
ll

−
1
h

−
1

Population Growth

Population Decline

?

0 2 4 6 8 10
Position(well)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

O
D

0 2 4 6 8 10
Position(well)

0.10

0.15

0.20

0.25

D=0ug/ml

D=1ug/ml

D=2ug/ml

D=4ug/ml

D=6ug/ml
D=8ug/ml

L=12 wells

L=10 wells

L=8 wellsL=6 wells

L=4 wells

L=3 wells

T

T

Fig 2. Bacteria population response(grows up/decline) in different drug
concentration and migration regimes of Bacteriostatic antibiotic - Linezolid,
for 8 cycles. A. Position-specific bacteria growing process under spatial drug
homogeneity in drug-free(D=0ug/ml) regimes and high-drug(D=8ug/ml) regimes. The
dashed line in each figure is the initial spatial cell density at T = 0. Dark blue dots and
curves are early cycles while light blues are late cycles. For drug-free regimes, as time
increases, the curve is gradually shifting up while the spatial density curve is decreasing
down for high-drug regimes. Each single curve with error bars including initial cell
densities are averaged over replicates of 8 rows in the 96-well plate. B. For 6 different
drug concentrations (left panel, circles) and 6 system sizes (right panel, triangles), the
blue scattered dots represent conditions where the bacterial population is increasing,
while the orange dots indicate where the population is decreasing. The shaded regions
denote error margins. C. A phase diagram showing the relationship between the
boundary diffusion effect, β

L2 , and the spatially averaged growth rate, ⟨g⟩.
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binary-heterogeneous environment, consisting of drug and non-drug wells. The spatially 183

averaged growth rate can be represented by the number of drug wells, nD, while keeping 184

the number of drug wells fixed and permuting their order for comparison. 185

To start, we designed 6 different drug well arrangements (See Figure 3A, I-VI): 186

center drug-free wells (I), left-side drug-free wells (II), left edge drug-free wells (III), 187

center drug wells (IV), left-side drug wells (V), and left edge drug wells (VI). Center 188

drug-free wells are referred to as CH, as they have the high growth rates at the center; 189

similarly, CL is used as a short form for center low growth rates, or center drug wells. 190

Configurations I-III share the same number of drug wells nD = 8, while configurations 191

IV-VI share the same number of drug wells nD = 4. For each group, we aim to 192

understand how growth dynamics are influenced by different spatial arrangements and 193

to compare the differences between groups. Figure 3B presents the temporal dynamics 194

of these 6 examples, illustrating reshaped density curves as expected due to the spatial 195

drug arrangements. Interestingly, a pattern emerges within these two groups: as 196

drug-free wells are positioned closer to the center of the spatially extended habitats, the 197

final ODs are higher (I > II > III and IV > V > VI, see Figure 3C, 3D). Populations in 198

I and II decline, while populations in III, IV, V, and VI grow. This provides direct 199

evidence of the spatial arrangement effect. Since there are both population growth and 200

declines even with the same number of drug wells, these diverging outcomes don’t 201

belong to either the growth phase or decline phase in Figure 2C, thus can’t be simply 202

determined by the boundary λ0 = ⟨g⟩ − π2β
L2 = 0. It indicates that a new induced mixed 203

phase may exist, with different spatial arrangements leading to different population 204

responses. 205

Although I-III, with a lower averaged growth rate, would intuitively have lower final 206

ODs compared to IV-VI, our results show that the spatial arrangement with center 207

drug-free wells (I) yields results very close to those of the spatial arrangement with 208

center drug wells (IV) or edge drug-free wells (III). In Supplementary Information, 209

another repeated experiment demonstrates that the population in I grows while the 210

population in IV declines—this discrepancy may be due to fluctuations in drug 211

concentration and temperature from day to day. Our simulation results (see 212

Supplementary Information) closely match the observed temporal dynamics and 213

population responses. This suggests that center drug-free wells(CH) and center drug 214

wells(CL) may serve as the upper and lower bounds for the possible mixed phase, 215

warranting further investigation of our model system to gather more evidence. 216

Theory validates the indicated mixed phase, and explains spatial 217

effect 218

To begin with, six spatial arrangement strategies were designed for comparison: Homo, 219

OddEven, Randomized, Left, CH, and CL. As indicated by our preliminary experiments, 220

each fixed arrangement strategy induces a specific phase diagram between ⟨g⟩ and β
L2 221

(see Figure 4A). The ”Homo” strategy shows consistent phase diagrams with Figure 2C, 222

while the ”OddEven” strategy, which distributes growth rates in odd wells first and 223

then in even wells, produces a more curved boundary between population growth and 224

decline. The ”Randomized” strategy yields a phase diagram nearly similar to that of 225

homogeneity. The ”Left” strategy, which assigns growth rates from left to right wells 226

sequentially, results in a distinct pattern. Comparing all six strategies, CH results in the 227

largest region of population growth, while CL results in the largest region of population 228

decline, and they are bounding all 6 different spatial arrangement strategies (see Figures 229

4A and 4B). 230

To validate the hypothesis that spatial arrangement CH and CL may mitigate 231

population decline most and least effectively, serving as the upper bound and lower 232
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Fig 3. Different spatial arrangements lead to different temporal dynamics
and collective responses. A. Six different spatial arrangements are depicted. Each
row has the same number of wells with drugs, resulting in the same mean growth rate.
The first row contains 8 wells with drugs; the central region initially has 4 drug-free
wells with high growth rates, named Central High (CH). The second row contains 4
wells with drugs, and the central region initially has 4 high-drug wells with low growth
rates, named Central Low (CL). In both CH and CL configurations, the central region
is shifted two wells to the left in each subsequent arrangement (II,III) and (V,VI). B.
The temporal dynamics of the six different spatial arrangements, with error bars
corresponding to ±1 standard deviation. C and D compare the averaged temporal
dynamics and final responses. Dark blue represents I,II,III, while light blue represents
IV,V,VI.
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bound of the mixed phase, we can transform it into a constrained optimization problem 233

min
{gi}L

i=1

λ0 = ∥Ω∥

max
{gi}L

i=1

λ0 = ∥Ω∥

s.t. ⟨g⟩ = C,

0 ⩽ gi ⩽ g0

(4)

The original equation is discretized with L = 12 wells, matching our experimental 234

conditions. The optimization is constrained by a fixed spatially averaged growth rate, 235

while the growth rate at each well i is limited to a maximum of the drug-free growth 236

rate g0 and a minimum of 0, modulated by the drug concentration at each well. The 237

minimizer of the largest eigenvalue equal to 0 corresponds to the lower boundary of the 238

mixed phase, while the upper boundary is determined by finding the maximizer that 239

equals 0 (for more details, see Supplementary Information). When the largest 240

eigenvalue is always positive for any spatial arrangement, the population consistently 241

grows. Conversely, when the largest eigenvalue is always negative, the population 242

consistently declines. The new mixed phase exhibits different outcomes depending on 243

the spatial arrangements, and it is bounded by CH and CL, as can be proven by the 244

KKT condition. Figures 5D, 5E, and 5F show examples of the decline phase, mixed 245

phase, and growth phase, respectively, where both CH and CL decline, CH grows while 246

CL declines, and both grow. 247

To better understand this and observe that the mixed phase is symmetric around 248

the original homogeneous growth rate boundary line, we apply first-order perturbation 249

theory. The largest eigenvalue can be decomposed into three parts: the homogeneous 250

growth rate ⟨g⟩, the boundary diffusion effect β
L2 , and the heterogeneous effect 251

⟨u0|δg|u0⟩ induced by the spatial drug arrangement. Interestingly, the wells can be 252

ranked by the square of their corresponding eigenvector components u0(i)
2. Given that 253

u0(i)
2 = 2

N+1 sin
2
(

iπ
N+1

)
, the wells with the most weight are the center wells. 254

Consequently, when drug-free growth rates are placed at the center, as in CH, λ0 255

reaches its maximum, as expected. Thus, the optimal spatial arrangements can be 256

approximately explained by the original eigenvectors driven solely by the boundary 257

diffusion effect. It is also shown that the perturbed eigenvalue is most accurate when 258

the boundary diffusion effect is large (see Supplementary Information). 259

Experimental data charts new mixed phases and empirical 260

boundaries 261

To validate the theoretical findings that a new mixed phase exists, where different 262

spatial arrangements induce varied dynamic outcomes in addition to the decline and 263

growth phases, we experimentally tested various levels of fraction transfer rate b and 264

numbers of drug wells nD. To avoid the curse of dimensionality from permutations, we 265

focused on the center drug-free wells (CH) and center drug wells (CL) from the new 266

phase diagram, as they define the largest region of the mixed phase and thus lead to the 267

most distinct results (see Figure 4C). As mentioned in the system setup, whether the 268

population declines or not is determined by λ0. For a fixed number of drug wells (for 269

example, nD = 6; see Figure 5C), we experimentally increased the fraction of volume 270

transfer b to enhance the boundary diffusion effect. We observed that populations in 271

both CH and CL regimes grow when the migration rate/boundary diffusion effect is 272

small. As the boundary diffusion effect increases, the population in the CL regime 273

begins to decline, while the population in the CH regime continues to grow. Eventually, 274

both populations decline when the boundary diffusion effect becomes very large. Our 275
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Fig 4. Model validation of optimal spatial arrangements CH and CL. A and
B. six different example spatial arrangement strategies imply that CH and CL can
possibly be optimal bounds of the emerging mixed phase in the phase diagram of ⟨g⟩
and β

L2 . C. Phase diagram with new mixed phase by numerically solving the
constrained optimization problem eq 4. The solid lines are CH(upper) and CL(lower).
They match with the numerical boundary well. The dash-dotted line is homogeneous
spatial arrangement. Dotted lines are CH(upper) and CL(lower) by perturbation theory.
D,E,F. 3 examples are taken from decline, mixed, growth phase. G. The largest
eigenvalue by perturbation approximation. It indicates that the diverging responses are
incurred roughly by ⟨u0|δg|u0⟩, an average of spatial growth deviations weighted by
square of unperturbed eigenvectors.
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simulation results qualitatively capture these temporal dynamic features (see Figure 5C; 276

also Supplementary Information for a complete simulation illustration). The 277

experimental data(dots) aligns well with the phase diagram generated by numerically 278

solving the eigenvalues of spatial arrangements CH and CL (see Figure 5B). The mixed 279

phase is still evident in the middle, where CH grows while CL declines. 280

Spatial effect in other spatially-extended systems 281

Microbial communities often diffuse and migrate within complex spatial structures. 282

Although the effects of spatial drug heterogeneity, or spatial arrangement on 1D 283

structures with absorbing boundary conditions have been illustrated in previous 284

sections, the interplay between arrangement effects and other spatial structures, beyond 285

the boundary diffusion effect, remains unclear. Here, we hypothesize that spatial drug 286

arrangements can still alter growth dynamics and lead to divergent response outcomes, 287

indicating the existence of a mixed phase, even when other forces drive population 288

decline. To generalize our findings, we designed a ring structure as a periodic condition 289

in our reaction-diffusion model. Although periodic boundary condition has been 290

intensively studied in the context of theoretical ecology, for example for finite 291

one-dimensional or two-dimensional space, or infinite one-dimensional 292

environment [65,66,68–70], experimental evidence is rare. The bactericidal drug 293

Ampicillin was applied to specific wells to induce maximum cell lysis, creating a 294

deleterious environment or ”sink,” while other wells remained drug-free, serving as the 295

bacterial ”source.” The interplay between the maximum death rate and the drug-free 296

growth rate, connected by the migration rate β, ultimately determines whether the 297

population will grow or decline. 298

It’s intuitive to expect that at low migration rates, bacteria thrive in drug-free wells 299

with minimal perturbation from drug sink wells. As the migration rate β increases, 300

populations with different spatial arrangements diverge into a mixed phase and 301

eventually decline at high migration rates, mirroring what we see with the boundary 302

diffusion effect. Our experimental results with four different spatial arrangements 303

confirm this: as β increases, the fraction of population growth conditioned on these 304

arrangements transitions from 1 (growth phase) to 0.25 (mixed phase), and finally to 0 305

(decline phase) (see Figure 6C). Although different spatial drug arrangements and 306

boundary condition are applied, migration rate still plays a driving factor for bacterial 307

population decline, and the system exhibits similar diverging outcomes. 308

We next examined whether our simplified reaction-diffusion model with a new 309

periodic boundary condition and death rate aligns qualitatively with experimental data. 310

Figure 6B illustrates the temporal dynamics across different migration rates and spatial 311

drug arrangements, closely matching simulation results (see Supplementary 312

Information). Theoretical predictions using the largest eigenvalue criterion also 313

accurately capture population outcomes (see Figure 6D). These agreements validate our 314

model and demonstrate its robustness in more complex scenarios. To explain the 315

emergence of spatial arrangement effects in this new ring structure, the perturbed 316

eigenvalue is calculated. However, due to the equivalence of each well in this spatial 317

structure, the perturbed largest eigenvalue λp = ⟨g⟩ simply becomes the spatially 318

averaged growth rate, and it fails to give the information of spatial drug heterogeneity. 319

This may necessitate higher-order perturbations or the development of new theoretical 320

tools for further investigation of complex spatial structures. 321
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Fig 5. Experimental validation of the new mixed phase. A. Increase the
number of drug wells nD to decrease the spatially averaged growth rate ⟨g⟩, and
increase the fraction of volume transfer b to enhance the boundary diffusion effect β

L2 .
The example shown is nD = 6. B. Experimental data (dots) reveals three distinct
phases, which qualitatively match the numerical phase diagram. C. For nD = 6, by
increasing the migration rate/fraction of volume transfer, the population responses of
both CH and CL transition from growing to declining. The simulation captures the
experimental features of these responses and their temporal dynamics. The population
under the CH spatial arrangement continues to grow until b = 0.3, while the population
under the CL arrangement grows only until b = 0.1.
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Discussion and Conclusion 322

In this paper, we developed an island-like interconnected experimental system to 323

investigate the effects of spatial drug heterogeneity. We first discovered that simple 324

trade-off relationships—between growth, boundary diffusion effects, and spatial 325

arrangement effects—govern the transition in growth dynamics. Different spatial 326

arrangements of drugs, even with the same spatially-averaged growth rates, lead to 327

divergent bacterial population outcomes, resulting in a mixed phase. Furthermore, 328

simulation and optimization results identify CH and CL as two optimal spatial 329

arrangements, serving as empirical upper and lower bounds of this mixed phase. This 330

finding is validated through systematic high-throughput experiments. An 331

approximation using perturbation theory explains how spatial drug arrangements alter 332

growth dynamics and lead to different outcomes. Further extensions with a ring 333

structure confirm the importance of spatial drug arrangement, showing that spatial 334

drug heterogeneities can incur population loss. 335

For the two optimal spatial arrangements with fixed average growth rates, CH and 336

CL, the opposing yet symmetric configurations arise due to the effects of boundary 337

diffusion and the symmetric 1D spatial structure. Interestingly, a similar ”positional 338

advantage” has been observed in an evolution experiment conducted in microchannels 339

with the same absorbing boundaries [71], where the dominance advantage of cells at the 340

center position is maximized. This further highlights the impact of boundary conditions. 341

Additionally, spatial structures, or potentially different network configurations, play 342

significant roles in cancer therapies and clinical decisions, often manifesting as star or 343

tree formations [72,73]. Given that a mixed phase still persists, further investigations are 344

necessary to explore how spatial structures influence the optimal spatial arrangements. 345

To avoid potential mutations under long-term operations and maintain a consistent 346

environment, the dilution step was omitted in our growth-migration experiments, unlike 347

in the other range expansion experiments doing migration on 96-well plates [57]. While 348

this method is efficient, it may introduce possible drug diffusion, which we minimized 349

its effects in our experiments by choosing appropriate experimental parameters. 350

However, this drug diffusion could be significant in human bodies, where 351

pharmacokinetic-pharmacodynamic (PK-PD) dynamics are at play. In the phase 352

diagram under spatial drug heterogeneity, the ideal theoretical mixed phase region does 353

not align perfectly with the experimental data, which appears narrower. While the 354

model is simplified relative to the complexities of the experimental phenomena and 355

remains powerful enough to qualitatively explain the results, this discrepancy indicates 356

that factors like drug diffusion or other time-varying drug fluctuation, due to natural 357

noise, still exist. Therefore, for people who wants to find the spatial drug heterogeneity 358

effect clinically, to amplify it and have a clearer mixed phase, by minimizing 359

environmental noise and weakening the diffusion effect of the drug, is necessary in 360

general cases. 361

Even though, in this study, we focused on the single-species dynamics of wild-type 362

(WT) bacteria, in nature, bacteria often form multi-species communities, and multiple 363

drugs are commonly applied together as part of combination treatments. Our recent 364

work has theoretically explored how antibiotic resistance mutants are selected based on 365

growth dynamics under spatial multi-drug heterogeneities, considering drug 366

interactions [66]. Further experimental and clinical data are needed to validate these 367

findings. Moreover, while our system assumes density-independent exponential growth 368

for pathogens and cancer proliferation [10,74], different species can have ecological 369

interactions with one another [30,54,75–80]. In a community, interactions between 370

species and antibiotics can lead to counterintuitive outcomes [78,79] and increase the 371

prevalence of antibiotic resistance [75]. Understanding how spatial drug heterogeneity 372

impacts these known behaviors, both at ecological and evolutionary scales, remains an 373
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open question that requires further investigation. Recent studies have highlighted the 374

importance of diversity-dependence in dispersal, where interspecific interactions 375

determine spatial dynamics [81]. For instance, recent metapopulation models suggest 376

that quenched disorder in death rates could induce a new phase of global coexistence 377

when considering migration and species interactions [82], offering a promising starting 378

point for further exploration. 379

Our findings provide insights into clinical migration phenomena, potentially 380

informing pathogen and cancer clearance strategies. Tumors, modeled as complex 381

ecosystems using Generalized Lotka-Volterra (GLV) equations, form heterogeneous 382

metastasis networks influenced by spatial heterogeneity and seeding dynamics [83,84]. 383

Our work may clarify the role of microbial communities in modulating immune 384

responses and elucidate how spatial heterogeneity and organ-level interventions impact 385

metastasis progression and treatment efficacy [72,85–88]. 386

The diversity in clinical outcomes necessitates personalized therapies, such as 387

transition therapies for phenotypic switching tumors, and our findings contribute to 388

understanding individual variations [89,90]. Our spatiotemporal model, capturing 389

spatial drug heterogeneity, can be extended to complex scenarios like metastasis, and 390

integrated with AI for improved mechanistic learning, enhancing predictive accuracy 391

and optimizing treatment strategies [91–96]. 392

To summarize, we have shown that in a deleterious confined environment in which 393

growth rates are unevenly suppressed because of spatial drug heterogeneity, the 394

ecological dynamics and responses are changed by the drug spatial arrangements and 395

migration rates. A mixed phase is identified and an optimized center drug strategy can 396

be leveraged to shift response towards decline. This highlights the importance of 397

expanding our knowledge of how to tune drug spatial distribution for the potential 398

clinical use, especially in the context of drug treatments and their alarming increased 399

failure of pathogen clearance and cancer metastasis. 400

Methods 401

Experiment details 402

Enterococcus faecalis strain OG1RF, a Gram-positive bacterium, was cultured overnight 403

in 50% BHI media in 50 ml cell culture tubes. The minimum inhibitory concentration 404

(MIC) of Linezolid was approximately 1.5 µg/ml, and the MIC of Ampicillin was 405

approximately 0.5 µg/ml. Each antibiotic (Linezolid and Ampicillin) was prepared from 406

powder stock and stored at -20 °C. The migration/transfer cycle time was set to 0.25 407

hours for the homogeneous case and 0.5 hours for the heterogeneous case. Growth rates 408

were determined using a 1:1 ratio of cell culture to a specific drug solution diluted in 409

50% BHI media. All dilutions were completed by an OT-2 robot into 96-well plates. 410

Experimental Protocols 411

All cultures were grown at 37 °C in 50% BHI media overnight for 18-20h. All 412

experiments were performed in BioLite 96 Well Multidish. For the spatial heterogeneous 413

migration experiment, the same strain was cultivated under two different conditions: 414

50% BHI media (high growth rate) and 50% BHI media + 8ug/ml Linezolid (low 415

growth rate). Cells were diluted 1:5 with 50% BHI media and grew in a new 15ml cell 416

culture tube for 45 minutes before transferring to the 96-well plates and starting the 417

first migration.(Mix the media with or without drug with cells 1:1 ratio). Cell 418

migrations were carried out along the columns of the plate, in 12-well-long landscapes. 419

Migrations were performed every 30 minutes using the Opentron OT-2 robot. We did 420
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migrations for 9 times and the entire experiment lasted 4 hours. Plates were not shaken 421

during growth. Optical densities were measured after every migration cycle in the plate 422

reader. with 600-nm light. To explore more possibilities, we changed the transfer 423

volumes to the neighboring columns during the migration in order to control the 424

diffusion rate. We transferred 5, 12.5, 20, 30, 40, 50, 60, 80, 100 ul(with the single well 425

transfer rate) to the neighboring columns in different plates. The total growth rate is 426

controlled by the sizes of wells with high growth rate cells and low growth rate cells as 427

well as the positions of different cells (the positions of two different cells will be 428

symmetric). As for the boundaries, after discarding a transfer volume and adding the 429

same volume of media (either with or without drug based on the boundary condition of 430

the plate) to maintain the volume in each well. 431

Model details 432

The one-dimensional Fisher-KPP equation, ∂u
∂t = β ∂2u

∂x2 + f(u, x, t), is a well-known 433

equation in ecological and evolutionary dynamics that describes cell growth and range 434

expansion in a spatially varying environment. Here, we consider a special case with 435

linearized growth and fully absorbing boundary conditions (also known as Dirichlet or 436

zero conditions): ∂u
∂t = β ∂2u

∂x2 + g(D(x))u, u(x, 0) = u0, u(0, t) = 0, u(L, t) = 0, 437

where L is the length of the spatial domain. In this scenario, cells can have different 438

growth rates at different positions, but the cell densities at the two boundaries are 439

always zero. If the boundary diffusion effect, β/L2, is significantly larger than the 440

average growth rate, ⟨g(x)⟩ (β/L2 ≫ ⟨g(x)⟩), the population will decrease. Conversely, 441

if the boundary diffusion effect is much smaller (β/L2 ≪ ⟨g(x)⟩), the bacteria 442

population will persist and grow up in the diffusive, deleterious environment. A critical 443

boundary exists where growth and boundary diffusion are balanced when drug 444

concentration is evenly distributed. Under spatial drug heterogeneity, this critical 445

boundary transitions into a critical mixed phase (see SI). 446
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15. Kim K, Wang T, Ma HR, Şimşek E, Li B, Andreani V, et al. Mapping single-cell 488

responses to population-level dynamics during antibiotic treatment. Molecular 489

Systems Biology. 2023;19(7):e11475. 490

16. Meredith HR, Andreani V, Ma HR, Lopatkin AJ, Lee AJ, Anderson DJ, et al. 491

Applying ecological resistance and resilience to dissect bacterial antibiotic 492

responses. Science advances. 2018;4(12):eaau1873. 493

17. Lopatkin AJ, Stokes JM, Zheng EJ, Yang JH, Takahashi MK, You L, et al. 494

Bacterial metabolic state more accurately predicts antibiotic lethality than 495

growth rate. Nature microbiology. 2019;4(12):2109–2117. 496

18. Lee AJ, Wang S, Meredith HR, Zhuang B, Dai Z, You L. Robust, linear 497

correlations between growth rates and β-lactam–mediated lysis rates. 498

Proceedings of the National Academy of Sciences. 2018;115(16):4069–4074. 499

19. Liu J, Gefen O, Ronin I, Bar-Meir M, Balaban NQ. Effect of tolerance on the 500

evolution of antibiotic resistance under drug combinations. Science. 501

2020;367(6474):200–204. 502

20. Deris JB, Kim M, Zhang Z, Okano H, Hermsen R, Groisman A, et al. The innate 503

growth bistability and fitness landscapes of antibiotic-resistant bacteria. Science. 504

2013;342(6162):1237435. 505

November 22, 2024 18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2024. ; https://doi.org/10.1101/2024.11.21.624783doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.21.624783
http://creativecommons.org/licenses/by-nc-nd/4.0/
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