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ABSTRACT Microbial communities, through their metabolism, drive carbon cycling
in marine environments. These complex communities are composed of many differ-
ent microorganisms including heterotrophic bacteria, each with its own nutritional
needs and metabolic capabilities. Yet, models of ecosystem processes typically treat
heterotrophic bacteria as a “black box,” which does not resolve metabolic heteroge-
neity nor address ecologically important processes such as the successive modifica-
tion of different types of organic matter. Here we directly address the heterogeneity
of metabolism by characterizing the carbon source utilization preferences of 63 het-
erotrophic bacteria representative of several major marine clades. By systematically
growing these bacteria on 10 media containing specific subsets of carbon sources
found in marine biomass, we obtained a phenotypic fingerprint that we used to
explore the relationship between metabolic preferences and phylogenetic or
genomic features. At the class level, these bacteria display broadly conserved pat-
terns of preference for different carbon sources. Despite these broad taxonomic
trends, growth profiles correlate poorly with phylogenetic distance or genome-wide
gene content. However, metabolic preferences are strongly predicted by a handful
of key enzymes that preferentially belong to a few enriched metabolic pathways,
such as those involved in glyoxylate metabolism and biofilm formation. We find that
enriched pathways point to enzymes directly involved in the metabolism of the cor-
responding carbon source and suggest potential associations between metabolic
preferences and other ecologically relevant traits. The availability of systematic phe-
notypes across multiple synthetic media constitutes a valuable resource for future
quantitative modeling efforts and systematic studies of interspecies interactions.

IMPORTANCE Half of the Earth’s annual primary production is carried out by phyto-
plankton in the surface ocean. However, this metabolic activity is heavily impacted
by heterotrophic bacteria, which dominate the transformation of organic matter
released from phytoplankton. Here, we characterize the diversity of metabolic prefer-
ences across many representative heterotrophs by systematically growing them on
different fractions of dissolved organic carbon. Our analysis suggests that different
clades of bacteria have substantially distinct preferences for specific carbon sources,
in a way that cannot be simply mapped onto phylogeny. These preferences are asso-
ciated with the presence of specific genes and pathways, reflecting an association
between metabolic capabilities and ecological lifestyles. In addition to helping
understand the importance of heterotrophs under different conditions, the pheno-
typic fingerprint we obtained can help build higher resolution quantitative models
of global microbial activity and biogeochemical cycles in the oceans.
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Three quarters of Earth’s surface is covered in water, making the ocean the biggest
continuous environment and home to extraordinary biodiversity (1). In stark contrast

to terrestrial biomes, approximately 70 percent of the biomass in marine ecosystems is
microbial (versus 96% plant on land) (2); accordingly, their submicroscale processes have
global-scale consequences on ecosystem services critical to human society (3). Half of
the Earth’s annual primary production is accomplished in the surface ocean by phyto-
plankton that harvest light to fix carbon dioxide (3–5). Heterotrophic bacteria are impor-
tant players in these processes, as they impact carbon cycling in the marine environment
along at least two main axes: first, phytoplankton function is modulated by interactions
with heterotrophs in ways that drastically affect primary productivity (6–9). For example,
heterotrophic bacteria provide nutrients essential for the long-term survival of some
phytoplankton (10–13). Second, heterotrophs dominate the transformation of organic
matter released from phytoplankton, and their metabolic activity ultimately determines
the fate of organic carbon in the marine environment (6, 14).

The marine dissolved organic carbon (DOC) pool is the primary source of organic car-
bon for marine heterotrophs, containing an estimated 0.2 Pg of labile organic compounds,
which can be readily metabolized by these bacteria (15). Analyses of bulk seawater reveal
the enormous complexity and heterogeneity of marine DOC, enumerating a minimum of
tens of thousands of distinct organic compounds (16–18). As the primary suppliers of
marine DOC, phytoplankton transfer approximately 50% of their photosynthate to hetero-
trophs (4, 19) via a variety of active and passive mechanisms, including leakage (20), exu-
dation (21), photosynthetic overflow (22), and cell death caused by viral lysis and protist
grazing (23, 24). A number of studies indicate that the taxonomic composition of microbial
communities is influenced by the provenance of organic material, suggesting that individ-
ual heterotrophs vary in their ability to utilize broadly defined classes of macromolecules
(25, 26) and that these metabolic preferences may contribute to community structure (27–
31). For example, heterotrophs associated with phytoplankton have shown preferences for
amino acids, small sulfur-containing compounds, and one-carbon compounds (32–36).
However, little is known about the specific preferences of individual heterotrophs for indi-
vidual classes of compounds, making it difficult to understand the role that specific clades
play in utilizing DOC in different environments. This limited knowledge also makes it chal-
lenging to lay the groundwork for mechanistic models that could help explain how such
interactions shape the phylogenetic and functional composition of the community.
Identifying the metabolic links between DOC and heterotrophs is key to understanding
the ecological drivers underpinning carbon cycling in ocean ecosystems. This may also
help improve global-scale models of marine microbial processes, where heterotrophs are
often assumed to perform overall similar metabolic tasks (37, 38), an assumption likely rea-
sonable for certain goals (e.g., modeling global primary productivity) but not others (e.g.,
modeling community composition or genetic capacity).

In principle, information on the substrate preferences of different heterotrophs
could be inferred from their genomes; however, sequencing data alone have demon-
strated a limited ability to predict microbial phenotypes and community functions in
practice (39–43). For example, in a recent survey of human gut bacteria, metabolic
models recapitulated growth for only 10 of the 40 strains tested, suggesting that
genomic information combined with knowledge from the literature is insufficient to
describe bacterial metabolic complexity (44). Alternatively, by measuring the growth
properties of individual strains on specific carbon sources, one can infer phenotypic
profiles that provide direct insight into metabolic preferences and growth strategies.
These types of measurements are increasingly performed to characterize microbial col-
lections from different biomes (45, 46). Ideally, one would want to analyze phenotypic
profiles in conjunctions with the organisms’ genomes in order to obtain insight into
the genes and pathways that confer these preferences. Performing these types of
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measurements on well-defined synthetic media, in addition to enabling inferences
regarding the specific metabolic capacities of microorganisms, could also help inform
quantitative models (47, 48).

Here we report the generation and characterization of a collection of 63 heterotrophic
bacteria representative of many major marine clades and a systematic analysis of their
metabolic preferences. By designing simplified media that capture different fractions of
the molecular components of marine DOC, we sought to characterize the metabolic prop-
erties of different representative heterotrophs, i.e., how they grow on different conditions
that represent different axes of DOC. We next analyzed the phenotypes obtained in order
to understand whether these metabolic phenotypes are well captured by phylogeny or
other genome-encoded properties. We suggest that our analysis could contribute to
helping reduce the complexity of the ocean microbiome to a set of computationally and
experimentally tractable variables that can be interrogated with mathematical models
and controlled experiments and extended to complex natural communities to explain
aspects of their behavior.

RESULTS AND DISCUSSION
Growth of 63 heterotrophs on refactored media provides an atlas of their met-

abolic preferences. In order to generate a collection of strains representative of major
marine lineages common to both the global oligotrophic and temperate oceans, we
collected 63 heterotrophic isolates from different sources (Table S1 in supplemental
material). Strains were selected via a comprehensive genomic analysis conducted in a
recent effort (49), in which over 400 high-quality reference genomes were clustered
into functional groups using a trait-based approach focusing on metabolism and mi-
crobial interactions. Representative strains were chosen from each functional cluster,
applying the additional criteria that they be culturable in standard laboratory condi-
tions (at 26°C in Marine Broth) and have a biosafety level 1 rating. In addition, we also
included some nonmarine model strains to serve as a benchmark for our experiments
(see Materials and Methods). Overall, the culture collection includes representatives of
5 phyla and 29 families.

We used this collection of heterotrophic bacteria to address, through single strain
phenotyping, the question of whether different clades are geared toward efficient deg-
radation or preferred utilization of specific subsets of DOC molecules. Many of the
library strains had been reported to grow in undefined complex media, such as Marine
Broth. Using the composition of Marine Broth as a scaffold, we refactored yeast extract
and peptone (the primary carbon sources in Marine Broth) into eight types of organic
carbon (hereafter referred to simply as “carbon classes”): peptides, amino acids, lipids,
disaccharides, organic acids, neutral sugars, amino sugars, and acidic sugars (Fig. 1A).
For some classes, we selected specific compounds based on their reported presence in
marine DOC (50–52). For example, in the amino sugar class, N-acetylglucosamine was
chosen because it is a known degradation product of chitin, the primary cell wall com-
ponent of many marine organisms (53). All refactored media except HMBlips were cali-
brated to contain the same total mass of carbon-containing compounds (although not
necessarily the same number of carbon atoms, see Fig. S4 and Supplementary Text S1),
as well as an excess of nitrogen, phosphorus, sulfur, salts, trace metals, and vitamins
(see Materials and Methods and Table S2). Together with a negative control lacking
added organic carbon, a medium containing all carbon classes, and Marine Broth itself,
we tested a total of 11 conditions using growth assays in 96-well plates (Fig. 1B).

All of the 63 marine heterotroph strains grew reproducibly on at least one of the
defined media, and optical density (OD) measurements were almost identical across
technical replicates and highly consistent across biological replicates (Fig. 2; Fig. S1). For
subsequent analyses we focused on the maximal OD (maxOD) observed along the curve
of each strain relative to time zero, which we took as a proxy for the efficiency with
which each organism can produce biomass on a given carbon category (referred to
henceforth also as “productivity”). Note that another important metric, the growth rate
at log phase is strongly correlated with maxOD (adjusted R2 = 0.71, P , 2.2 � 10216;
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Fig. S2). Despite containing the same mass of carbon source and supporting roughly
similar numbers of strains (Fig. S3), the different media led to very different degrees of
productivity. Given that neutral sugars, such as glucose and arabinose, are classically
used as preferred carbon sources in bacterial growth experiments, we were surprised to
observe that media having peptides and amino acids as the main carbon sources sup-
ported the highest amount of biomass growth, while the neutral sugar medium was
among the lowest supporters of biomass change (Fig. 1C).

One aspect of the above results that is worth reflecting on is the significance of this
pattern in the context of prior observations. It has been suggested in the literature
that marine heterotrophic bacteria achieve greater biomass yield and growth rates on
amino acids compared to media containing mono or polysaccharides as the sole car-
bon source (54, 55). The reason for this is unclear, but field studies suggest that nitro-
gen limitation relieved by the presence of additional nitrogen in amino acids does not
explain this discrepancy (55). We did not observe increased growth on the amino
sugar-containing medium (among the lowest growing), which contains considerably

FIG 1 An overview of the experimental setup. Each strain in the heterotroph library was grown individually on each of the 11 different
media. (A) Difco Marine Broth was refactored into 8 carbon classes, which were used to make defined media. The set of media used in the
experiment also includes a medium containing all carbon categories (“complete”) and a negative control lacking added carbon. (B) Growth
was assayed by measuring the OD600 over the course of 264 h; Alteromonas mediterranea MED64 growth curves are shown here as an
example. (C) MaxOD, defined as the maximum OD600 reached during the growth process (relative to the culture at time zero), was
determined for each strain under every possible medium. Here, for each medium (x axis) we visualize the MaxOD of each organism as a dot
(with small random displacement on the x axis for ease of visualization). The box represents the median and quartiles of the MaxOD values.
Note: some organisms display small but reproducible nonzero growth on HMB–, possibly due to an ability to utilize other media
components or internal carbon storage molecules for growth.
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more nitrogen than the nonamino media. Furthermore, a regression analysis showed
that there is only a weak relationship between the change in OD and amount of nitro-
gen in the medium (adjusted R2 = 0.079 and P = 3.5 � 10213; Fig. S4C). Thus, nitrogen
abundance is likely not the main or only reason for the extensive bacterial growth on
amino acids, and other explanations could involve the energetic advantage of using
preformed amino acids compared to their biosynthesis (56). For a complete discussion
on the influence of media stoichiometry on growth, see Supplementary Text S1 and
Fig. S4. Note that some strains reproducibly displayed nonnegligible growth on the
medium with no carbon added (see Table S7 at https://github.com/segrelab/marine
_heterotrophs/ for P values). The high reproducibility between experiments (Fig. S1)
likely rules out contamination. Carryover of nutrients from the starter culture is also
unlikely to explain this, since these strains grew to a lesser magnitude on other media
(unless inhibition by carbon in those other media is a contributing factor). We cannot
exclude the possibility that these strains are capable of utilizing compounds other
than the added carbon sources (e.g., vitamins [57]) or internal carbon stores for growth
(58, 59) or that they possess autotrophic capabilities (60).

FIG 2 Clustering of growth profiles (defined as the vector of MaxOD values for each organism across all media) reveals metabolic signatures of the
heterotroph library. (A) A representation of MaxOD for each cluster. Each subplot (numbered from 1 to 7) shows a boxplot of the MaxOD across media
(similar to the one of Fig. 1C), but restricted to the organisms belonging to the corresponding cluster. For example, cluster 4 includes organisms which
grow very well on the peptide-containing medium (HMBpep). (B) The proportion of strains determined to have positive growth (see Materials and
Methods) on each medium, for each of the clusters. For example, in cluster 4, all species grow on the first four media. (C) The proportion of taxonomic
groups represented in each cluster (at the class level, see color legend to the right). (D) Clustered heatmap depicting the MaxOD for each strain/medium
combination. For each cluster, the heatmap (media, y axis by organism, x axis) shows the MaxOD value (see color code to the right of the panel). 5 of the
63 strains are considered nonmarine in origin: 25922, MRE600, crono, shewden, and exig.
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Organisms cluster into two main groups and finer structures based on meta-
bolic preferences. We captured each strain’s metabolic phenotype by compiling a
growth profile, which consisted of a vector of the maximum change in OD achieved
by the strain on each medium. Using a Gaussian mixture model (see Materials and
Methods), these 63 growth profiles could be divided into 7 clearly distinct clusters
(Fig. 2) The clusters can be described in terms of unique metabolic “signatures,” i.e.,
distinct sets of carbon classes on which the strains achieved similar biomass growth.

At a very broad level, six clusters seem to partition into two categories of metabolic
preferences: one group (clusters 1, 3, and 4) includes organisms that grow robustly on
amino acids and relatively poorly on organic acids (Fig. 2A and B); these clusters are
enriched in Gammaproteobacteria (squared standardized Pearson residual for chi-square
test . 4; see methods, Table S3 at https://github.com/segrelab/marine_heterotrophs/).
In contrast, clusters 6 and 7 are comprised of organisms that produce significantly more
biomass when grown on the organic acid medium compared to the amino acid medium
(Fig. 2A and B; Table S4 at https://github.com/segrelab/marine_heterotrophs/); these
clusters are strongly enriched in Alphaproteobacteria (squared standardized Pearson re-
sidual for chi-square test . 4; see methods, Table S3 at https://github.com/segrelab/
marine_heterotrophs/). Cluster 5 follows a similar pattern to clusters 6 and 7, but the
magnitude of growth is lower and the observed differences are not statistically signifi-
cant (Fig. 2A and B). The remaining cluster (2) is highly diverse phylogenetically, albeit
strongly enriched for Flavobacteriia and Actinobacteria (squared standardized Pearson re-
sidual for chi-square test . 4; see methods, Table S3 at https://github.com/segrelab/
marine_heterotrophs/). As a whole, the strains in cluster 2 do not grow robustly on any
media type, which may indicate a requirement for growth factors or environmental con-
ditions not represented in the media tested.

In addition to these broad-scale patterns, the strains in several of the clusters show
more nuanced differences in their growth phenotypes. Firstly, although the strains in
cluster 4 are capable of growing on organic acids, the magnitude of growth is greatly
reduced compared to the media containing amino acids (Fig. 2A; Table S4 at https://
github.com/segrelab/marine_heterotrophs/). These strains consistently grow to a
higher OD on the negative control medium compared to the organic acids, although
this difference is not statistically significant (Fig. 2A; Table S4 at https://github.com/
segrelab/marine_heterotrophs/); this might suggest that organic acids actually inhibit
their growth. This possibility seems apparently inconsistent with the fact that these
strains grow well on HMBcmpt, which also contains organic acids. However, the con-
centration of organic acids in HMBorg is approximately 47 mM, 8 times higher than the
concentration of organic acids in the HMBcmpt. Organic acids are well-known by-prod-
ucts of aerobic growth in some bacteria, and several studies indicate that they inhibit
growth in a concentration-dependent manner (61–63). The concentration of acetate
alone in HMBorg is 8.7 mM, and in Escherichia coli, acetate concentrations as low as
8 mM have been shown to reduce growth by 50% (64); therefore, our results are con-
sistent with a potential concentration-dependent inhibitory effect by organic acids. In
contrast, the strongest growth on organic acids is observed for clusters 6 and 7, which
also display a limited and varied ability to grow on amino acids. Four of the 18 strains
in clusters 5, 6, and 7 grow appreciably on both peptides and amino acids (Fig. 2B); the
remaining 14 either grow on one or neither of these two media. Since growth on pep-
tides requires the ability to take up and incorporate amino acids, it is unlikely that
these strains lack this capability. Rather, it is possible that some of the amino acids neg-
atively affect growth at the concentrations employed here (65). Overall, except for clus-
ter 2, which seems to include strains with a common pattern of low OD but no specific
preference for carbon classes, the heterotrophs’ metabolic functions are thus primed
for optimized growth on amino acids or organic acids, but not both.

Phylogenetic and metabolic distances correlate poorly with metabolic prefer-
ence distances. We subsequently asked whether strains that are more closely related
to each other phylogenetically are also more similar in their growth profiles across the
different media we tested (see Materials and Methods). Regression analysis found an
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extremely weak relationship between the two variables (Fig. 3A; adjusted R2 = 0.001,
P = 0.04), indicating that the differences in phylogenetic distances between strains
explained an insignificant proportion of the variation in distance between growth
profiles.

Subsequently, we asked whether a metric other than phylogenetic distance, e.g.,
the difference in gene content, would correlate more strongly with phenotypic dis-
tance. Specifically, we compared distances between growth profiles to distances
between genomes represented as binary sequences of genes (see Materials and
Methods). Linear regression revealed an inconsequential association between growth
profile distance and genome distance (Fig. 3B; adjusted R2 = 0.004, P = 0.0005). The
same was true when we compared the growth profile distance to the distance
between Kyoto Encyclopedia of Genes and Genomes (KEGG) modules, which may bet-
ter approximate the metabolic distance between strains (Fig. 3C; adjusted R2 = 0.004,
P = 0.0004) (49). Taken together, global genomic data, at least with the metrics used
so far, do not seem to capture the differences in metabolic phenotypes observed
between strains. One possible explanation for our observations is that the genes key in
differentiating growth on various carbon sources are “drowned out” by the noise of
uninformative genes contained in the genomes; it is not clear that the genes that mat-
ter rise above genes that have no effect in this analysis.

Genes and pathways associated with growth on specific media reflect different
metabolic and ecological strategies. Given the poor correlation between metabolic dis-
tance and gene content or phylogenetic distance, we asked whether a more informative
relationship could be revealed by examining whether the presence of individual genes or
sets of genes (pathways) is associated with growth on each medium. For each medium,
we calculated the correlation (r) between growth and each gene in the library pangenome
(see Materials and Methods and Fig. 4A). Looking at the list of individual significantly corre-
lated genes (Table S5 at https://github.com/segrelab/marine_heterotrophs/), one clear pat-
tern that emerges is that 386 of the 1,076 most strongly correlated genes (absolute value
of r. 0.5) are associated with growth on the organic acids medium. Conversely, no signifi-
cant individual genes emerged for growth on the amino acid medium, despite the fact
that this medium supports high growth in a number of strains. One possible interpretation
of this difference is that while organisms growing on organic acids tend to use a narrow
and fairly coherent set of pathways, the organisms that grow on the amino acid medium
are utilizing different subsets of the 20 amino acids, and thus different biological pathways

FIG 3 Genome-based distances between all pairs (a,b) of strains. Phylogenetic distance Pab (A), genome-wide gene content distances Cab (B), and KEGG
module distance Mab (C) (see Materials and Methods) are compared to the phenotypic distance Gab between all pairs of growth profiles shown in Fig. 2D.
All of the genome-based distances are poor predictors of the distance between the corresponding growth profiles. The y axes in all panels correspond to
the Euclidean distance between growth profiles of continuous maxOD values; the x axes correspond to the cophenetic distance (A) and Jaccard distance
between binary vectors (B and C).
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(see Table S2 for details). A concise view of all gene correlation scores can be visualized
using principal component PCA: as shown in Fig. 4B, the organic acid medium stands out
as the main contributor to the primary PCA axis and is thus the most unique in terms of
enriched genes compared to the other media. It is also interesting that the media contain-
ing additional nitrogen in the form of amino groups appear to cluster together, suggesting
that genes related to the utilization of organic nitrogen partially drive this clustering.

In order to better identify genomic signatures associated with growth phenotypes
beyond individual genes, we implemented a gene set enrichment analysis (GSEA) to
identify overrepresented pathways. We mapped the set of highly correlated genes to
the KEGG database (see Materials and Methods), which resulted in a ranked list of path-
ways for each medium (Table S6 at https://github.com/segrelab/marine_heterotrophs/);
we will refer to these pathways simply as condition-specific “enriched pathways.” We
next asked whether the enriched pathways are indicative of the medium under which
the enrichment was identified. In other words, are the growth media enriched for path-
ways that metabolize the class of carbon substrate they contain?

In several cases, growth on the various media was associated with the KEGG path-
ways describing the metabolism of the specific compounds they contained. For exam-
ple, the sugar-based media (HMBoligo, HMBntrl, HMBacdsug) are depleted of pathways
involved in the metabolism of amino acids and enriched for pathways involved in gal-
actose, starch and sucrose metabolism, and interconversions between the pentose
monosaccharides and glucuronate, a degradation product of alginate (Fig. 5A) (52).
The media lacking sugars are not enriched for these sugar degradation pathways;
instead, they share an association with the glyoxylate and dicarboxylate metabolism
pathway, which can replenish sugars from amino acid precursors. In other cases,
growth on a specific category of carbons is associated with pathways that can be
involved in the utilization of those compounds but deviate from the most basic expec-
tation. For example, organisms growing on organic acids are enriched for specific

FIG 4 (A) A schematic representation of the process for generating gene-specific correlations between presence/absence of each gene and growth on a
given medium. For each medium and each gene, we plot MaxOD versus gene presence/absence for all organisms, and compute the point biserial
correlation (see Materials and Methods). This gives rise to a matrix of correlations indicating how much the presence of each gene is predictive of growth
(across all organisms) on a given condition. This matrix can also be viewed as a collection of row vectors (of length equal to the number of genes), each
representing a condition. (B) Through dimensionality reduction of these row vectors (with PCA) we visualize how similar the media are to each other, in
terms of the genes correlated with growth. The first two PCA axes account for 81% of the variance. Data points are colored according to the contribution
of the samples (media) to the principal components.
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portions of the ethylmalonyl-CoA pathway (EMC) (Fig. 5A; Fig. S5A), a well-described
method for the assimilation of two-carbon compounds and biosynthesis of carbohy-
drates from fatty acids (66). Notably, the EMC pathway is an alternative to the glyoxy-
late shunt (67, 68), which is used to feed anapleurotic reactions of the TCA during
growth on C2 substrates, such as acetate (Fig. 5B). A key enzyme in glyoxylate path-
way, isocitrate lyase, is known to be absent in certain marine bacteria, such as
Rhodobacter sphaeroides, which nonetheless possess the ability to grow on acetate as
a sole carbon source (69).

Not all pathways found to be enriched can be easily associated with degradation of
the carbon sources included in the medium: these pathways seem to have no direct rela-
tionship to the molecular processes associated with the utilization of the corresponding
media components. For example, growth on organic acids is also correlated with the
KEGG pathway for porphyrin metabolism, specifically the complete pathways for vitamin
B12/cobalamin biosynthesis as well as bacteriochlorophyll a and b (Fig. S5B). On the
other hand, the folate biosynthesis pathway is enriched for growth on peptides, lipids,
and the complete medium (Fig. 5A). In addition, growth on peptides (and lipids) is asso-
ciated with pathways for motility, including chemotaxis and flagellar assembly, as well as
for biofilm formation (Fig. 5A).

Conclusions. By defining a suite of carbon compound classes that together make up
biomass and asking which marine bacteria grow on each class, we generated a map of
the broad-scale metabolic preferences of these bacteria. This map is important because
heterotrophs process much of the dissolved oceanic carbon, in ways that may depend

FIG 5 Growth on each medium is associated with specific biological pathways, as determined by a gene set enrichment analysis (see Materials and
Methods). (A) The set of highly correlated genes for each medium was mapped to the KEGG pathway database; for each medium, pathways that are
significantly overrepresented in the highly correlated genes are colored light blue (black indicates a lack of statistical enrichment). KEGG pathways are
annotated with colors corresponding to their BRITE database classification. (B) One of the interesting pathways that emerges from this analysis is the
ethylmalonyl CoA pathway (EMC) pathway, which appears in KEGG as part of the Glyoxylate and Dicarboxylate Metabolism pathway (asterisk in panel A).
The EMC pathway is strongly enriched for growth on organic acids. This pathway is a multifunctional pathway, known to be usable for organic acid
assimilation as an alternative to the glyoxylate shunt.
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on the emergent metabolic properties of microbial communities to which they belong.
Obtaining a clear picture of the carbon utilization capabilities of individual strains in rela-
tionship to their taxonomic signature seems, therefore, an essential step toward under-
standing how heterotrophic bacteria impact carbon cycling in the marine environment.
Understanding individual strain traits will further allow researchers to know if it is feasi-
ble and reasonable to use a few representative taxa and metabolic processes as a gen-
eral effective description of heterotrophic metabolism in the oceans, e.g., for the purpose
of implementing mechanistic models of communities and global ocean biogeochemical
cycles. At the same time, irrespective of the details of the phylogeny-metabolism rela-
tionship, one can view the broad-scale approach presented here as a valuable effort to-
ward building more informed dynamical models of ecological processes. In particular,
we suggest that partitioning heterotrophs into clusters based on their preferred utiliza-
tion of combinations of DOC fractions may add to existing observations of successions
and inform ecological models at desired levels of resolution. This work might help iden-
tify whether the broad-scale metabolic preferences suggested to explain microbial suc-
cession patterns in the marine environment (30) agree with the growth preferences of
heterotrophic bacteria and perhaps predict succession patterns based on heterotrophic
growth. Our results suggest that these preferences are partially predictable based on
phylogeny but that extensive intraclade variability requires alternative approaches to
group bacteria based on their metabolic role in the oceans. For example, bacteria
belonging to cluster 4 (including some Alteromonas and Marinoacter strains) would be
highly competitive across a wide range of organic matter, as they grow fairly well on
amino acids in addition to lipids, disaccharides, and (to some extent) amino sugars. In
contrast, those belonging to cluster 1 seem to be more specifically tuned to amino acids.

While some of the associations between pathways and carbon class can be easily
attributed to a direct enrichment of the corresponding metabolic utilization processes,
other enrichment patterns point to processes (including nonmetabolic ones) for which the
biological connection is not obvious. We hypothesize that these “cryptic” associations
between carbon classes and enriched KEGG pathways carry information about environ-
mental adaptations, suggesting a connection between the metabolic preferences of ma-
rine heterotrophs and ecologically relevant roles they play within a microbial community.

For example, we found growth on peptides to be correlated with genes whose
function relates to biofilm formation, chemotaxis, and motility. Since previous studies
have found these traits to be significantly enriched in microbial communities sampled
from marine particles (28, 70–73), we speculate that the ability to grow robustly on
peptides may be associated with a specific temporal role in the colonization of par-
ticles in marine environments. Peptide assimilation begins with the largely nonspecific
extracellular cleavage of protein fragments (74, 75), enabling microbes to thrive on a
wide variety of substrates. Labile organic matter, such as peptides, is turned over rap-
idly in seawater (76), and the ability to sense, target, and adhere to these substrates
would confer a competitive advantage in the early colonization of “fresh” proteina-
ceous matter. Several studies have identified specific phases of algal blooms character-
ized by pronounced increases in peptide consumption associated with characteristic
phylogenetic lineages of marine heterotrophs (30, 31, 77); similar observations have
also been mirrored in mesocosm experiments (28). Our findings support the notion
that a preference for peptides may be a defining feature of bacteria that thrive in spe-
cific phases of succession on marine particles or during algal blooms.

A second example is that of bacteria growing on organic acids, which we found to
be strongly enriched for the ethylmalonyl-CoA pathway, possibly reflecting the impor-
tance of this pathway in the photoheterotrophic capabilities shared by many of these
bacteria (60, 78). These same bacteria also display strong enrichment for vitamin B12
production (a defining characteristic of phytoplankton-heterotrophs interactions [79]),
corroborating the previously suggested role of these bacteria as key partners of eu-
karyotic phytoplankton. These findings are also consistent with genomic and experi-
mental evidence that photoheterotrophy is a widespread metabolic strategy among
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certain Alphaproteobacteria clades (60, 78), such as the Rhodobacterales from our
library. Previous studies have indicated that these strains lack the genes for carbon fix-
ation and are therefore unable to grow autotrophically but use light to supplement
their energetic requirements (60, 80). This agrees with our observation that these
strains did not grow in the medium lacking carbon sources. It also suggests that the
ethylmalonyl-CoA pathway could play a dual role in organic acid assimilation (as sup-
ported by the enrichment mentioned above) and CO2 fixation, as documented in other
photoheterotrophs (81). Taken together, these cryptic associations can be interpreted
as correlated adaptations with a potential ecological significance, similar to recently
identified linked trait clusters (49).

While the phenotypic matrix shown in Fig. 2 is generally thought in terms of its col-
umns, representing the growth profiles of the different organisms, one can also reflect
on the relevance of its rows, which display the type of communities that each DOC
fraction is able to support. Notably, different carbon sources seem to support very dif-
ferent numbers of taxa: for example, amino acids support many different species, while
amino sugars only support appreciable growth in a narrow category of bacteria. The
broad utilization of amino acids by many organisms may simply reflect the fact that
they may be able to directly import and use amino acids as building blocks, funneling
them directly into biomass. Alternatively, it is possible that distinct sets of organisms
preferentially use different individual amino acids, in a way that our current setup
(where all amino acids are mixed into a single carbon fraction) would not be able to
dissect. One could apply to carbon classes a categorization similar to the one used to
describe microbial species as generalists or specialists. In the same way as a species
that can grow on multiple nutrients is thought of as a generalist, a carbon source that
can support multiple clades could be called “versatile.” A carbon fraction that only sup-
ports a small number of clades (similar to a specialist organism) could be thought of as
nonversatile, or “exclusive.” In the future it will be interesting to study the distributions
of versatility in different environments and their ecological implications, e.g., with con-
sumer-resource models that use statistical ensembles of random matrices to parame-
trize ecological models (82).

This laboratory study only provides a glimpse of the myriad factors likely to influence
heterotrophic metabolic activity in the ocean, as the complete picture of microbial
growth encompasses much more than the quantity and structure of carbon sources.
Prior work has indicated that the elemental stoichiometry of DOC has a strong influence
on microbial community function (83). While our refactored media are designed so as to
contain the same amount of carbon, we cannot exclude the possibility that the elemen-
tal ratios of the defined media affect growth beyond the effect of the specific carbon
sources. A compelling next step would be to examine the effect of nutrient availability
on heterotroph carbon source preference. The landscape of organic matter in the ocean
is far more complex than could be represented in laboratory experiments, and biotic
interactions greatly influence metabolic activity. However, some of the trends we
observed have been reported by previous studies, supporting the ecological relevance
of our data set (30, 84). While we do not expect the exact patterns observed in our
experiments to play out in nature, our study provides a framework to continue investi-
gating the role that heterotrophic bacteria play in carbon cycling.

MATERIALS ANDMETHODS
Selection and construction of strain library. We assembled a library of 63 heterotrophic isolates

representing major marine lineages common to both the global oligotrophic and temperate oceans
(Table S1). The representative strains were determined by a comprehensive genome analysis presented
in Zoccarato et al. (49), in which 473 high-quality marine microbial genomes were analyzed using a
workflow aimed at detecting traits rather than the presence of individual genes. Based on the occur-
rence patterns of all traits, the genomes were clustered into 47 genome functional clusters (GFCs)
expected to represent groups of organisms with defined ecologies and life histories. We selected repre-
sentative strains from each GFC based on their availability from strain repositories or individual lab col-
lections, applying the additional criteria that they be culturable in standard laboratory conditions (at
26°C in Marine Broth), be nonpathogenic with a BSL1 rating, and be heterotrophic. In addition, we also
included five nonmarine strains. Two E. coli strains were chosen to serve as a benchmark for our
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experiments: E. coli Seattle 1946 (25922) is a well-studied strain commonly used for quality control in mi-
crobial phenotyping assays; the origin of E. coli strain MRE600 is not well documented but is believed to
have been recovered from an environmental water sample. The remaining three strains were chosen
because they were commercially available representatives of the GFCs that emerged as part of the origi-
nal genomic analysis: Cronobactor universalis (crono) was isolated from fresh water; Shewanella denitrifi-
cans OS217 (shewden) was isolated from brackish water; and Exiguobacterium oxidotolerans T-2-2 (exig)
was isolated from a water sample found at a fish processing plant. Strains were obtained from the sour-
ces listed in Table S1. Samples were streaked on marine agar, and single colonies were subsequently
picked and inoculated into Marine Broth. Stocks were prepared from liquid cultures in 50% glycerol and
stored at –80°C.

Construction of refactored media. As a first step in our analysis we compared strains according to
their growth phenotypes with the goal of determining to what extent heterotrophic bacteria can utilize
available marine carbon sources. We therefore took a well-known marine culture medium (Difco Marine
Broth), on which all strains were experimentally determined to grow, and selected a core set of macro-
molecular compounds likely to comprise the undefined components of Marine Broth: yeast extract and
peptone. Eight media containing different classes of carbon sources were developed, each with multiple
individual components: peptides, amino acids, lipids, organic acids, disaccharides, monosaccharides,
amino sugars, and acidic sugars (Table S2). A medium containing all eight classes and a negative control
lacking added carbon were developed as well. In addition, nitrogen, phosphorus, and sulfur sources, as
well as salts and vitamins, were added in excess to all of the refactored media. The exact quantities and
components of each medium are detailed in Table S2.

Since the different media were built to approximately reproduce fractions of the Marine Broth me-
dium, they were not uniform in their content of specific elements. In particular, 8 of the 10 refactored
media have the same total mass of carbon-containing sources, but not necessarily the same number of
carbon atoms (Table S8 at https://github.com/segrelab/marine_heterotrophs/). The number of carbon
atoms could not be calculated for difcoMB because the exact composition of the medium is unknown;
therefore, we chose to standardize the mass of total carbon source to imitate the components of
difcoMB as closely as possible, although it resulted in varying amounts of carbon and nitrogen atoms
across the different media (Table S8 at https://github.com/segrelab/marine_heterotrophs/ and Fig. S4A).
Similarly, the number of carbon and nitrogen atoms for the medium containing peptides (and therefore
the complete medium) could only be estimated because an exact molecular formula for Casamino Acids
(a hydrolysate of casein) is not available. The negative control medium (HMB–) has 0 added carbon
source, and HMBlips has a total of 2.2 g/L of carbon source compared to 5 g/L for the other media due
to solubility issues of the lipid mixture; this combined with the much greater molecular weight of the
lipid components contributes to the low number of carbon atoms in the medium (Table S8 at https://
github.com/segrelab/marine_heterotrophs/ and Fig. S4A). Note that the HMBlips medium was prepared
with a commercially available lipid mixture (Sigma Lipid Mixture 1), which, in addition to the lipids them-
selves, contains pluronic F-68 as an anti-foaming agent and Tween 80 as an emulsifier. We cannot rule
out the possibility that these molecules may be metabolized by some of the bacteria, partially contribut-
ing to the growth observed on HMBlips.

Growth assay. Using sterile technique, strains were streaked from frozen stocks (maintained at
280°C) onto marine agar plates and placed in a 26°C incubator. Cultures were grown 72 h, then single
colonies were picked and inoculated in 2 mL Marine Broth in 5-mL falcon tubes. Liquid cultures were
grown with shaking (200 rpm) at 26°C and ambient light for 48 h. Negative controls without added bac-
teria were used to verify the absence of contamination. Starter cultures of 1.5 mL were then inoculated
into each well of a 96-well plate containing 149 mL of medium, in triplicate. Only the interior wells were
utilized; edge wells contained Marine Broth without added bacterial cultures to reduce evaporation and
check for contamination. All combinations of strains and media were tested. Plates were wrapped with
parafilm and incubated at 26°C and ambient light without shaking for 264 h. Negative controls for each
medium (without added bacteria) were included in addition to edge wells. Plates were removed from
the incubator individually, the lids were checked for condensation, and the optical density (600 nm) was
measured in a Biotek Synergy HT plate reader (software version 3.05.11) at 26°C approximately every
24 h. Plates were shaken prior to the read at 0 h only. Results (in the form of time series of OD600 for
each well) were downloaded from the plate reader software as excel files and analyzed using the R sta-
tistical programming language (85).

Growth profiles. The heterotrophs selected for the library displayed widely divergent growth dy-
namics, and we chose to focus on their potential to generate biomass regardless of growth rate. As
described below, we used the growth curves to estimate, for each strain, a growth profile across media,
capturing the maximal change in optical density achieved by that strain at any time point during the
growth assay. The three technical replicates for each organism (i) and condition (j) were highly similar to
each other (Fig. S1) and were averaged at each time point to produce an average growth curve ODij(t).
We next identified for all pairs i,j, the maximum value (maxt{ODij(t)}) reached by ODij(t) throughout the
growth time course. The normalized version of this maximum value across all strains, maxODij =
maxt{ODij(t)}/ODij(t = 0), constitutes a matrix whose row i represents the growth profile of organism
i across all conditions. The matrix maxODij (i = 1, . . ., 63; j = 1, . . ., 10) is used for subsequent comparative
analyses of heterotroph phenotypes. Following a Kruskal-Wallis test for each medium, the nonparamet-
ric post hoc Dunn’s test was used to determine significant growth between the test and negative control
without added bacteria for each medium. The Benjamini-Hochberg correction for multiple testing was
applied, and cases with P , 0.05 were ascribed the unchanged maxODij value. Conversely, maxODij val-
ues for strain/medium pairs that did not experience positive growth were set to 0.
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Note that we chose to use optical density as a proxy for strain growth because it best captures the
total biomass yield, which is most relevant for global stoichiometry in the oceans. In other words, we
were interested in the ability of each organism to produce biomass on a given carbon category. Other
growth metrics, such as growth rate and the time to reach the maximum OD, constitute important varia-
bles that affect meaningful ecological phenotypes, like competition for limited resources, but were not
thoroughly analyzed in this study. Given that several strains display diauxic shifts and other nonlinear-
ities during the active growth phase, these other metrics may be difficult to estimate as individual pa-
rameters and would ideally require higher time resolution. We have, however, explicitly asked whether
there is any systematic relationship between maximum OD and initial growth rate. As shown in Fig. S2,
the two quantities are strongly correlated (adjusted R2 = 0.71, P, 2.2 � 10216).

Unsupervised clustering of growth profiles. The growth profiles (maxODij) of all 63 strains were
clustered using a Gaussian mixture model implemented in the R mclust package (86), a contributed R
package for model-based clustering, classification, and density estimation based on finite normal mixture
modeling, abundantly used to analyze biological data sets (e.g., references 87–89). Model-based clustering
approaches, such as gaussian mixture modeling, provide a probabilistic alternative to traditional methods,
such as k-means and hierarchical clustering; the challenges of selecting the “correct” number of clusters
and clustering method are resolved by statistical model selection rather than heuristic methods (90, 91).
mclust provides functions for parameter estimation via the expectation maximization algorithm for normal
mixture models with a variety of covariance structures and functions for simulation from these models.
Initialization is performed using the partitions obtained from agglomerative hierarchical clustering. By
default, mclust applies 14 models and identifies the one that best characterizes the data. mclust achieves
this by computing, for each model, the Bayesian information criterion (BIC), which has been shown to
work well in model-based clustering (92, 93). Specifically, BIC was used within mclust to identify the opti-
mal covariance parameters (in our case VEI), as well as the optimal number of clusters (in our case, 7). See
Fig. S6 for a comparison of BIC values obtained for all models.

A chi-square test of independence was performed to examine the relationship between taxonomic
class and cluster number. The relationship between these variables was significant (P = 0.0005). The
squared standardized Pearson residuals were then examined to indicate which classes of bacteria con-
tributed significantly to the lack of fit between the observed data and null model (the taxonomic class
and cluster assignment are independent); values greater than 4 were considered statistically significant
at a critical alpha value of 0.05 (Table S3 at https://github.com/segrelab/marine_heterotrophs/).

Relationship between growth profiles and phylogenetic/gene content distance.We constructed
a phylogenetic tree for all the strains in our collection using protein sequences of 206 single-copy homolo-
gous genes. The homologous genes were obtained by first conducting an all-against-all comparison of
translated nucleotide sequences using BLAST (94). The BLAST pairs were then filtered for reciprocal hits
and clustered using MCL (95). The sequences in each cluster were aligned with Muscle (96) and trimmed
with Gblocks (97), and HMMER (98) was used to build hidden Markov models (HMMs) for each cluster. We
then searched the genomes for each HMM, and the orthologs were selected based on their presence in all
genomes (multiple copies were ignored). The homologous sequences for each strain were concatenated
and aligned with Muscle, cleaned with Gblocks, and the final maximum-likelihood tree was inferred using
FastTree (99). The cophenetic distance (Pab) between all pairs of strains was calculated using the cophene-
tic.phylo function of the R ape package (100).

The gene content distance (Cab) and the metabolic trait distance (KEGG module distance, Mab) for all
pairs of strains were calculated as described in Zoccarato et al. (49), using the Jaccard distance. All of the
genomes used in this study were reannotated with KEGG orthology (KO) identification numbers by
Zoccarato et al. For Fig. 3B, we created the library pangenome by matching the genes based on their KO
identifiers, ignoring duplicate genes within the same genome. We built the matrix by first taking the
nonredundant union of genes for all strains in the library, and then we organized the matrix so that the
rows represented strains, the columns represented the genes, and the presence or absence of genes in
each strain was given a binary encoding. The gene content distance (Cab) was subsequently determined
by calculating the Jaccard distance between binary vectors for all pairs of strains. The metabolic trait dis-
tance (Mab) was calculated in an identical way using binary vectors for each strain encoding the presence
or absence of KEGG modules; the methodology for determining the presence of modules within each
genome is detailed in reference (49) In this case, the final matrix columns are KEGG modules, which rep-
resent pathways, structural complexes (e.g., transmembrane pumps or ribosomes), functional sets (e.g.,
aminoacyl-tRNA synthases or nucleotide sugar biosynthesis), or signaling modules (e.g., phenotypic
markers such as pathogenicity).

The distance between each pair of growth profiles (Gab) was calculated using the Euclidean distance
between vectors of continuous numbers corresponding to the MaxOD values. We chose the Euclidean
distance due to its suitability for microbial culture data sets with the same number of variables meas-
ured on similar scales (101–104) and because we were interested in the geometric proximity of the
growth values (105). For each pair of strains, the Euclidean distance between growth profiles was plotted
against the cophenetic distance, gene content distance, and KEGG module distance. Linear regression
was performed using the lm function of the R base package (85).

Correlations between growth and individual gene presence/absence.We created the library pan-
genome by taking the nonredundant union of all genes across strains. The point biserial correlation
coefficient (r) was calculated between growth on each medium and the presence (binary) of the 6,255
individual genes in the library pangenome. P values for r were adjusted using the Benjamini-Hochberg
procedure and then filtered for values less than 0.05. The resulting set of r were considered the values
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for highly correlated genes. The matrix of correlation values, r, was subjected to principal-component
analysis using the princomp function of the R base package (85).

Pathway mapping/enrichment. Enriched pathways were obtained by filtering the pangenome for
significantly correlated genes (adjusted P , 0.05) and mapping the set for each medium to the KEGG
database using the R clusterProfiler package (106). P values were calculated by the hypergeometric dis-
tribution and corrected for multiple testing using the Benjamini-Hochberg procedure. Enrichment was
considered statistically significant for adjusted P, 0.05.

Data availability statement. All raw data sets and scripts used to generate the figures presented in
this article are available at https://github.com/segrelab/marine_heterotrophs.
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